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Abstract: Traditional parallel computing for power management systems has prime challenges
such as execution time, computational complexity, and efficiency like process time and delays in
power system condition monitoring, particularly consumer power consumption, weather data, and
power generation for detecting and predicting data mining in the centralized parallel processing and
diagnosis. Due to these constraints, data management has become a critical research consideration
and bottleneck. To cope with these constraints, cloud computing-based methodologies have been
introduced for managing data efficiently in power management systems. This paper reviews the
concept of cloud computing architecture that can meet the multi-level real-time requirements to
improve monitoring and performance which is designed for different application scenarios for
power system monitoring. Then, cloud computing solutions are discussed under the background
of big data, and emerging parallel programming models such as Hadoop, Spark, and Storm are
briefly described to analyze the advancement, constraints, and innovations. The key performance
metrics of cloud computing applications such as core data sampling, modeling, and analyzing the
competitiveness of big data was modeled by applying related hypotheses. Finally, it introduces a
new design concept with cloud computing and eventually some recommendations focusing on cloud
computing infrastructure, and methods for managing real-time big data in the power management
system that solve the data mining challenges.

Keywords: data mining; big data; cloud computing; parallel computing; power system

1. Introduction

In the early stage of the development of condition monitoring technology, most of
the monitoring systems were developed for a certain type of equipment [1,2], and each
system was scattered and isolated [3]. This was an information island without data sharing
and interaction and was not conducive to the management and comprehensive analysis
of monitoring data [4]. In addition, hardware resources such as network, computing,
and storage of these monitoring systems are also difficult to share, resulting in a waste
of IT facilities [5]. Therefore, an integrated management system built in the main control
room has emerged, which can centrally process various monitoring data collected by
different monitoring devices [6,7]. In order to integrate monitoring devices of different
specifications into the centralized monitoring system, the State Grid Corporation of China
issued a number of technical regulations and communication protocols, and established
state monitoring centers for power transmission and transformer equipment in many
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provincial grid companies [8]. However, a current limitation of the monitoring device is
it can only upload the processed simplified data to the monitoring center, and the data
collection frequency is not high [9,10]. However, with the popularization and application
of a high-speed optical fiber network and wireless transmission technology in the power
industry, the future power equipment condition monitoring center will be able to receive
panoramic real-time condition monitoring data from a wider area and become a data center
for data integration and information sharing [11]. Therefore, the amount of collected data
in the monitoring center will be staggering in the future, and the information processing
capability of the existing monitoring system will be insufficient to meet the storage and
processing requirements of such massive data [12,13]. Obviously, the serial processing
method has long been unable to meet the processing requirements of large amounts of
data [14,15]. The conventional parallel computing paradigm based on high-performance
computers has always been responsible for various computing problems encountered in
scientific research and engineering practice [16]. There are also many deficiencies in the state
data of electrical equipment [7]. In recent years, cloud computing technology sprouted from
parallel computing and has developed rapidly, and its many advantages have brought new
ideas for the establishment of monitoring center computing platforms, which have attracted
the attention of scholars in the power industry [2,17], as shown in Figure 1. From the
research status, most of the cloud computing platforms currently designed for monitoring
centers are based on a single Hadoop framework, which has certain limitations. Hadoop
is good at batch processing of big data, but it cannot meet the richer computing modes
in power equipment condition monitoring, such as stream computing [18]. Especially
under extreme conditions (such as severe weather), the condition monitoring alarms were
activated for power equipment [19].
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Figure 1. Efficient data processing for the power system.

1.1. Research Background

The power grid dispatch center is developing towards the promotion of online mon-
itoring technology that integrates power regulation and control. The power equipment
operating status data will be sent to the regulation center in the future. The existing Super-
visory Control and Data Acquisition with power Management Systems (SCADA/EMS) are
challenging for dealing with the massive amount of monitoring data [20]. In order to enable
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monitoring devices of different manufacturers to be connected to a unified centralized
monitoring system, a state monitoring center was established for power transmission and
transformation equipment in many grid companies [2]. Although web service technology
reduces the difficulty of data integration, challenges remain in meeting the real-time data
requirements of electric power companies [14,15].

Therefore, the current monitoring system receives skilled data processed locally in the
monitoring device. For example, the monitoring device must process high-voltage electrical
equipment’s partial discharge waveform signal into the number of discharges, the peak
discharge volume, and the corresponding discharge phase before being uploaded [21–23].
Uploading “familiar data” instead of “raw data” can reduce network transmission costs
and monitoring center storage costs [24]. However, a monitoring center that integrates
data from different specifications of monitoring devices still faces a complex problem to
in-depth state assessment and failure of the target device diagnosis [25,26].

Massive monitoring data will flood the remote power equipment monitoring center,
resulting in heavy storage, processing, and analysis tasks. The condition monitoring data
of power equipment has shown the main characteristics of big data: massive in volume,
various in types, rapid in change, and low in value density. The monitoring data processing
and analysis tasks will be transferred from distributed monitoring devices to centralized
monitoring centers, which simplifies the hardware and software configuration of monitor-
ing devices and facilitates the flexible expansion of the monitoring center infrastructure [27].
General Electric Company (GE), monitoring the operation of remote steam turbines, has
shifted from the past data processing and uploading simplified data sets to the use of
memory data grids and other technologies to receive and store raw sensor data [9]. The
widespread application of high-speed optical fiber communication in the power industry
provides solutions for massive data transmission [11].

Traditional data processing technology has encountered bottlenecks under the current
explosive growth of data. It cannot meet the analysis needs of the power industry to obtain
knowledge and information from massive data quickly. The power industry information is
the research and application of power big data technology. It is an inevitable requirement
for the development of technology and intelligence. Data mining can comprehensively use
relevant algorithms to process a large amount of data and discover its hidden valuable infor-
mation, which can realize the rapid conversion of data to knowledge and then value [28–32].
However, the current data volume is growing rapidly, and traditional algorithms based
on single-node serial mining are no longer suitable for massive data requirements. As
a distributed data processing platform, cloud computing can integrate many computer
resources and increase technical capabilities considerably. It is more suitable for processing
massive data than ordinary algorithms [14]. In addition, cloud computing models and
cloud computing platforms do not have high requirements for network nodes, and regular
computers can also participate in cloud computing, which reduces the complexity and cost
of cloud platform construction to a certain extent [33–35].

In recent years, cloud computing has received more attention with a computing model
that is integrated from the development of conventional computers and technological
networks such as distributed computing, parallel computing, network storage, etc. [2,19,36].
The virtualization, distributed storage, and parallel computing technologies in cloud
computing provide new ideas for constructing computing platforms for data centers’ power
equipment condition monitoring. It is possible to integrate the existing basic computing
facilities of electric power enterprises and provide reliable, stable, and powerful storage
and computing capacity support which is beneficial to monitor the online power equipment
over a wide range [37,38].

Monitoring and information collection improve real-time analysis and intelligent di-
agnosis capabilities [19,39]. With the rapid development of cloud computing technology,
various high-reliability and high-scalability, big data processing systems such as Hadoop,
Spark, and Storm have emerged, providing favorable tools for the centralized processing
of large-scale power equipment monitoring data [40–42]. Although these emerging com-
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puting models all offer a unified programming interface and shield more low-level details
than traditional parallel computing programming models, how can they be introduced into
the data processing of the power equipment monitoring center? Combining specific profes-
sional backgrounds to solve practical problems and different high-level applications in the
monitoring system is still a topic worthy of study [7,16]. The massive data characteristics in
smart grid many studies are consistent with the widespread 5 V vast data with their 9 V’s
Characteristics paradigm as shown in the Figure 2 [43–46].
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Power System Condition Monitoring

Online monitoring refers to the continuous or periodic automatic collection of electrical,
physical, chemical, and other state information of the monitored object with the help of
monitoring devices installed on or near the monitored object without power failure. It
can pass the field bus, Ethernet, wireless, and other communication methods transmit the
status data to the remote monitoring system for centralized storage and processing [18,47],



Sensors 2023, 23, 2952 5 of 37

as shown in Figure 3. The online monitoring system uses advanced information processing
and diagnosis technology to process and comprehensively analyze the status data, which
can predict the remaining life of the target equipment and provide a data basis and basis
for the status maintenance [48].
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At the same time, testing instruments capable of infrared, ultrasonic, and other non-
electricity measurements have also appeared. Since the 1990s, sensor technology, computer
technology, and digital signal acquisition technology have brought online monitoring into
a new stage. A multifunctional microcomputer online monitoring system has appeared,
which has realized the monitoring of more equipment parameters, such as dielectric loss
factor, electrical capacity, leakage current, partial discharge, etc. This monitoring system
has more complete functions and improved software and hardware configuration, which
can realize data processing, analysis, diagnosis, alarms, and visualization of results [49].
Integration, automation, and intelligence have become the current development direction
of online monitoring technology [50]. However, most of the existing power monitoring
systems are in the stage of isolated operation, and the utilization of large amounts of data
obtained is low [4].

In recent years, it can only allow partial monitoring subsystems to upload simplified
“familiar data” and cannot transmit sampled data of high-frequency signals. Such as the
discharge signal of electrical equipment, and these data are beneficial for fault diagnosis of
equipment such as transformers and GIS switches [49]. The popularization and application
of high-speed optical fiber communication technology will allow the transmission of large
amounts of data [50,51]. The future power equipment monitoring system will receive
panoramic real-time status monitoring data from a wide range of power equipment and
become data that can realize data integration and information sharing center [52].

Most traditional grid SCADA systems collect data through circular inquiry, which
cannot collect continuous monitoring data of power equipment. It is challenging to meet
real-time processing requirements and dynamic access of streaming big data for power
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equipment monitoring [20]. The recent emergence of cloud computing technology may
bring hope to difficulties in collecting, storing, and processing big data for power equipment
monitoring [53]. Ref. [19] proposed information management and computing platform ar-
chitecture based on cloud computing technology for smart grid status monitoring, in which
the computing layer only uses the Hadoop framework. In [54] discussed the feasibility and
necessity of the power system utilizing by cloud computing, explained the features and
structure goals of the power system utilizing by cloud computing center, to propose system
structure design by taking simulation computing as an example to meet the needs of future
smart grids for the storage, sharing, and processing of massive panoramic information.
Ref. [55] proposed computing platform provides a storage and computing environment for
business applications in the data center. Ref. [18], combined the characteristics of intelligent
substation state monitoring data, studied the online monitoring data processing platform
of substation equipment based on Hadoop, and focused on the storage and fast query
methods of monitoring data in the column storage distributed database “Apache HBase”.
Ref. [19] studied an intelligent diagnosis system for substation equipment based on a cloud
platform, provided a variety of intelligent diagnosis methods, and realized collaborative
fault diagnosis and hierarchical diagnosis through information fusion strategies.

1.2. Challenges

Online monitoring of intelligent power primary equipment and conventional power
equipment has been dramatically developed and has become a trend [2,19,56]. Monitor-
ing data is becoming more and more massive, and online monitoring system of power
equipment faces huge technical challenges, like (real-time, rapid change, high precision,
different application (various types), abnormal data brought by power data, large-scale
data with complex structures, large dimensions, and massive data) [27]. Research work
can be roughly divided into two kinds of detection methods based on traditional detection
methods and detection methods based on data mining [14]. Traditional power load abnor-
mal detection methods are generally based on human experience, state estimation, load
curve, similarity and load change rate [57]. Due to the low efficiency, strong subjectivity,
and many human factors of this method. This method is suitable just for abnormal data
with large abrupt changes, and cannot detect abnormal data with unobvious changes [58].
With the continuous development of artificial intelligence and cluster analysis theory, the
speed of data mining technology in the detection of abnormal power load data is also
increasing [59]. where commonly can be roughly divided into two categories: firstly, the
abnormal value detection method with supervised learning, which selects a part of the
power system load data as the training sample and then uses the corresponding algorithm
to make the selected sample data and the expected output meet the corresponding require-
ments based on support vector machines, detection methods based on artificial neural
networks, and detection methods based on decision trees [60]. secondly, the unsupervised
learning power load abnormal data detection method does not need to select part of the
historical power load data as training samples [61]. This type of abnormal data detection
method usually includes density analysis, cluster analysis and so on. The distance-based
outlier detection algorithm belongs to the unsupervised algorithm. This method is easy to
understand and explain, and it is one of the most representative methods in density-based
outlier detection algorithms, and it has better results when dealing with medium and high-
dimensional data [61]. The density-based abnormal load data detection method still has the
problem that some parameters are specified by subjective factors such as human experience,
which reduces the accuracy of abnormal data detection [62]. The abnormal value detection
method based on the clustering algorithm can more accurately distinguish the normal data
and abnormal data in the electric load data set according to the characteristics of the electric
load data.

At present, cloud computing technology has achieved good results in the fields of
medical data storage, traffic data real-time analysis, and weather data analysis [37,63]. The
cost of cloud computing is low, and there are no complicated requirements for the servers in
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the cluster establishment [64]. With the help of the large scale and fast calculation speed of
cloud computing, the management and analysis of power monitoring data can be realized
more effectively through integration with traditional data mining techniques [33,65]. In
summary, the power load and abnormal data detection method based on data mining and
cluster analysis has become a research hotspot in recent years because of its ability to dig
deeper into the changing law of the load curve and effectively detect abnormal load data,
and a certain result has been achieved [12,66]. In practice, the types of power load data are
complex and diverse, and the contradiction between the increasing scale of power load
data and the low efficiency of data mining algorithms has gradually become prominent.
Each clustering algorithm has defects such as difficulty in optimizing the determination
of initial parameters and high sensitivity [67]. Therefore, the related algorithms for the
parallel detection of power load data need to be further studied. All the above explanation
summarizes in Figure 4.
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At present, the application research of cloud computing-based big data technology in
the power industry is still in the exploratory stage [30]. Presently, most cloud computing
platforms designed for monitoring centers are based on a single Hadoop framework and
have certain limitations storing data before centralized processing that lead to processing
time delay is too long [29], which cannot meet the requirements of online monitoring
data [28,42]. Meet the data flow quickly and efficiently will become a trend of information
processing in the future [12,68]. Despite several studies on velocity, volume, and variety, a
full and efficient solution is currently unavailable on the market; the most popular method



Sensors 2023, 23, 2952 8 of 37

is to use a database management system (DBMS) that may be incompatible with older
systems [69]. The rapid processing of monitoring data and the problem of abnormal de-
tection in real-time are becoming increasingly prominent [13]. The introduction of cloud
computing technology into the power field has essential research significance, but the ap-
plication in the power industry is still in the exploratory stage, and more in-depth research
is needed to put it into power production [70]. Cloud computing technology has attracted
much attention with high performance, but how to use cloud computing technology for
large-scale real-time data processing has not been studied [71]. Additionally, multisource
heterogeneous urban sensor access and data management technologies provide strong sup-
port for intelligent perception and scientific management at the city scale and can accelerate
the construction of smart cities or digital twin cities with virtual reality features [72–74].
The difficulty of the processes has frequently increased with the single computing resources
insufficient because of the complicated operation of the combined prediction model and
meet in real-time for intelligent power systems [7,39,75]. The challenge to analyzing and
studying the electricity consumption massive data lead to necessitate the development
of clustering analysis algorithms combined with cloud computing [69]. In most of the
studies of cloud computing, used as a local controlling system [76,77]. Therefore, there
was a lack of studies that used cloud computing to benefit from the ability to share the
systems that control the process more widely. Several studies proposed cloud computing
products, like artificial intelligence (AI) [78], and the internet of things (IoT) [5,79–81] in
their models, however, all of the studies were focusing only on the smart vehicles’ bat-
teries [77,78,82–84]. Therefor this research focuses on the problem of centralized parallel
processing and diagnosis of power system condition data based on cloud computing and
big data technology because difficult to meet the real-time requirements of the power
system and construction of a safe, stable, cost-effective, green and environmentally friendly
smart grid. The challenges of power management and monitoring have many problems;
this work is proposed to target three different Problems Figure 5.

1. Meet the multiple real-time requirements of power system condition monitoring;
2. The weakness of traditional data mining based on single-node serial mining;
3. The insufficient algorithm that combines data mining and computing technology to

deal with massive data.

Finally, cloud computing could be a great addition to an intelligent power system that
is aimed at solving the challenge of massive data from large-scale areas of a smart power
system. Contributions to this literature evaluation take into account the aforementioned
issues. To give an overview of big data analytics using cloud computing frameworks
for power management systems at the moment, we propose the first universally appli-
cable framework for parallel optimization in power systems, which researchers can use
to systematically describe their parallelization studies and place them in the landscape
of parallel optimization without regard to the application domain, problem addressed,
methodology parallelized, or technology used. The proposed approach, in particular,
incorporates both algorithmic design and computational implementation challenges of
parallel optimization, which are often dealt with separately in the literature. Second, we
use the integrative framework to consolidate earlier research in the field of power systems
on parallel optimization.

Furthermore, there are also difficulties managing information and data due to the
millions of intelligent meters that need to be managed effectively. Cloud computing could
offer a more affordable option for data analytics and storage., as shown in Figure 6, and
Table 1 [85].
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Table 1. The difficulties managing information and data due to the millions of intelligent meters data
that need to be managed effectively through cloud computing.

Ref. Existing Challenging Proposed Solution Challenging Proposed Solutions
and Future Work

[20]

The problem with concurrent power
transmission networks is the uneven
temporal distribution and the
growing number of fault occurrences
that cause power outages or
interruptions.

The suggested model incorporates and
explicitly assesses seldom occurring
environmental components, faults, and
periods with fewer fault events, which
improves the forecast performance of
power transmission fault events.

challenging to deal with the massive
amount of monitoring data

[24]
The problem of conventional
clustering algorithms for Big Data
Analytics.

Parallel algorithms of k-means and
canopy are implemented using the
Hadoop environment and Mahout to
solve the problem of conventional
clustering algorithms.

Process locally after storage data.

[14]
Problems with traditional data
mining that is generated in
single-node chain mining.

This work uses single-node serial mining
to tackle the classic data mining problem
in power systems. It has vast storage and
processing capacities, and accuracy 87%.

Did not use cloud computing so it
was hard to meet real-time and
large scale

[2]

The limitations of centralised
administration based on LAN design
prevent broad-area monitoring and
the resolution it’s issues.

This study describes cloud-based power
grid-wide-area monitoring architecture
for parallel computing and big data
mining to give intelligent grid decisions.

This paper’s flaw is a lack of data
exchange during processing.

[31]

Considering real-time application, the
smart grid still needs to advance in
terms of efficiency, power
management, dependability,
and value.

Using cloud computing architecture from
any location and at any time, design
remote real-time monitoring of
substation power data in a safe, efficient,
and effective manner.

The weakness of this work the power
flow in the grid is continuously
monitored using PLC and Energy
Meter, it doesn’t use cloud computing
applications.

[19]

Large-scale data processing and
analysis methods in a real-time
panoramic grid are a challenge for
smart grids.

This paper use data mining and
integrated information technology
platform to present a smart grid building
a large multi-level data storage system to
extract valuable knowledge to support
grid scheduling decisions.

Dealing with redundant data and
noise in data mining results remains a
barrier for technology. It is also
uncertain if the current cloud
platform will get real-time smart grid
monitoring data.

[70]

As smart grids spread, terminal
devices like cutting-edge sensors and
smart metres tend wide access to
distribution networks, providing
major challenges to the information
perception, analysis, and processing
capacities of the distribution
automation system.

This paper aims at guiding to preserve
CPU and memory resources and increase
resource utilisation. through presents a
configuration technique for computing
resources for the microservice-based edge
computing apparatus in the smart
distribution transformer region.

The lack is the trade-off methods
between robustness and economy in
computing resource configuration
problems and apply the achievement
of this work to investigate the
computing resource scheduling
problem of the cloud-edge
collaborative system in the
smart grids.

[71]

It has become very difficult to process
big amounts of real-time data in
research and applications, and it
hasn’t been researched how to
employ cloud computing technology
for large-scale real-time data
processing.

This research focuses on the big data
processing architecture of the cloud
computing platform. It creates a large
data processing calculation mode and
establishes the overall real-time big data
processing architecture that acts as the
foundation for the RTDP (Real-Time Data
Processing)

The RTDP is a tough project, and
many issues still need to be
researched further: Choosing the
most effective technique for
calculating future design
performance; Real-time data
processing hardware must be
implemented equally.
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Table 1. Cont.

Ref. Existing Challenging Proposed Solution Challenging Proposed Solutions
and Future Work

[72]

The huge challenge of integrating and
exchanging vast sensor information
resources that differ widely in
hardware design, connection
protocols, formatting, conversational
skills, sampling rate, and data
accuracy.

This paper provides a deeper
understanding of the needs, platforms,
most current technical developments,
and open research problems of urban
sensor applications for academics and
leaders in the IoT and smart cities sectors.

Relational databases usually struggle
with scalability, availability, and
concurrent reading and writing,
especially for big data handling in
wireless sensor networks. As IoT and
sensor technology continues to
progress, cloud computing will
be used.

[86]

The ability to detect and analyse
anomalies for huge data in real-time
is a tough problem due use
conventional detection methods of
data processing.

An anomaly detection model based on
Hadoop distributed processing method,
cloud computing and MapReduce
monitoring framework is presented using
machine learning.

The challenge to Meeting the
real-time and large scale

[16]
Data from networks and smart cities
is increasing and it is becoming huge
so it need to big data analysis (BDA)

BDA generated in the smart city (IoT) to
turn the smart city toward safety, efficient
data processing, and good governance.

The flaw is the system created for the
study only offers offline batch
analysis and prediction functions.

[87]
Smart grids (SGs) are utilizing
massive data for operations
and services.

Information and communication
technologies (ICTs) play an important
role, particularly in the computing model,
which governs how data analytics in SG
may be carried out.

The design of EC systems,
EC-appropriate algorithms, resource
management in the EC environment,
and even hardware accelerations
might all be improved.

[88]
Increasing renewable energy sources
making the power system more
complex.

This study focuses on using ICT data in
smart grid decision-making to ensure
systems are secure and reliably operate.

The SCADA issues caused by ICT
integration continue to exist like
interdependency analysis, and
decision-making.

[89] There are challenges to controlling
MGs in a logical and coordinated way

In this study, control objectives are
categorized in line to the hierarchical
control layers in MGs, and the
development approaches given by
MGSC/EMS are summarized.

the challenging issue is the
uncertainty about power production
related to weather, load calculation
times and response time brings more
challenges to MGSC/EMS.

[21]

The challenge of extracting data value
through the statistical analysis of an
immense amount of data generated
by cyber-physical systems.

The goal of this paper was not to give the
solutions, but rather to name the
problems. A major challenge is the
changing nature of the technical systems

software-based devices change
frequently due to bug fixing and
software updates. Therefore, the data
we collected is after time only
partially valid.

[90] The challenge of clustering
techniques in Big Data context.

Provide a thorough analysis of the Big
Data clustering problems and highlight
the benefits of the key methods.

Data are too big, dynamic, and
complex. Traditional data handling
struggle to collect, store, and
analyse data.

[28]

The execution of the Hadoop cluster
when processing a high number of
tiny files is the true problem
businesses face. The solutions are
restricted to NameNode memory

Some novel strategies have been put
forth, such as combining tiny
heterogeneous files in various formats in
a quasirandom manner, which resolves
the memory issue by drastically reducing
the amount of metadata.

Hadoop cannot satisfy real-time
demands because it stores data before
processing.

[29]

Big Data poses difficulties for Digital
Earth in terms of data mining,
processing, and storage.
Transforming big data’s volume,
velocity, and diversity into values is
the main challenge.

Cloud computing provides fundamental
support to address the challenges with
shared computing resources including
computing, storage, networking and
analysis, that fostered Big Data
advancements.

It is extremely difficult to achieve in
real-time processing.
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Table 1. Cont.

Ref. Existing Challenging Proposed Solution Challenging Proposed Solutions
and Future Work

[30]

Large data environments lack
capabilities like support for massive
data, high performance, high
reliability, scalability, and high
resource.

This paper studied features of popular
NoSQL and NewSQL databases for
unified storage management and quick
data access.

It is extremely difficult to achieve in
real-time processing.

[69]

Big data is currently the most difficult
organisational problem due to the
rapid generation of new data every
second. Systems cannot be
compatible with typical DBMS
solutions.

In order to address diversity in greater
detail, this article discusses current
problems, possibilities, trends, and
difficulties associated with big data. We’ll
talk about an effective fix for the huge
data variety issue.

It is extremely difficult to achieve in
real-time processing.

1.3. Novelty

Recently, Ref. [7] introduced a framework that contains an EMS stored on the cloud
computing service as a combination of monitoring different power sources as well as
managing the charging and discharging process. This model is useful for handling the
best-optimized system and for controlling the switches the power hub before the need to
deal with the data that comes from the power system. Therefore, this study focuses on
solving this problem by use of the first step of the optimum system that will be Big Data
Analytics Using Cloud Computing Based Frameworks for Power Management Systems
through an overview of big data analytics using current cloud computing frameworks for
power management systems, and we propose the first universally applicable framework for
parallel optimization in power systems, which researchers can use to systematically describe
their parallelization studies and place them in the landscape of parallel optimization
without regard to the application domain, problem addressed, methodology parallelized,
or technology used. The proposed approach, in particular, incorporates both algorithmic
design and computational implementation challenges of parallel optimization, which are
often dealt with separately in the literature. Second, we use the integrative framework
to consolidate earlier research in the field of power systems on parallel optimization.
Cloud computing could be a great addition to any system aiming for an optimal solution,
especially intelligent power systems that solve the challenge of massive data from large-
scale areas of a smart power system. All these processes and data will be saved and
controlled by a cloud computing framework using a cloudsim.

1.4. Organizing of Paper

The flowchart is demonstrates the layout and organization of the manuscript in
graphical form as follows [91]:
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2.2. Classification of Parallel Computing Technology

There are many classification methods for parallel computing technology, and the
following only introduces the classification methods related to this article [95].

Flynn Classification

The most classic Flynn classification is classification from the most basic instructions
and data processing methods [96,97]. Figure 8 shows the four different types after classifi-
cation.

(1) SISD is a traditional serial computing method. Early computers fell into this category
in a certain clock cycle, only one instruction is executed and only one data stream is
processed;

(2) SIMD is uses one instruction to process multiple data streams simultaneously in a
certain clock cycle. Current single-core computers also fall into this category and
are widely used in the fields of digital signal processing, image processing, and
multimedia information processing;

(3) MISD is uses multiple instruction streams to process a single data stream. Currently,
it is only a theoretical model and has no application examples;

(4) MIMD are currently the most popular. Multicore processors fall into this category
which can execute multiple instruction streams on multiple different data streams at
the same time.
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2.3. Classification by Computational Characteristics of Applications

(1) Data-intensive applications: Such applications are faced with a huge amount of
data with relatively simple calculations [98]. Usually, parallel computing is performed by
dividing the data, which can also be called data parallelism [26,99].



Sensors 2023, 23, 2952 16 of 37

(2) Computation-intensive applications: The amount of data processed by this type of
application is not large, but the calculation is very complex [100]. Generally, this method
of decomposing tasks is used for parallel computing, which can also be called task paral-
lelism [101].

(3) Mixed-intensive applications: The amount of data and computation can use either
data parallelism or task parallelism to solve the problem, or a combination of the two
parallel methods can be used to solve the problem [37]. Often, partitioning data is easier to
handle than breaking down tasks [102].

3. Shortcomings of Traditional Parallel Computing
3.1. Computational Complexity Issues

Real-world optimization issues in a various applications fields are often NP-hard,
and even the development of (meta) heuristic optimization algorithms might necessitate
significant computer resources [103]. The rising availability of powerful computer ca-
pabilities will be used to solve complex optimization issues with parallel algorithms in
numerous industries, including finance, logistics, production, and design [70]. A lack of
unifying frameworks for parallel optimization across techniques, application sectors, and
challenges adds to the heterogeneity [37,38]. The concerns of a novel integrative framework
for parallel computational optimization across optimization problems, techniques, and
application domains. The framework combines algorithmic design and parallel optimiza-
tion computational implementation viewpoints [104]. Unsurprisingly, the application of
parallel optimization has been hesitant because (i) parallelizing algorithms is challenging
in general from both the algorithmic and the computational perspective, and (ii) a viable
alternative to parallelizing algorithms has been the exploitation of ongoing increases of
clock speed of single CPUs of modern microprocessors [105].

Parallelization initiatives are now considerably more crucial than they were in the
past due to progress. Fortunately, the need for parallelization has been realized, and
parallel computing resources are now more widely available. The phenomenon: The rapid
development of parallel hardware architectures and infrastructures, including multi-core
CPUs and GPUs, local high-speed networks, and large data storage, as well as libraries
and software frameworks for parallel programming, is the fundamental cause of this [106].
The study discovered a large number of published reviews on parallel optimization for
specific issues, approaches, uses, fields of study, and technological advancements. The
majority of the assessments we discovered center on parallel optimization with respect to
specific approaches. Metaheuristics have dominated methodological literature evaluations,
as indicated in Table 2. Several points that demand for a new literature review have been
presented in earlier reviews. In the first place, we were unable to locate reviews of the most
recent research on the parallelization of both precise and (meta)heuristic approaches that
had been published in the years 2008–2017. Second, the categories that were employed to
define and organize earlier literature were different. Aside from this heterogeneity, there
aren’t any frameworks that can be used to describe parallel optimization across techniques,
application areas, and issues [77,78]. Finally, this has produced a fragmented overall view
of what has been accomplished and what needs to be done in parallel optimization in
operations research (OR). As a side effect, the heterogeneity with which parallelization
studies in OR have been described in terms of algorithmic parallelization, computational
parallelization, and parallelization performance is high. This is advantageous from a
diversity perspective, but it also raises problems such as heterogeneity makes it often
time-consuming and, in some cases, impossible for readers to identify the aforementioned
parallelization characteristics of a study, to classify the study.
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Table 2. Several parallel optimization methods and technologies use Metaheuristics.

Algorithm Reference

Tabu search (TS) [107]

Simulated annealing (SA) [108]

Variable neighbourhood search (VNS) [109]

Greedy Randomized Adaptive Search Procedures [110]

Swarm intelligence algorithms [111]

Particle swarm optimization algorithms [112]

Genetic algorithms (GAs) [113]

Ant colony optimization algorithms [114]

Scatter search [115]

Several reviews have covered sets of Metaheuristics [116]

Hybrid Metaheuristics [117]

General-purpose computation on graphics processing units (GPC-GPU),
in particular, are noteworthy parallelization approaches [118,119]

3.2. Multi-Source Heterogeneous Problem

Mostly in the domain of computers, heterogeneity typically refers to various instruction-
set architectures (ISA), also called computer architecture, a machine that carries out the
commands specified by that ISA, such as CPU [120]. The amount of heterogeneity in
contemporary computing systems is progressively rising, with many new processors now
featuring integrated logic for interacting with other devices (SATA, PCI, Ethernet, USB,
RFID, radios, UARTs, and memory controllers), as well as programmable functional units
and hardware accelerators (GPUs, cryptography co-processors, programmable network
processors, A/V encoders/decoders, etc. [121]. When a system uses the same ISA but has
a heterogeneous CPU topology, the speed of the cores varies [5]. In contrast to normal
homogeneous systems, heterogeneous computing systems come with different issues [122].
All of the problems associated with homogeneous parallel processing systems are brought
up by the presence of many processing units, and the degree of heterogeneity in the system
can bring about non-uniformity in system development, programming techniques, and
overall system capabilities [123]. Three categories of heterogeneity can be present: the first
is instruction-set architectures (ISA): Binary incompatibility could result from differing
instruction set designs in compute elements. The second is application binary interface
(ABI): Different memory interpretations may be possible for compute elements [124]. This
depends on the architecture and compiler being used and may include bendiness, calling
convention, and memory layout. The third is application programming interface (API):
It’s possible that not all compute parts will have access to all OS and library services at
once [125].

In terms of interconnecting, the compute pieces may be interconnected in a variety of
ways. While some parts of a heterogeneous system may be cache-coherent, maintaining
consistency and coherency may be explicitly required for other parts of the system [126]. A
heterogeneous system may include CPUs with equal architecture in terms of performance,
but with subtle changes in microarchitecture that affect both performance and power
consumption [127]. Performance predictability issues, particularly when dealing with
mixed workloads, can occasionally be caused by asymmetries in capabilities combined with
opaque programming models and operating system abstractions [128,129]. Regarding Data
Segmentation While data splitting on homogeneous platforms is frequently easy, it has been
demonstrated that the task is NP-Complete for the general heterogeneous situation [130].
It has been demonstrated that there are ideal partitioning’s for small numbers of partitions
that completely balance the load and reduce communication volume [131].
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3.3. Data-Intensive Challenges

The parallel computing facility resources are usually a single high-performance com-
puter or high-performance computing cluster, whether they are a shared storage archi-
tecture or a distributed storage architecture or they are still logically reflected as a single
high-performance computer for parallel computing users [100,132].

The computing resources and storage resources are relatively isolated physically, and
the computing unit accesses data on the storage unit through a data bus or a high-speed
network. For compute-intensive applications with small amounts of data, this does not
pose a problem [133]. When faced with increasingly prominent data-intensive application
requirements, frequent read and write accesses between computing units and storage units
will become the performance bottleneck of the entire parallel system. This problem is
especially true in a shared storage architecture where data is centrally stored [134]. In
order to reduce the amount of communication data between processes, each worker has
a local backup of all the data to be analyzed, and only the metadata of the data is sent
when assigning tasks [135]. However, this precondition is not easily satisfied in clusters of
distributed storage architectures, so the parallel scheme is only suitable for multi-core or
many-core computers when solving data-intensive problems [136].

3.4. Scalability

The high-performance computer (HPC) clusters consist of high-performance hardware
and are very expensive [137]. The cluster expansion generally adopts a vertical expansion
method, which improves the computing performance of the cluster by replacing CPUs,
expanding memory, and adding disks. However, vertical scaling is very limited, it is easy to
reach the limit and the upgrade is expensive. The scalability can be achieved by horizontal
expansion, such as a cluster of workstations (COW), but there are still other problems in
traditional parallel computing based on this hardware [138].

3.5. Usability

Although the existing traditional parallel computing programming models such as
Message Passing Interface (MPI) and OpenMP have been encapsulated at the bottom,
and that data storage management, data division, task allocation and scheduling, data
synchronization and communication, fault tolerance, and many other technical details
need to be handled by users themselves, which is still very cumbersome [139]. Users are
entangled in many underlying technical details while considering the application problem
itself, which makes parallel programming not easy [105].

4. Cloud Computing
4.1. Concept of Cloud Computing

The concept of cloud computing, is defined by the US National Institute of Standards
and Technology (NIST): as a model that can achieve convenience for obtaining the required
resources (including networks, servers, storage, applications, and services) through net-
work access on demand, and the required resources can be quickly provided or released,
with little management effort or little interaction with service providers interaction [140,141].
Cloud computing is generally considered to have the following characteristics:

(1) Virtualization: Virtualization is the core technology of cloud computing, and many
other features that depend on it. The application of virtualization technology can
integrate heterogeneous computing resources to form a resource pool for users to
access [142].

(2) Service-oriented: Cloud computing provides three levels of services, namely Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). IaaS is the lowest-level service that directly provides compute, memory, and
networking equipment. Users have the greatest degree of freedom and can build their
own platforms and software. PaaS is one level higher than IaaS, providing a ready-
made cloud platform, saving the work of developing the platform. SaaS provides
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more convenient services; users can directly use the provided software without any
development [143];

(3) Elasticity and scalability: The cloud scale can be easily expanded without affecting
the cloud services currently provided externally. Resources in the cloud are infinitely
desirable to users and can be automatically provisioned and reclaimed quickly on
demand [144];

(4) Reliable and universal: Cloud computing technology provides a variety of fault-
tolerant mechanisms to ensure high reliability of services [145]. Data is placed with
multiple copies to prevent data loss due to hardware failure [146]. Compute services
that were stopped due to hardware failures can still continue elsewhere through vir-
tual machine migration. Virtualization makes cloud computing resources transparent
to users and supports applications in different industries at the same time [147];

(5) Economies of scale: The cloud computing platform does not have high requirements
for hardware facilities, and a large number of idle ordinary computers can be inte-
grated into the resource pool through virtualization [33]. For users, it saves hardware
costs and daily management costs of self-built platforms [57]. For cloud service
providers, the versatility of cloud computing has greatly improved the utilization of
resources, and the scale has significantly increased economic benefits [148].

4.2. Cloud Computing Environment

A smart grid is a heterogeneous and complex environment containing different kinds
of devices, networks, systems, and data. IEC 61970 and IEC 61850 were discovered via a
study on the principal Smart Grid standards and are open-source platforms based on cloud
computing. IEC 61970 specifies the application program interface (API), while IEC 61850
specifies the abstract communication services interface (ACSI) [149].

Compatibility with the IEC61970 and IEC61850 standards for cloud computing tech-
nologies such as Hadoop, Spark, and Storm involves careful analysis of existing systems,
translation of data, adoption of standards-compliant data formats, integration of systems,
and thorough testing to ensure that the systems are functioning as intended. Because
these two standards defined data models and the interface separately, the models are not
uniform, and seamless communication between the substation and the control center is
not possible. Whereas IEC 61970 defines the power of an information model and is widely
used in enterprise integration. IEC 61850 is restricted to data exchange within substation
equipment. Research revealed that Hadoop might pool idle power system resources and
provide “super-computing capability” for the smart grid’s data integration platform. The
grid dispatch automation system’s support platform and application software should be
upgraded in accordance with the component interface specification (CIS) and Common
Information Models (CIM) standards. The data is integrated using the IEC61970 standard
and connected to the smart grid via a platform for data sharing [150]. The main user of
these standards will not be a person, but a computer and they have to be machine-readable.
At the same time, they are very complex documents involving thousands of different items.
The full series of IEC 61850 Standards is now available as a global package. They are
issued with the available associated code components. The series includes no less than
35 documents, dealing with substation automation, DER integration or cyber security, to
name but a few [151]. With the development of cloud computing technology and the needs
of big data processing, a number of new computing models and programming models
have emerged, providing users with a basic platform for parallel programming in the cloud
environment, and shielding users as much as possible from the bottom layer. The details
are presented to the user through a higher-level abstract interface [152].

4.2.1. Hadoop Technology

Hadoop is a massive data processing system open sourced by the Apache Software
Foundation. It includes many components for storage or processing such as the Hadoop
Distributed File System (HDFS) and the MapReduce parallel computing model [153].
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HDFS has the characteristics of distributed storage, high concurrent access, high fault
tolerance, simple consistency and provides a reliable storage environment for parallel
computing models [154]. It adopts a master-slave architecture and is built on a physical
cluster connected by multiple computers through a network. The bottom layer is the local
file system of the operating system. Its architecture is shown in Figure 9, shows HDFS in-
cludes a master node NameNode, a backup master node SecondaryNameNode and a set of
DataNode slave nodes. The NameNode is responsible for managing the HDFS namespace,
saving all metadata, and responding to client access requests. SecondaryNameNode is
used to solve the single point of failure problem of Hadoop. The DataNode is responsible
for the actual storage and management of redundant data blocks of files, and the data block
files are actually stored on the local file system of each node [155].

Sensors 2023, 23, x FOR PEER REVIEW  21  of  39 
 

 

 

Figure 9. Architecture of HDFS. 

The basic idea of MapReduce is basically the same as that of traditional parallel com‐

puting models such as MPI, which is to “divide and conquer” a large amount of data. The 

system provides two simpler interfaces, Map and Reduce which automatically completes 

many underlying functions such as task division and scheduling, communication,  load 

balancing,  and  failure  recovery  [156]. Figure  10,  shows  the MapReduce programming 

mode [140]. The input file is divided into several slices (InputSplit) according to a specific 

format, and converted into <key, value> key‐value pairs, which are input to Mapper for 

calculation, and the intermediate results are key–value pairs. The collection is aggregated 

by the Reducer after a shuffle phase, and the result is saved to HDFS. Hadoop MapReduce 

is mainly oriented to the batch mode of massive static data, and its real‐time performance 

is not high [141]. The collection is aggregated by the Reducer after a shuffle phase and the 

result  is saved  to HDFS. Hadoop MapReduce  is mainly oriented  to  the batch mode of 

massive  static data,  and  its  real‐time performance  is  not  high  [142].  Therefore,  it  too 

quickly processes and analyze the massive historical data accumulated in the condition 

monitoring of power equipment, hoping to discover valuable knowledge from it [143,144]. 

Figure 9. Architecture of HDFS.

The basic idea of MapReduce is basically the same as that of traditional parallel com-
puting models such as MPI, which is to “divide and conquer” a large amount of data. The
system provides two simpler interfaces, Map and Reduce which automatically completes
many underlying functions such as task division and scheduling, communication, load
balancing, and failure recovery [156]. Figure 10, shows the MapReduce programming
mode [140]. The input file is divided into several slices (InputSplit) according to a specific
format, and converted into <key, value> key-value pairs, which are input to Mapper for
calculation, and the intermediate results are key–value pairs. The collection is aggregated
by the Reducer after a shuffle phase, and the result is saved to HDFS. Hadoop MapReduce
is mainly oriented to the batch mode of massive static data, and its real-time performance
is not high [141]. The collection is aggregated by the Reducer after a shuffle phase and
the result is saved to HDFS. Hadoop MapReduce is mainly oriented to the batch mode of
massive static data, and its real-time performance is not high [142]. Therefore, it too quickly
processes and analyze the massive historical data accumulated in the condition monitoring
of power equipment, hoping to discover valuable knowledge from it [143,144].
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4.2.2. Spark Technology

Spark is a Hadoop MapReduce-like general-purpose parallel computing framework
that appeared in 2012 [157]. The difference is that it puts data (including some intermediate
data) in memory for calculation, avoiding a large amount of disk I/O caused by frequent
reading and writing of HDFS during the calculation process. Therefore, spark is suitable
for iterative and interactive computing scenarios, and even in general application scenarios
which is more efficient than Hadoop MapReduce [158]. Spark’s in-memory computing
features from its core abstraction, Resilient Distributed Dataset (RDD) [159]. RDDs are
read-only, fault-tolerant, distributed computing, partitionable, coarse-grained transforma-
tions, and in-memory storage. Each partition of the new RDD generated during Spark’s
calculation process has a dependency relationship with the partition of its parent RDD
due to the calculation, which is called lineage. The lost RDD partition can be regenerated
from the ancestor RDD by tracing the lineage, so as to implement fault tolerance. At the
same time, Spark divides the entire computing process into multiple stages according to
the different dependencies between RDDs, each stage generates a job, and creates tasks
in units of RDD partitions and distributes them in multiple stages. Figure 11, shows the
process in parallel on two computing nodes, and the Spark computing model [160]. The
computing model is richer and more flexible than the single MapReduce model of Hadoop,
and is compatible with various data sources such as HDFS, HBase, and Hive [161]. At
present, Spark has been widely used in Internet companies such as Amazon, Yahoo, and
Taobao [162], and it is still in the research stage in the power industry, and research still
needs to be carried out in combination with typical application scenarios [163]. Based
on Spark, is incapable of how the complex signal processing algorithm can perform fast
calculation when the amount of data is large, which makes up for the application scenarios
that Hadoop MapReduce [164].
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Figure 11. The computing model based on resilient distributed dataset (RDD).

4.2.3. Storm Technology

Storm is primarily geared towards real-time analytics on large-scale, uninterrupted
streams of data, unlike Hadoop which focuses on batch processing of massive amounts
of data. Although Spark Streaming can also achieve the function of stream computing by
decomposing batch jobs, its latency is longer than Storm [165]. Storm also adopts a master-
slave architecture and uses ZooKeeper to coordinate the entire cluster. Where the master
node is called the control node and runs the Nimbus daemon, which is responsible for
publishing topology programs, distributing tasks and monitoring cluster status [166]. The
slave node is called a worker node, running the Supervisor daemon, which is responsible
for accepting the assigned tasks and starting the Java Virtual Machine (JVM) process worker
to execute that shows in Figure 12a [167,168]. Figure 12b shows the topology where Spout
is the data entry of the topology, connecting to an external data source and converting
the data into tuples that are sent to Bolt. The processing logic for tuples is encapsulated
in Bolts, and after the processing is completed, tuples can be transmitted to subsequent
Bolts [169]. The Spout and Bolt components are linked by a stream grouping strategy and
can be configured as multiple instances to achieve parallel processing. Each instance will
eventually form a task to be scheduled for execution [170].
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5. Comparison of Parallel Computing with Cloud Computing

Cloud computing is the fusion of many technologies, including parallel computing
technology, so it is not equivalent to parallel computing, and its connotation richer [36,171].
The parallel computing usually refers to a specially designed parallel computer, while
cloud computing combines multiple ordinary computers to achieve the purpose of im-
proving computing performance [172,173]. In a broad sense, the computing technology it
adopts also belongs to parallel computing. The technical point of parallel computing only
focuses on computing and ignores data storage [174]. This is because traditional parallel
programming models such as MPI are designed for high-performance computing, and
small amount of data [174]. Cloud computing includes storage and computing, and the
two cooperate with each other. For example, in the Hadoop system, data is stored in a dis-
tributed manner, and then the calculation is moved to the location of the data for execution,
because mobile computing is more efficient than moving data [175]. From the perspec-
tive of applicable fields, parallel computing is suitable for the scientific computing field
with high-performance computing requirements [2]. It is oriented to computing-intensive
applications and requires users to have high professional quality in order to be able to
deal with many low-level details [105]. The cloud computing provides services to users
through three different levels, which is easier for users to use. The cloud computing is a key
technology for big data processing and is suitable for data-intensive applications, but the
large system management and maintenance costs make it not good at computing-intensive
applications with a small amount of data [25]. To sum up, parallel computing and cloud
computing technologies have a wide range of applications in various fields including the
power industry [139,176]. The two are complementary rather than mutually exclusive, and
each has different application scenarios [177].

Distributed Cloud Computing and Parallel Computing

A new method to connect data and applications supplied from several places is dis-
tributed cloud computing. A shared resource geographically dispersed among several
users or systems is referred to as distributed, according to Table 2. The ability to execute
several jobs simultaneously is a key characteristic of cloud computing, which also aims
to reduce CPU consumption, cut down on switching times, reduce waiting times for data
processing, increase server throughput, and enhance data processing and communica-
tion speed. Another feature makes using any cloud application to communicate with
users in various places simple for users. The final crucial component is enhancing server
performance since communication performance is crucial.

After reviewing each reference included in Table 3, it was determined that [178] was
the finest work on distributed cloud computing since it covered the most features.

Table 3. Distributed Cloud Computing.

Feature [178] [179] [180] [181] [182] [183] [184]

Reduction in CPU use 3

Reduce multiple-process tasks 3 3 3 3 3

Reduce waiting times. 3

enhanced use of resources 3

Enhance server efficiency 3 3

Increasing server performance 3

Balance of loads 3

performance in terms of costs 3

lessen the demand on the memory 3 3

Create a cloud architecture program 3 3 3

enhance inter-humans communication 3

Increasing safety 3

Increasing effectiveness and creating a system expand 3

Increase the scope of cloud computing 3

Comparison of the benefits and drawbacks of MPI, oprnMPI, and MapReduce 3
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The three different methods of parallel processing are distributed, shared, and hybrid
memory systems. A distributed parallel computing focus identified certain key criteria, as
indicated in Table 4. The important feature mentioned in more than one resource is improv-
ing performance using the load balancing technique through distributing the process and
making a balance between servers for processing the jobs and improving the performance
of our distributed system. Another feature is minimizing resource costs because when we
divide the load among servers, we can minimize the resource cost such as CPU, memory,
and storage. Since it is preferable to employ a system for handling user requests with a
low response time, all of the references apply this principle by recommending a method for
distributed parallel computing based on that factor. After looking through the references in
this work, it was determined that Ref. [185] was superior since it provides a wide range
of characteristics, such as load balancing, enhancing system performance, and lowering
reaction time and resource cost.

Table 4. Distributed Parallel Processing.

Features [181] [182] [186] [187] [188] [189] [185] [190]

Utilize load balancing to increase performance 3 3 3 3 3 3 3

Requesting each node’s status 3

developed a reduce reaction time-based algorithm 3 3 3

Decrease requests on resources that are available 3

Minimize server-to-server interaction and processing 3

Take every resource’s load into account 3

Optimize CPU throughput 3

Reduce productivity 3

Reduce reaction time. 3

Reduce long waits 3

lessen the cost of resources 3 3

Ensure error tolerance and QoS 3

Effective implementation of parallelism 3

Improving the way jobs are arranged 3

Improve allocation of resources 3

Faster performance with better outcomes 3

6. The Application Basis of Cloud Computing in a Power System

In the early days of the Internet, the cost of hardware was relatively high. With the
continuous development of information and network technology, the data generated and
processed by the Internet has grown exponentially. In order to cope with these changes,
the investment in hardware equipment has to be increased input cost [38]. However,
although the hardware investment cost is high, the scalability of the system is very poor, the
information transmission efficiency is low, and the performance difference between devices
is also the processing effect is not good [171]. The theoretical basis of cloud computing is
to virtualize equipment and services, and then interconnect several distributed nodes on
the cloud platform to realize the superposition and coupling of computing resources [191].
In order to better complete the processing of massive data the distribute a large number
of processing tasks to virtual nodes in the resource pool [29,166]. Cloud is a very broad
concept with many types, and it is usually classified according to different service objects
and service types [192].
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(1) Public cloud
As the name suggests, it is a cloud service that is open to the public. It is large-
scale, low-cost, and the most popular cloud service for the public. The most typical
application is Amazon Web Services (“AWS”). The app provides a complete set of in-
frastructure and cloud solutions to customers around the world. AWS provides users
with a complete set of cloud computing services, which can help enterprises reduce
IT investment costs and maintenance costs and easily migrate to the cloud [193].

(2) Private cloud
It is a cloud that does not provide services publicly and is used within a group or
organization. Provide private cloud services to internal users. Because they cannot be
used publicly, most firewalls are set up [194]. The typical representative of private
cloud is the Blue Cloud plan launched by IBM. Blue Cloud is based on open stan-
dards and open source software powered by IBM software, systems technologies and
services [195]. The Blue Cloud developed by more than 200 IBM researchers around
the world, will help clients quickly and easily explore cloud computing infrastructure
for extreme-scale computing [196].

(3) Hybrid cloud
That is, the combination of public cloud and private cloud is between private and
public, such as Amazon’s virtual private cloud (VPC) [54]. A VPC is a dynamically
provisioned pool of public cloud computing resources that requires the use of en-
cryption protocols, tunneling protocols, and other security procedures to transfer
data between private enterprises and cloud service providers [197–200]. The services
provided by each layer are as follows:

(1) Application layer
The application layer provides users with various application software and

services required by a friendly user interface [201]. The application layer
directly faces customer needs and provides enterprise customers with enter-
prise applications such as enterprise resource planning (ERP) and customer
relationship management (CRM) [202], and office automation (OA) [203].

(2) Platform layer
The platform layer provides services for users who can use the platform to

realize the value they want to achieve [204].
(3) Infrastructure layer

This layer provides infrastructure-level services, that is, the establishment of
the cloud computing platform infrastructure is directly open to users, so that
they can use the powerful storage and computing capabilities of cloud com-
puting. Users can directly store files and run calculations in the cloud, and also
the infrastructure can be allocated independently, which is equivalent to the
user having a scalable computer with large storage space and supercomputing
performance through the terminal [205].

In general, the advantage of cloud computing is that it can integrate various resources
without special requirements for these computing resources and does not require a specific
computer with powerful performance [33]. Users can easily obtain cloud services through
ordinary terminals and utilize the capabilities of supercomputers. In the same way, an
intelligent cloud system can also be built in the power system. Users can monitor and track
the power system directly on the mobile terminal to improve the convenience of the power
system [206–208].

At present, the smart grid construction the structure diagram shown in Figure 13.
Compared with the previous computing model, cloud computing has made many qualita-
tive breakthroughs. Its scale is large, but it has strong reliability [209,210]. The expansion
type, which integrates these features together makes it have unparalleled advantages [211].
Google is the initiator of cloud computing ideas. Later, on the basis of Google’s previous
work, developed the significant Hadoop open-source cloud computing platform. The key
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to Hadoop is to include two major systems: the distributed file system HDFS and the
distributed computing framework [212,213].
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7. Future Trend

Cloud-based tools and technologies for microgrid control are a set of software and
hardware solutions that are designed to monitor and manage the power usage and distri-
bution of microgrids. The architecture of cloud computing provides robust and efficient
management of data, computing resources, and applications, with features like fault isola-
tion cloud computing, which refers to the ability of the system to isolate a failure or mal-
function in one part of the system so that it does not affect the entire system. Furthermore,
system self-healing refers to the ability of the cloud computing system to automatically
detect and recover from failures without human intervention. Where in a cloud computing
environment, micro-grid control can be achieved by using cloud-based tools to monitor
and control the power usage and distribution of the micro-grid. These systems can provide
real-time data and insights into the power usage of individual devices and systems, allow-
ing for more efficient and effective management of the microgrid. Local data interaction
can be achieved through the use of APIs (Application Programming Interfaces) and other
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communication protocols that allow for seamless integration between the cloud and local
systems. APIs can be used to access cloud resources and services, as well as to exchange
data between the cloud and local systems. This allows for more efficient and effective use
of resources and provides a convenient way to access cloud services from local systems.

In the future, power system cloud computing will have broad applications, which
can be described as “the future can be expected” as shown in Figure 14. Its effective
application can provide a large number of high value-added services inside and outside the
industry and has high practical value for the profitability and control cost level of power
companies [214].
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The subsystem model has long-term benefits for national defense, military, and medical
care. The application value in the power grid alone is immeasurable.

• First, it will help grid companies to carry out grid operation and maintenance moni-
toring and improve response sensitivity [215]. Use the data collected from the power
system to monitor, control, or adjust the power generation, load, and fault status in the
network, and respond accordingly when there is an error or an upgrade in the power
grid [209,216].

• Secondly, it will help grid companies conduct special analysis on equipment main-
tenance, operation and maintenance, improve system reliability, power supply qual-
ification rate, reduce costs, and reduce power outages [217]. In the field of power
grid maintenance, operation and maintenance, through the selection of key indicators
of power equipment from the three aspects of safety, benefit, and cost, analysis of
the mutual influence of “safety”, “benefit” and “cost” in maintenance management,
coordination of the three these factors are comprehensively optimized, and at the same
time, real-time online monitoring of the maintenance indicators of power grid enter-
prises is realized, providing guidance and services for the company’s maintenance
strategy formulation [218–220].
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Some points that need improvement due to the limitations of previous work are
personal ability and data source:

â The data capacity is still not large enough, and the data dimension change interval
is small [221]; the electricity data comes from residential electricity consumption
and does not include electricity consumption data in other areas such as industrial
electricity [222];

â The coverage of parallel algorithm design is relatively narrow, and the application
range in power system data processing is not wide enough. However, with the
increasing informatization of the power system and the continuous quantification of
power data, the application scope of data mining technology continues to expand.
Parallel algorithms can be designed in more aspects to enhance the data processing
effect and carry out all around power system production and dispatching [223,224];

â To design a comprehensive cloud computing platform architecture based on cloud
computing and big data processing technology, which provides a reference plan
for the construction of the computing platform of the power equipment monitoring
center [225,226];

â To improve the real-time response speed of online monitoring data of power equip-
ment, a real-time processing framework for streaming data based on Storm is needed,
and an incremental variable prediction model classification method [227–229].

8. Conclusions

This review article briefly expounds on the basic concepts and programming models
of parallel computing and analyzes the shortcomings of traditional parallel computing
in the face of current big data scenarios with a specific application example. Then, cloud
computing solutions are introduced for the field of power equipment condition monitoring
under the background of big data, the concepts and characteristics of cloud computing
are introduced, and emerging parallel programming models, such as Hadoop, Spark, and
Storm, are briefly described. Finally, for different application scenarios in the field of power
equipment condition monitoring, a comprehensive cloud computing platform architecture
is designed to meet the multi-level real-time requirements by drawing on the experience of
the Internet field.

There is a need to improve the parallel detection algorithm for power load anomaly
detection efficiency. The detection of the abnormal value is only the first step in the analysis
of the abnormal value of the power. After the abnormal value is detected, the cause of
the abnormal data can be quickly analyzed, such as economic reasons, regular mainte-
nance, equipment failure, illegal electricity stealing, temperature, or sudden environmental
changes. Forming a power load abnormal detection response model to provide guiding
opinions for demand-side power supply is one direction of future research. For power load
data prediction, the further parallelization of the power load data prediction algorithm
is another key direction of the next work. As an important part of power data analysis,
research on power load anomaly detection and prediction methods in the cloud computing
environment still has huge research opportunities waiting for us to study.
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