
Citation: H, S.; Venkataraman, N.

Proactive Fault Prediction of Fog

Devices Using LSTM-CRP

Conceptual Framework for IoT

Applications. Sensors 2023, 23, 2913.

https://doi.org/10.3390/s23062913

Received: 29 January 2023

Revised: 28 February 2023

Accepted: 2 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Proactive Fault Prediction of Fog Devices Using LSTM-CRP
Conceptual Framework for IoT Applications
Sabireen H and Neelanarayanan Venkataraman *

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
* Correspondence: neelanarayanan.v@vit.ac.in

Abstract: Technology plays a significant role in our daily lives as real-time applications and services
such as video surveillance systems and the Internet of Things (IoT) are rapidly developing. With the
introduction of fog computing, a large amount of processing has been done by fog devices for IoT
applications. However, a fog device’s reliability may be affected by insufficient resources at fog nodes,
which may fail to process the IoT applications. There are obvious maintenance challenges associated
with many read-write operations and hazardous edge environments. To increase reliability, scalable
fault-predictive proactive methods are needed that predict the failure of inadequate resources of fog
devices. In this paper, a Recurrent Neural Network (RNN)-based method to predict proactive faults
in the event of insufficient resources in fog devices based on a conceptual Long Short-Term Memory
(LSTM) and novel Computation Memory and Power (CRP) rule-based network policy is proposed.
To identify the precise cause of failure due to inadequate resources, the proposed CRP is built upon
the LSTM network. As part of the conceptual framework proposed, fault detectors and fault monitors
prevent the outage of fog nodes while providing services to IoT applications. The results show that
the LSTM along with the CRP network policy method achieves a prediction accuracy of 95.16% on
the training data and a 98.69% accuracy on the testing data, which significantly outperforms the
performance of existing machine learning and deep learning techniques. Furthermore, the presented
method predicts proactive faults with a normalized root mean square error of 0.017, providing an
accurate prediction of fog node failure. The proposed framework experiments show a significant
improvement in the prediction of inaccurate resources of fog nodes by having a minimum delay, low
processing time, improved accuracy, and the failure rate of prediction was faster in comparison to
traditional LSTM, Support Vector Machines (SVM), and Logistic Regression.

Keywords: fog environment; failure prediction; reliability; deep learning network

1. Introduction

In recent years, fog computing has been introduced as a computing paradigm, bring-
ing services, applications, and computation closer to consumers, and providing a good
foundation for the Internet of Things (IoT). With the rapid growth of the Internet of Things
(IoT), there is a drastic shift from the current Internet into an interconnected network,
which is reshaping present and future computing paradigms. Rather than only collecting
information from the environment, the era is also becoming interactive with the physical
world to provide services such as information transfer, analytics, and communication [1].
IoT devices typically process huge amounts of data in the cloud, providing infinite comput-
ing, networking, and storage capabilities [2]. The cloud, however, has several downsides,
including high bandwidth, latency, and resource management costs. As an example, an
application in a smart mobility context such as a traffic monitoring system and emergency
response system should not be tolerant of delay and latency, which will result in a lot of
data exchange between the application and the cloud [3]. To push the main cloud innova-
tions like virtualization, manageability, storage, and network resources into the edge of the
network, keeping the deployment of applications and services closer to consumers, and

Sensors 2023, 23, 2913. https://doi.org/10.3390/s23062913 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23062913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23062913
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23062913?type=check_update&version=2

Sensors 2023, 23, 2913 2 of 27

mitigating the main issues between cloud and IoT [4,5], fog computing has emerged as a
trend [6]. At present, in the area of IoT devices, reliability should receive considerable atten-
tion in the era of fog computing. In fog computing studies, several fog nodes serve tasks to
deliver high-availability services to IoT devices. The fog devices are composed of hardware
components such as hard disks, memory modules, network cards, and processors. There is
always the possibility of failure of insufficient resources, and capacity for each of those. A
device’s failure rate during its lifetime (typically 2–4 years in the industry) is quite low, but
the numbers can increase. Due to its size, it is not appropriate to consider it an exception,
as it would cause consumers to suffer performance degradation [7]. By analyzing these
devices’ failures or predicted failures, one can consider an equipped system that can endure
failures and reduce costs [8]. The failure of fog devices by having insufficient resource
constraints may result in performance degradation for end users as services would not
be available. We must understand how failures are predicted and how they are caused to
improve tolerance for failure. Furthermore, a model is required that proactively predicts
that resources are insufficient and moves data and workload to another fog node in advance
to prevent service disruptions. This research work focuses on predicting fog node failure
due to deficient resources while executing IoT applications in the fog environment.

To proactively predict the unsatisfactory nodes, a Recurrent Neural Network can be
used to generate a sequence and label it. In addition to the current state, the previous
state also determines the state of the network. In traditional RNNs, input information
can only be stored for a short period, limiting their ability to model long-range input
sequences [9]. As an alternative to traditional RNNs, the LSTM architecture is designed to
improve information storage and retrieval. It has been demonstrated that LSTM models
can be applied to a variety of tasks, including sequence handling, handwriting recognition,
and sentiment analysis [10]. To model the dynamic nature of fog nodes, we can use LSTM-
based prediction networks to predict the failure dependencies of computing fog systems.
When there is a failure of the IoT application running on the fog device due to insufficient
resources it could lead to a disaster of the application or shutdown of the fog device.
To maintain the workflow at normal tendency and to keep the applications running, it is
important to understand the causes of the outage, which gives the necessity for a rule-based
learning approach on a deep neural network. The advantage of using a rule-based policy
on a deep neural network is for further refinement such that the rules can be generated for
the fog nodes that belong to the item set, which lowers the time complexity to help in the
prediction of the failure of the insufficient resource. To determine accurate prediction, it is
important to create rules based on relationships between the cause and type of insufficiency
of resources of machine failure [11].

The main goal of this paper is to understand the importance of the prediction of the
type of resource failure that occurs when there are inadequate resources in the fog nodes. If
a small set of IoT applications are serviced by the fog nodes, and when there is an abrupt
outage of fog devices due to the outburst of IoT applications, the fog nodes should be
able to proactively predict the insufficiency of its resources and monitor the failure of
the devices by the application placement into appropriate fog devices. The results from
our study show that proposing a conceptual framework that combines the deep neural
network properties along with the proposed rule-based approach determines the failure
of the resource that is inadequate. Moreover, results on the performance of this approach
show that it has a minimum delay, processing improves the accuracy and minimizes error
with better failure prediction.

The remaining paper is organized as follows. Section 2 discusses the related works in
various recurrent neural networks and rule-based approaches in a distributed computing
environment. Section 3 gives the problem definition. Section 4 discusses the proposed
methodology, which consists of the two network-based layers comprising of LSTM and
CRP network policy and its components and algorithms in detail. Section 5 discusses the
experimental setup, and various metrics used for the evaluation of the proposed approach,

Sensors 2023, 23, 2913 3 of 27

and the results are presented. Section 6 discusses the conclusion and how this study and
research can be used in future work.

2. Literature Survey

There are two main categories for faults: processor view and generic view. Faults are
divided into three groups from a processor’s perspective: crash, fail-stop, and Byzantine.
These are primarily employed when a machine or resource fails. In the crash malfunction
model, the CPU abruptly terminates operation at a specific point. When a failure occurs,
the contents in the fail-stop are lost and cannot be recovered. Byzantine defects emerge as a
result of an unanticipated failure, such as ageing or exterior damage to the infrastructure.
These flaws are present in all processors and messages. There are three different kinds
of generic view faults: transitory, intermittent, and permanent [12]. Transient issues only
affect the current task execution and are fixed by restarting or rerunning the process. Rarely,
intermittent malfunctions do occur. Permanent defects are flaws whose consequences
cannot be compensated for. The following can experience faults in a distributed surround-
ing: operating system, user, middleware, hardware, task, and process flow [13]. Network
difficulties, computer crashes, memory issues, and errors such as file not found, file staging,
authentication problems, uncaught exceptions, problems related to data movement, and
customer exceptions are a few of the prominent flaws that can arise [14].

For fog and certain other distributed systems, fault prediction and tolerance strategies
are investigated. These strategies are divided into two categories: proactive and reactive
models [15]. Included in the proactive model are:

• Self-healing: is defined as a system’s capacity to have a self-recovery mechanism for
errors by employing particular fault recovery techniques on occasion procedures that
involve tasks for monitoring.

• Pre-emptive migration: is described as a system’s capacity to transfer computation away
from hazardous processing nodes in a proactive fashion.

• System rejuvenation: this is a procedure for regularly taking a system backup. Following
every backup, the device is cleaned before the backup is restored, resulting in a
refreshed state of the system.

• Load balancing: is employed to distribute the load on the processor and memory when it
has reached its maximum limit. The workload of a CPU that has reached its maximum
capacity is moved to a different CPU that has the processor and memory available.

The components of a reactive model are:

• Checkpoint restart: this function periodically saves the states of a task’s execution. In
the event of a failure, the job is restarted from the most recent state that has been saved
as opposed to starting from scratch.

• Job migration: in the event of a resource failure, the job switches to another instance of
a similar and appropriate resource.

• Replication: used to produce numerous copies of jobs and store copies in various places,
such as the primary backup strategy, which places the primary replica on one machine
and the copy of the backup on a different device.

Numerous methods have been used to attain fault prediction based on these tech-
niques. In the fault tolerance reactive approach, faults are dealt with after they have
occurred. System maintenance strategies reduce the effects of occurring faults. Reactive
strategies operate more based on response than on prediction. There are two main fault
tolerance strategies used in distributed scheduling: checkpointing and duplication [16].
Reactive strategies are often conservative and do not call for system behavior analysis. As
a result, they do not add any extra burden. As the term suggests, the proactive approach
means that the system tends to be in a controlled state, prepared state, or managing any
potential interruptions such as errors, faults, mistakes, and failures before they happen.
In proactive approaches, the system condition is constantly monitored, and artificial in-
telligence algorithms are used to estimate the fault occurrence. Then, the necessary steps

Sensors 2023, 23, 2913 4 of 27

are taken to stop the fault from happening. These methods function based on prediction
and experiences.

Many authors have recommended and put fault prediction algorithms into practice
when faults are distributed. The author of [17] suggests a methodology for proactive failure
prediction to predict device failure. They obtained a degree of accuracy for forecasting
failures that vary from 70% online to 74% offline using supervised learning algorithms.
The author of [18] suggests Fault-Tolerant Scheduling Method (FTSM) for Fog-Cloud
environments. The approach uses a method where time-permissive demands are sent to the
cloud, while time-responsive demands are sent to the edge devices. Based on the devices’
operational time between failures, FTSM determines the checkpoint duration. However,
the authors did not consider any failure prediction for devices that rely on the varying
availability of processing resources in fog devices. A Heuristic Fast Failure Recovery (HFFR)
approach for defining software services that use function chaining in the environment of
fog computing with failure examination is proposed by the authors in [19]. However, HFFR
failed to account for the continuous changes in the resources that were available. In [20],
the author proposed an effective resource-tracking service strategy and suggested that, in
the fog environment, effective resource management requires effective failure handling.
Reactions are executed in this case after the service for the request has begun. In this
way, the fog devices’ status is regularly checked to look for malfunctions. Checkpoints,
resubmitting, and replications could all be used for reactions [21]. Although several fault-
tolerant approaches have been described for cloud [22] and grid computing [23], fault
prediction for deficiency of resources in fog computing environments remains a challenge,
and there is minimal research that contemplates it [24]. The authors of [25] have provided
a fault-tolerant approach based on checkpoints that reduce the amount of storage space
required to maintain checkpoints. Only the updated parameter values are saved using
their mechanism.

For lengthy tasks, the authors of [26] propose a checkpoint-based technique that
relies on allocating priorities to tasks. The authors of [27] have created a scheduling
method that takes migration and checkpoints into account to handle failures. Ref. [28]
proposes a checkpoint technique for fault prediction that uses hash tables and distributes
the information from checkpoints. Four stages are suggested by the authors in [29] as a
procedure for managing failures. Their method employs message logging and checkpoints
to preserve the service states. Following that, it investigates the surroundings to learn more
and flags errors. If a malfunction is anticipated, the protocol can make the proper choice
to stop it. The protocol alerts the reliant entities to take reconfiguration measures in the
event of failure. The protocol also chooses the appropriate steps for recuperation. A linear
programming technique is used in [30] to assess the application of proactive and reactive
recovery techniques. Their objective is to tolerate failures in a single commodity. Ref. [31]
suggested using machine learning and sensor analysis of the data to forecast the failure of
the device. When utilized for the analysis of sensor data in industrial automation, machine
learning can allow better maintenance, such as failure diagnostics and preventative analysis
of the device. Using industry-level sensors that are more accurate, durable, and robust is
one simple way to address data quality problems, even though elements that lead to errors
and affect sensor data quality are well understood. Applications that call for the creation
of massive and dense sensor networks, including many IoT applications, are not possible
with them. Most existing predictive models for machine failure focus on a single type of
machine failure [32]. These models are difficult to apply to real enterprise manufacturing
processes. The best-known specific method of rule-based learning is the Decision Tree
algorithm. However, due to the fragmentation, the rules become prohibitively long and
complicated [33].

In summary, prior failure management strategies in fog computing did not adequately
account for the dynamic availability of fog resources. In this work, we propose an approach
to proactively predict the failure of inadequate resources in the devices of fog while execut-

Sensors 2023, 23, 2913 5 of 27

ing the IoT application. This research was carried out to propose a framework to predict a
proactive solution to determine the dynamic resources when they are scarce in fog devices.

3. Problem Definition

Given a fog node or a set of fog nodes [f n,ϕf n] for a fog computing environment and a
collection of logs from this environment, let the probability of failure be pf(W) occurring
at the node within time window W when the resources of computation, storage, and
bandwidth are inadequate. The data collected consist of features extracted from various
fog nodes at different timestamps and failure labels provided by the administrator of the
system. The solution is not specific to the type of failure but targets a general abnormal
hardware malfunction when the resources are scarce. The objective of predicting failures
is to alert the fog node failure before it occurs. This is of utmost importance as it gives
the system administrator sufficient time to deal with the problem before it occurs. It is
important to consider the time of early morning for evaluating the quality of predictive
modeling defined by the predictive periods.

• Predictive Period: This period is a pre-defined period just before a failure. When an
alert is given during this period there is enough time for the administrators to react
and terms to be successful. The time the alert is given to the starting time of the failure
is the specified time window W.

To overcome this problem, two approaches are carried out, the first one is the binary
classification problem for predicting the failure of a fog node within a time window W
before the occurrence of failure and the second approach is the rule-based policy approach.
The model takes as input a set of input sequences as features and a target, which is a binary
vector taking two complementary values that represent negative samples during the normal
duration and positive samples during the predictive duration. If there is an alert reported
during the predictive period before the failure, then the prediction is successful. The output
from the model is essentially an alert probability and reported if such a probability exceeds
a pre-defined threshold.

4. Proposed Methodology

The proposed prediction model is based on the dynamic failure of resources of fog
nodes working on a two-composition layer. The first layer identifies the failure of the
fog nodes, and the second layer identifies the insufficient resource of the fog node. The
first layer works on the proposed LSTM for the prediction of final labels where the neural
network output depends on the current inputs, their weights, count of the weights, and
values of the previous neurons. LSTM structure has unparalleled natural advantages in
extracting features. The biggest feature of the LSTM model is to allow memory operations
to quickly learn useful features and filter out other unserviceable features. The prediction
model outputs the probability of a failure, which is important in order to have temporal
dynamics of the fog node. The second layer is the rule-based policy, which takes advantage
of the context memorization operation of LSTM. The proposed rule-based policy is based on
knowledge extraction of systems to identify the feature of resources in the inadequate fog
nodes. It is further granulated to identify the resource in the fog node such as processing,
memory, power, bandwidth, and availability based on CRP network policy. The overall
architecture of the proposed methodology is given in Figure 1 and is described as follows.

The proposed overall architecture is described as follows. The front end consists of the
IoT applications which are responsible for sensing and collecting the data and sending it to
the fog devices for processing. The major portion of the fog devices in this work consists of
the fault detector, which is designed to be proactive in nature. The fault detector consists of
two major portions, the initial one is based on the LSTM Prediction network and the latter
approach works on a proposed CRP rule-based approach. The fault detector works with
the data from the fog device during its operation. The results of fault detection from the
fault detector are transmitted to the fault monitor that visualizes the condition of the fog
device and predicts the warning if there are any insufficient resources. The back end takes

Sensors 2023, 23, 2913 6 of 27

all the collected data from the fault detector to develop the model for fault detection. The
prediction results are sent to the fault monitor, which is responsible for raising an alarm by
taking necessary actions like rescheduling the fog devices or rebooting.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 31

Figure 1. Overall architecture of the LSTM + CRP proposed framework.

The proposed overall architecture is described as follows. The front end consists of
the IoT applications which are responsible for sensing and collecting the data and sending
it to the fog devices for processing. The major portion of the fog devices in this work con-
sists of the fault detector, which is designed to be proactive in nature. The fault detector
consists of two major portions, the initial one is based on the LSTM Prediction network
and the latter approach works on a proposed CRP rule-based approach. The fault detector
works with the data from the fog device during its operation. The results of fault detection
from the fault detector are transmitted to the fault monitor that visualizes the condition
of the fog device and predicts the warning if there are any insufficient resources. The back
end takes all the collected data from the fault detector to develop the model for fault de-
tection. The prediction results are sent to the fault monitor, which is responsible for raising
an alarm by taking necessary actions like rescheduling the fog devices or rebooting.

4.1. Fault Detector
The fault detector that is programmed into the fog device collects various data from

the fog device such as MIPS, RAM, bandwidth, uplink, downlink level, and power during
the operation of the fog device. The database of this detector is set up to allow for quick
storing of acquired data and analysis findings. The data in the database can be used to
train the fault detection and prediction algorithms in the back end. Each layer is discussed
in detail as follows.

Figure 1. Overall architecture of the LSTM + CRP proposed framework.

4.1. Fault Detector

The fault detector that is programmed into the fog device collects various data from
the fog device such as MIPS, RAM, bandwidth, uplink, downlink level, and power during
the operation of the fog device. The database of this detector is set up to allow for quick
storing of acquired data and analysis findings. The data in the database can be used to train
the fault detection and prediction algorithms in the back end. Each layer is discussed in
detail as follows.

4.1.1. LSTM Fault Prediction Network

The predictive neural network architecture is represented in Figure 2. Given an
input feature sequence, which is a vector x = xt− L + 1, xt, with the length of the
sequence being L, which is a long historic sequence of arbitrary length passed to a stack
of multiple hidden layers that are recurrently connected through weighted connections
that compute the hidden vector sequences h = ht− L + 1, ht with output sequence
vector y = yt − L + 1. The output vector parameterizes the probability distribution
Pr (dt/yt) of the target dt. Unlike traditional RNNs, LSTM introduces a built memory cell
for long-term dependencies [34] to store information on previous time steps.

Sensors 2023, 23, 2913 7 of 27

Sensors 2023, 23, x FOR PEER REVIEW 7 of 31

4.1.1. LSTM Fault Prediction Network
The predictive neural network architecture is represented in Figure 2. Given an input

feature sequence, which is a vector 𝑥 = 𝑥𝑡 − 𝐿 + 1, … … . 𝑥𝑡, with the length of the se-
quence being L, which is a long historic sequence of arbitrary length passed to a stack of
multiple hidden layers that are recurrently connected through weighted connections that
compute the hidden vector sequences ℎ = ℎ𝑡 − 𝐿 + 1, … … . ℎ𝑡 with output sequence vec-
tor 𝑦 = 𝑦𝑡 − 𝐿 + 1. The output vector parameterizes the probability distribution Pr (dt/yt)
of the target dt. Unlike traditional RNNs, LSTM introduces a built memory cell for long-
term dependencies [34] to store information on previous time steps.

Figure 2. LSTM cell.

The most efficient method for solving problems involving sequence prediction is
thought to be LSTM networks. The ability of LSTM to memorize patterns for numerous
sequences is its most significant feature. As a result, LSTM has an edge over traditional
feed-forward RNN and NN, which are unable to accurately predict future values using
past data. A predominant LSTM network has many blocks of memory, also known as
cells. As each cell progresses, it transfers two states to the next cell. Algorithm 1 describes
the hidden and cell states. Memory blocks are responsible for remembering information.
The three main gates control how this memory is manipulated. LSTM cells are illustrated
in Figures 3-5, such as forget, input, and output gates along with the roles they play and
their representations.

Algorithm 1: Computation algorithm of LSTM Cell
Input: 𝐽
Output: 𝑙
Generating Algorithm:
BEGIN
Initializations 𝑏 , 𝐶 , 𝐶 , 𝐶 , 𝑥 , 𝑥 , 𝑥
while i < time_steps: do
 Step 1: LSTM—Forget gate
 𝑞 = 𝜎(𝐶 × 𝑏 , 𝐽 + 𝑥)
 Step 2: LSTM—Input gate
 𝑢 = 𝜎(𝐶 × 𝑏 , 𝐽 + 𝑥) 𝐾 = 𝑡𝑎𝑛ℎ (𝐶 × 𝑏 , 𝐽 + 𝑥)
 Step 3: LSTM—Output gate
 𝑙 = 𝜎(𝐶 × 𝑏 , 𝐽 + 𝑥) 𝑏 = 𝑙 × 𝑡𝑎𝑛ℎ (𝐾)
end while
END

Figure 2. LSTM cell.

The most efficient method for solving problems involving sequence prediction is
thought to be LSTM networks. The ability of LSTM to memorize patterns for numerous
sequences is its most significant feature. As a result, LSTM has an edge over traditional
feed-forward RNN and NN, which are unable to accurately predict future values using
past data. A predominant LSTM network has many blocks of memory, also known as cells.
As each cell progresses, it transfers two states to the next cell. Algorithm 1 describes the
hidden and cell states. Memory blocks are responsible for remembering information. The
three main gates control how this memory is manipulated. LSTM cells are illustrated in
Figures 3–5, such as forget, input, and output gates along with the roles they play and
their representations.

Algorithm 1: Computation algorithm of LSTM Cell

Input: Jn
Output: ln
Generating Algorithm:
BEGIN
Initializations
bn−1, Cq, Cu, Cl , xq, xu, xl
while i < time_steps: do

Step 1: LSTM—Forget gate
qn = σ

(
Cq × [bn−1, Jn] + xq

)
Step 2: LSTM—Input gate
un = σ(Cu × [bn−1, Jn] + xu)

K̂n = tanh(Ck × [bn−1, Jn] + xk)
Step 3: LSTM—Output gate
ln = σ(Cl × [bn−1, Jn] + xl)

bn = ln × tanh(Kn)
end while
END

• Forget Gate: This gate, which is the first one in the LSTM cell, determines whether or
not the data from the preceding stamp will be kept. The data from the current input
state Jn and hidden state bn−1 are acquired, a function named sigmoid is applied to
produce an output within 0 and 1, and then the cell state from the preceding timestamp
is multiplied with the result. If the decisive number is 1, nothing is forgotten. However,
if the decisive number is 0, everything is forgotten.

• Input Gate: A value within 0 and 1 is produced by applying another function of sigmoid
to the current Jn and hidden bn−1 states in the input gate before the tanh function is
used on it. The state of the cell is then modified to a different cell state after taking the
vector input values and adding them stepwise.

• Output Gate: The information contained in the hidden state for the following cycle is
determined by applying a third function of sigmoid to the current state, the preceding
hidden state, and the recent state of the cell produced in the input gate. Point-by-point
multiplication is performed on both outputs and chooses what data the subsequent

Sensors 2023, 23, 2913 8 of 27

cycle’s hidden state will contain. The hidden state is transmitted over to the following
step together with the new state of the cell.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31

Figure 3. Forget gate of LSTM cell.

Figure 4. Input gate of LSTM cell.

Figure 5. Output gate of LSTM cell.

• Forget Gate: This gate, which is the first one in the LSTM cell, determines whether or
not the data from the preceding stamp will be kept. The data from the current input
state Jn and hidden state bn-1 are acquired, a function named sigmoid is applied to
produce an output within 0 and 1, and then the cell state from the preceding
timestamp is multiplied with the result. If the decisive number is 1, nothing is forgot-
ten. However, if the decisive number is 0, everything is forgotten.

• Input Gate: A value within 0 and 1 is produced by applying another function of sig-
moid to the current Jn and hidden bn-1 states in the input gate before the tanh function
is used on it. The state of the cell is then modified to a different cell state after taking
the vector input values and adding them stepwise.

• Output Gate: The information contained in the hidden state for the following cycle is
determined by applying a third function of sigmoid to the current state, the preced-
ing hidden state, and the recent state of the cell produced in the input gate. Point-by-

Figure 3. Forget gate of LSTM cell.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31

Figure 3. Forget gate of LSTM cell.

Figure 4. Input gate of LSTM cell.

Figure 5. Output gate of LSTM cell.

• Forget Gate: This gate, which is the first one in the LSTM cell, determines whether or
not the data from the preceding stamp will be kept. The data from the current input
state Jn and hidden state bn-1 are acquired, a function named sigmoid is applied to
produce an output within 0 and 1, and then the cell state from the preceding
timestamp is multiplied with the result. If the decisive number is 1, nothing is forgot-
ten. However, if the decisive number is 0, everything is forgotten.

• Input Gate: A value within 0 and 1 is produced by applying another function of sig-
moid to the current Jn and hidden bn-1 states in the input gate before the tanh function
is used on it. The state of the cell is then modified to a different cell state after taking
the vector input values and adding them stepwise.

• Output Gate: The information contained in the hidden state for the following cycle is
determined by applying a third function of sigmoid to the current state, the preced-
ing hidden state, and the recent state of the cell produced in the input gate. Point-by-

Figure 4. Input gate of LSTM cell.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31

Figure 3. Forget gate of LSTM cell.

Figure 4. Input gate of LSTM cell.

Figure 5. Output gate of LSTM cell.

• Forget Gate: This gate, which is the first one in the LSTM cell, determines whether or
not the data from the preceding stamp will be kept. The data from the current input
state Jn and hidden state bn-1 are acquired, a function named sigmoid is applied to
produce an output within 0 and 1, and then the cell state from the preceding
timestamp is multiplied with the result. If the decisive number is 1, nothing is forgot-
ten. However, if the decisive number is 0, everything is forgotten.

• Input Gate: A value within 0 and 1 is produced by applying another function of sig-
moid to the current Jn and hidden bn-1 states in the input gate before the tanh function
is used on it. The state of the cell is then modified to a different cell state after taking
the vector input values and adding them stepwise.

• Output Gate: The information contained in the hidden state for the following cycle is
determined by applying a third function of sigmoid to the current state, the preced-
ing hidden state, and the recent state of the cell produced in the input gate. Point-by-

Figure 5. Output gate of LSTM cell.

LSTM Fault Trainer

At the middle end of the development platform for fault model detection, the trainer
is built using LSTM. Based on the gathered data, it attempts to determine the appropriate
model to categorize the fault or normal state of the device in fog. Using time series infor-
mation, LSTM is used to predict fog device failure. By configuring the various gates such
as input, forget, and output, LSTM avoids the problem of vanishing gradient, which arises
when the network weights in the time series data have not been updated properly [35,36].
It tries to find the right model by classifying fog device statuses into normal and faults.
The information from the previous cell should be erased according to the forget gate’s
settings. The input gate designates the data that will be given to the input’s current value.
The amount of data that has to be conveyed from the cell is determined by the output
gate. With the use of these gates, a desirable result can be created by holding onto cru-
cial data for a long time while discarding irrelevant information [37]. The tuning of the
hyperparameter is crucial for the creation of an effective LSTM model. It is necessary to
determine various hyperparameters, including the dropout rate, the optimizer employed,
the degree of regularization in the kernel, and the reduction of hidden state dimensionality.
The first two parameters are crucial for LSTM model training, while the final two help
prevent overfitting.

Sensors 2023, 23, 2913 9 of 27

An optimizer such as RMSprop, Adam, or AdaGrad can be factored in for appropriate
optimization to find the overall optimum loss. It is vital to regulate the learning rate and
monitor the error that it needs to minimize throughout the learning period to prevent the
local optimum. The weight decay method assigns penalties that correlate to large weights
indicated by regularization to prevent the overfitting issue. The dropout approach permits
certain weights to be neglected at random throughout the training phase depending on the
dropout rate, which is also widely known for reducing overfitting. The strategy can reduce
overfitting while improving the representation of training data. Due to the characteristics
of the training data and the variety of neural network topologies, finding the optimum
hyperparameters requires time. Therefore, it is frequently easy to find the best combinations
of hyperparameters utilizing grid or random search approaches. In this study, the best
hyperparameters are found using the grid search strategy. The fog data, which use time
series with a specified length and binary machine status data such as a fault or normal state
are fed to the LSTM systems’ input nodes and a singular node output, accordingly, to train
the fault prediction model based on LSTM.

Here, the state of the machine is used to determine the outcome of the operation as the
desired outcome value and the full sequential vibration information of every operation is
sent into the vector input. The function based on sigmoid was used as a single node’s output
activation function to build the machine binary state, and a binary function established on
cross-entropy was used as the model’s function loss to adjust the weights depending on
the divergence between the expected and actual output values. Algorithm 2 works on the
above-discussed approach and is illustrated as follows. Table 1 indicates the notations used
in this paper.

Algorithm 2: LSTM Fault Trainer

Input:
Total no. of fog devices-α
Each fog device—β

Resources of fog devices—{FN_C+S, FNA_C+S, FN_UD, FN_level, FN_pow}
No. of features, fNum
Function for Transformation-g(.)–{w1,w2}
Output:
Running status of the device(fog status)—ψ

Generating Algorithm
BEGIN
G = []
lt = α [len (α) − 1]

for each β in α

while j < fNum
m←−m + pow (β [j] – lt[j], 2.0)

j + 1
end while

G.append(sqrt (m))
end for

// Standardizing the values of G to [− 1, 1]
G←−std_normalize(G)
while j < len (α)

E[j]←−g(j)
j←− j + 1

end while
E←−std_normalize(E)
while j < len(α)

ψ [j]←−w1* G[j] + w2* E[j]
end while

return ψ

END

Sensors 2023, 23, 2913 10 of 27

Table 1. Notations of Resources in Fog and IoT.

Fog Node Parameters Description

FN_VM Fog node virtual machine

FN_VMR Fog node new virtual machine request for compute and
storage resources

FNA_C+S Fog node availability of computation and storage resources
(CPU + RAM)

FN_UD Fog node of uplink and downlink
FN_level The level of the fog node
FN_pow Fog node Power contains the busy power and idle power in watts

H_PR The request which performs critical data processing and needs good
response time

Y IoT Applications
Y_C+S Compute and storage resource requirements of each IoT application

R_CoFN Fog node cost of a VM, when it is reallocated or rescheduled to
another node

Schedule_Queue VM requests are rescheduled back when their resources are available

FN_fault The fog node does not cater to the needs of the IoT application and is
not tolerable to faults and must be rescheduled from the queue

IoT_pow IoT application requirement of power consumption

4.1.2. CRP Rule-Based Network Policy

A CRP rule-based network policy is key to dealing with the prediction of fog node
failure concerning the specific resources of MIPS, RAM, and power and to avoid the fog
node going into an idle state or the application processing going into an unprecedented
waiting queue. If necessary, once the failures are predicted, the workload of the applications
can be pushed into future scheduled nodes available in the scheduled queue. A rule-based
resource manager is proposed for successfully identifying the specific fog resources for
the IoT applications and data that are inadequate. With the help of the resource manager,
prediction of failure of fog nodes can be done proactively such that the fog nodes can
be rescheduled or scaled up to allocate resources on demand. The goal is to identify all
frequently occurring resources and the relationships between them. With the significant
increase in data volume from the IoT applications and the demand for the establishment of
the association with the fog nodes, rules are extracted to predict the insufficient resources
of fog nodes to avoid the processing delay of the IoT applications in the fog devices. The
architecture of the CRP rule-based network policy is given in Figure 6. The failure traces of
fog nodes have been generated as follows.

(a) We horizontally divide the resources of each fog device in the data set.
(b) Each node consists of its scanned data subset that generates a set of resources.
(c) The resources of each fog device are divided into r partitions that are different.
(d) These r partitions of the nodes accumulate the score of the fog device and produce the

final score, which determines the failure after comparing it with the minimum score.
(e) From the observed outputs, the set of failed failure traces of fog nodes is generated.

Characteristics of Rule-Based Aspect Extraction Approach

The characteristics of the proposed rule-based policy to predict the failure of the re-
sources of the fog devices are dynamically proposed based on resource availability. The
key difference in this policy is that in this rule-based approach, the nodes are arranged
to be scheduled in the order of their last failure times. The failure rate follows a Weibull
distribution with the parameter of the shape taking less than 1. The nodes that are suspi-
cious of failure and the longer the node is available, the node becomes more robust. Such
nodes are put in the head (front) and during the request, the nodes in the tail (rear) are
provided. The failure rate is defined as the conditional likelihood of a system that failed
between timestamp k and timestamp k + ∆k, taking into consideration that it did not fail at
timestamp k [38]. Because the rate of failure is a function of timestamp k, it is designated

Sensors 2023, 23, 2913 11 of 27

as the λ(k) named as the rate of failure function. This function evaluates a single node’s
dependability based on its uptime from its most recent reboot to timestamp k. The rate of
failure is defined in Equations (1) and (2) as follows:

λ(k) = lim∆t→0
P(k < K ≤ k + ∆k|K > t)

∆t
(1)

λ(k) =
p f (k)

1− c f (k)
(2)

where the probability density function is given as pf and the cumulative distribution
function is termed as cf. Researchers have essentially researched a variety of service
systems [39–41] and found that Internet services and high-performance computing seem to
have various characteristics of failures in the system. System logs failure in event traces
have been studied by researchers in [39,40] and identified the time concerning failures such
as reboot node failure. This stochastic process is predicted to follow the Weibull shape (sh)
distribution and Weibull scale (sc) distribution with a parameter of shape < 1. Weibull (sc,
sh), pf (k) and cf (k) are given in Equations (3) and (4), respectively. Therefore, the rate of
failure of the Weibull scale and Weibull shape is computed in Equations (5) and (6).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 31

4.1.2. CRP Rule-Based Network Policy
A CRP rule-based network policy is key to dealing with the prediction of fog node

failure concerning the specific resources of MIPS, RAM, and power and to avoid the fog
node going into an idle state or the application processing going into an unprecedented
waiting queue. If necessary, once the failures are predicted, the workload of the applica-
tions can be pushed into future scheduled nodes available in the scheduled queue. A rule-
based resource manager is proposed for successfully identifying the specific fog resources
for the IoT applications and data that are inadequate. With the help of the resource man-
ager, prediction of failure of fog nodes can be done proactively such that the fog nodes
can be rescheduled or scaled up to allocate resources on demand. The goal is to identify
all frequently occurring resources and the relationships between them. With the signifi-
cant increase in data volume from the IoT applications and the demand for the establish-
ment of the association with the fog nodes, rules are extracted to predict the insufficient
resources of fog nodes to avoid the processing delay of the IoT applications in the fog
devices. The architecture of the CRP rule-based network policy is given in Figure 6. The
failure traces of fog nodes have been generated as follows.
(a) We horizontally divide the resources of each fog device in the data set.
(b) Each node consists of its scanned data subset that generates a set of resources.
(c) The resources of each fog device are divided into r partitions that are different.
(d) These r partitions of the nodes accumulate the score of the fog device and produce

the final score, which determines the failure after comparing it with the minimum
score.

(e) From the observed outputs, the set of failed failure traces of fog nodes is generated.

Figure 6. Architecture of CRP rule-based network.

Figure 6. Architecture of CRP rule-based network.

p f (k) =
(

sh
sc

)
∗
(

k
sc

)sh−1
∗ e−(

k
sc)sh (3)

c f (k) = i−
(

e−(
k
sc)sh

)
(4)

λ(k) =
p f (k)

1− c f (k)
(5)

λ(k) =
(

sh
sc

)
∗ (k/sc)sh−1 (6)

i.e., if there are two nodes, namely Xnode and Ynode, with their uptimes given as X_uptime
and Y_uptime with X_uptime being greater than Y_uptime. Their rates of failure are

Sensors 2023, 23, 2913 12 of 27

λX = λ(X_uptime) and λY = λ(Y_uptime). Hence, when sh < 1, λX < YY, i.e., compared to
Ynode, Xnode is more reliable or less vulnerable to failure, i.e., the node that just failed is
vulnerable to other failures, but if it keeps running continuously for a while, it will become
more resilient. This failure node characteristic suggests that taking the most recent failed
node for a certain duration of reliability evaluation is useful [40].

The score method is defined to take into consideration how to dynamically allocate an
IoT application to a fog node; the dynamic allocation and the failure of the fog node depend
on the weighted sum of the resources. If there are k fog nodes, then the number of nodes
executing the IoT application h, is k ≥ 4 h. The distribution of fog nodes and their resources
k are expressed in Equation (7). αk expresses the ratio of the distribution of resources of the
fog node k given in Equation (8), ψ expresses the score of the overall capability of the fog
node executing the given IoT application given in Equation (9), A expresses the sum of the
resources of the IoT application given in Equation (10).

βk
∼= αk × |A| (7)

αk = Rk ÷ R (8)

ψ = ∑n
k=1 Rk (9)

A = ∑k
i=1 Ai (10)

A fog node’s integrated computing capabilities in the fog environment are tied to four
resource configurations: CPU speed and utilization, accessible memory size, bandwidth
uplink/downlink speed, and the node k’s integrated computing capability weight, which
are defined in Equation (11) as follows.

ψ k=RUD
k +RCPU

k +RRAM
k +RPOW

k
(11)

where, the weight of uplink and downlink is RUD
k = gk/g, weight of CPU node k is

RCPU
k = lk/l, weight of memory is RRAM

k = ck/c and weight of power is RPOW
k = pk/p. The

ratio among these four resources of the node and the associated points of reference resources
illustrates the score performance measure deviation of nodes that are heterogeneous. Each
node’s computing resources have diverse effects on dissimilar forms of loads, resulting in a
relationship between the integrated weight and the load type. Equation (12) determines
the node’s weighted load capacity,

Rk=λ1
k×RUD

k +λ2
k×RCPU

k +λ3
k×RRAM

k +λ4
k×RRAM

k
(12)

where the parameter λ
p
k signifies the dynamic ratio of resource utilization of UD, CPU,

RAM, Power of node k by the load, and λ1
k + λ2

k + λ3
k + λ4

k = 1.

Optimal Rule Set and its Robustness

To predict proactive failure based on rules generated over the proposed LSTM network.
The parameters considered to generate the rules are determined by the position where
the fog nodes are placed from the IoT devices along with the dependency relationship of
the infrastructure of the fog nodes to the requirements of the IoT application taking into
consideration the CPU, RAM, the uplink, downlink, and level denoting the resources and
position of the fog node in the infrastructure. The power indicates the capability of the
fog node when it approaches the consumption of being busy and idle. If either of these
parameters do not satisfy the given rule, then the resources are insufficient. The following
rules are taken into consideration to identify the failure traces of fog nodes.

(a) Rule 1:

Rule 1 is defined as follows, where R1 depends on the computational resources and
storage of fog nodes. If the resources of CPU and RAM are less than that of the placed IoT

Sensors 2023, 23, 2913 13 of 27

application, then there is inadequate CPU and RAM. If either of these parameters does
not satisfy the given rule, then the resources are insufficient. If the resources in fog nodes
are evaluated by either link, power, or level, then it returns a score between −1 and +1,
“Insufficient resources”.

R1 = R1(FNA_C+S)

R1: if res(FNA_C+S v FN_UD v FN_pow v FN_level) < res(Y_C+S)→ψ (−1,+1), {insufficient
resources of CPU + RAM}

(b) Rule 2:

Rule 2 is defined as follows, where R2 depends on all the parameters of the resources
of the fog based on CPU, RAM, uplink, and downlink bandwidth, and the placement of
the level of the fog node along with the aspect of power. If any of the given resources
are insufficient, then insufficient resources are present. If the resources in fog are not
evaluated by all the parameters of CPU, RAM, link, power, and level, then it returns a score
between −2 and +2, indicating “Insufficient resource”. Such nodes will be removed from
the scheduled queue.

R2 = R2(FNA_C+S, FN_UD, FN_pow, FN_level)

R2: if res(FNA_C+S Λ FN_UD Λ FN_pow Λ FN_level) < res(Y_C+S)→ψ (−2,+2),
{FN_fault},{del(FN)}

(c) Rule 3:

Rule 3 is defined as follows, where R3 depends on the process of if there is an available
resource of CPU or RAM or if both are present, which is nearly inequivalent to the resources
demanded by the IoT application; then the score of the aspect changes as follows.

R3.1: Strong availability of resources: If available resources are greater than the
resources required by IoT applications, then it has a strong effect on the score and indicates
“strong sufficient resources”.

R3.2: If score (CPU, RAM) < 0 and available resources do not belong to a certain level,
then score (CPU, RAM) < score (available resources in IoT) then insufficient resources.

R3.3: If score (CPU) < 0 and score (RAM) > 0 and available resources belong to a
certain level then score (CPU, RAM) < score (available resources in IoT) then insufficient
resources of CPU.

R3.4: If score (RAM) < 0 and score (CPU) > 0 and available resources are at a certain
level then score (CPU, RAM) < score (available resources in IoT) then insufficient resources
of RAM.

R3 = R3(FN_C+S)

R3: if avail(FNA_C+S)! = res(Y_C+S)
if avail(FNA_C+S) > res(Y_C+S)→ψ = True

{strong sufficient resources}
if avail(score(FNA_C+S)) > 0 Λ avail(FN_level) >= 1→

ψ (FNA_C + S) < ψ avail(Y_C+S)
{insufficient resources of CPU, RAM and level}

if avail(ψ (FN_C)) < 0 Λ avail(ψ (FN_S)) > 0
Λ avail(FN_level) >= 1 ->
ψ (FNA_C + S) < ψ (Y_C+S)
{insufficient resources of CPU}

if avail(ψ (FN_S)) < 0 Λ avail(ψ (FN_C)) > 0
Λ avail(FN_level) >= 1→
ψ (FNA_C + S) < ψ (Y_C+S) then

{insufficient resources of RAM}

Sensors 2023, 23, 2913 14 of 27

(d) Rule 4:

Rule 4 is defined as follows, where R4 depends on the node based on power consumed
during the idle and busy states; then the score will be updated as follows,

R4.1: If score (FN_pow) > 0 and available resources belong to a certain level then score
(FN_pow) > score (IoT_pow) then sufficient resources.

R4.2: If score (FN_pow) < 0 and available resources belong to a certain level then score
(FN_pow) < score (IoT_pow) then insufficient resources of power.

R4.3: If score (pow_idle) < 0, then score (fn_busypow) = score IoT _power) then
insufficient resources of idle power, fog node is busy.

R4 = R4(FN_pow)

R4: if res(FN_pow € (busy,idle)
if ψ (FN_pow) > 0 Λ avail(ψ (FNA_C+S)) > 0 Λ

avail(FN_level) >= 1 ->
ψ (FN_pow) > ψ (IoT_pow)
{sufficient resources}

if ψ (FN_pow) < 0 Λ avail(ψ (FNA_C+S)) > 0 Λ
avail(FN_level) >= 1 ->
ψ (FN_pow) < ψ (IoT_pow)
{insufficient resources}

if ψ (pow_idle) < 0 ->
ψ (fn_busypow) = ψ (IoT_power)
{insufficient resources of power}

CRP Rule-Based Algorithm Policy

The rule-based policy that works along with LSTM is proposed based in an event-
driven way. It is called whenever the resources of the fog nodes that are predicted by the
LSTM model are insufficient. The events invoked are fog node failure and time schedule
events. The fog node failure event indicates the failure of the fog node with respect to all
the resources that are insufficient. The current time of failure is recorded, and the fog node
is rescheduled by pushing it into the tail of the idle pool such that it is recovered over a
period of time. A new node is pulled from the scheduled fog nodes to cater to the services
of the running IoT applications. The time schedule event arises each time when the node
was predicted to fail based on the optimal rule set generated.

If any of the rules are true predicting the precise insufficient resources of fog nodes,
then that particular fog node is redirected to be rescheduled, pushing that fog node into the
idle list and pulling out a new fog node based on the demand of the failure of the current
fog node from the scheduled queue. If either of the rules are not satisfied and cannot be
rescheduled, then the reboot of that node is required, and it must be placed in the scheduled
queue. In case the high priority task is almost completed, and the node fails, then the task
is moved to the cloud. If either of these conditions is not satisfied, and if a new failure of
resources has been identified beside the rules generated, new rules are appended to the
rules identified based on the classes observed from the training data. This is illustrated in
Algorithm 3. These new rules that are generated are illustrated in Algorithm 4.

Algorithm 3: CRP Rule-Based Network Policy

Data_Structure:
Fog_Node_List, a list of nodes that cater to IoT applications.
Fog_Node_Pool_Schedule, a list of scheduled nodes waiting to service the IoT
Applications
Node_Pool_List, idle nodes list. In this list, the most recently failed nodes are moved to the top
and they are set to the current time. In the meantime, move non-failed nodes, including those that
are intentionally rejuvenated, to the end of the list.
HPC_IoTApp_Running_List, HPC running IoT Applications in a list.
HPC_IoTApp_Finished_List, HPC finished IoT Applications in a list

Sensors 2023, 23, 2913 15 of 27

Algorithm 3: Cont.

Output:
Prediction of Failure

Assumptions:
All of this data is extracted from the logger of the devices
Fog_Node_failure_Event;
Time_Schedule_Event;
Generating Algorithm:
BEGIN
while (RM_getevent(e_type) // Resource Manager identifies the failure event

switch(e_type)
case Fog_Node_Failure_Event:

put FailureNode.uptime = CurrentTime;
push(Fog_Node -> Node_Pool_List)
pull(Fog_Node_Pool_Schedule)

case Time_Schedule_Event:
HPC_IoTApp_Running_List→ request(res(Fog_Node))
for each Fog_Node in Fog_Node_List

if ({R1 or R2 or R3 or R4} == True)
Redirects(FogNode to Rescheduler)
push(Fog_Node -> Node_Pool_List)

push(HPC_IoTApp_Running_List -> Fog_Node_Pool_Schedule)
Allocate avail(FNA_C+S) -> avail(x_C+S)
Response.Redirect (FogNode);

end if
if ({R1 or R2 or R3 or R4} == False)

if(!(Rescheduled))
reboot()

elif(lowpriority)
push(HPC_IoTApp_Running_List -> cloud)

elif (new_rule)
generate_new_rule(new_rule)

end if
end if
for each IoTApp in HPC_IoTApp_Running_List

if(IoTApp.ExecuteTime + IoTApp.StartTime > CurrentTime)
put IoTApp.status = finished
push(IoTApp -> HPC_IoTApp_Finished_List)
push(Fog_Node -> Fog_Node_Pool_Schedule)

end if
end for

end for
end switch

end while
END

Algorithm 4: Generate new rules

Input:
S is the list of training data
C is the list of different classes
Output:
R Rules are produced, R = []//initially an empty list.

Sensors 2023, 23, 2913 16 of 27

Algorithm 4: Cont.

Generating Algorithm
generate new_rule()
Begin
if (C @ [R1,R2,R3,R4]) // the new failure class found does not

belong to any of the rules.
for every class C // for every new class found

while(C != S) // while the class does not belong to
training data

create new_rule ∈ C
R.append(new_rule)

end while
end for

end if
End

4.2. Fault Monitor

The fog fault monitor is responsible for raising an alarm to the scheduler when the fog
fault detector predicts the failure of insufficient resources using the conceptual framework
of LSTM and CRP. The monitor is responsible for pulling the fog device from the running
queue and place it in the idle queue to recover and move to the scheduled waiting queue.
The monitor serves as a layer between the detector and the scheduler such that the IoT
applications run effectively and are serviced by the fog nodes.

5. Results and Discussion
5.1. Experimental Setup and Failure Modelling

iFogSim toolkit is used for the simulation of Fog Computing scenarios. It provides
basic classes for describing data centers, virtual machines, applications, users, computa-
tional resources, and policies for the management of diverse parts of the system. iFogSim
is a simulation framework that supports seamless modelling and experimentation of fog
computing infrastructure, including data centers on a single computer [42]. It has a vir-
tualization engine, which assists in creating and managing multiple, independent, and
co-hosted virtualized services on a data center node. It supports the performance evaluation
of policies for resource provisioning and scheduling. The fog nodes having heterogeneous
type resources are considered for simulation. Various fog devices have been created whose
configurations are illustrated in Table 2 and the parameter settings of the IoT application
has been illustrated in Table 3. There could be a situation where all the nodes that are
scheduled are overloaded and there would be no sufficient resources, or the applications
are allocated to fog nodes with insufficient resources at different intervals of time.

Table 2. Configuration of fog nodes.

System Device Parameter Value

Fog Nodes Total fog nodes 10–25
Each Fog Node Total VMs 2

RAM (unit) 128–4000 (Mbps)
CPU processing power (unit) 1000–2800 (MIPS)

Power capacity (units) 1 (watt)
Data storage capacity (unit) 1 (GB)
The capacity of bandwidth

(unit) 100–10,000 (Mbps)

Total CPUs 1
OS Linux

VMM–Hypervisor Xen
Data Center Data center 1

Hosts 1

Sensors 2023, 23, 2913 17 of 27

Table 3. Parameter settings of IoT application.

Parameter IoT Applications
Executed

Components of IoT
Applications Length

(MI)

File Size
(MB)

Output Memory
Size (MB)

Value 3–5 250–950 100–1550 15–55

The following IoT applications running on fog nodes are used in car parking [43],
smart waste management systems [44], and smart factory [45]. The pseudo-code of these
applications is detailed in the following work [46]. Since there are no failure traces of
fog nodes for the IoT applications, a failure traces dataset is created by considering the
following IoT applications where the fog nodes that cater to these applications tend to
become unreliable with the resources allocated at some instance of a time as the demand of
the application varies. The traces are generated through iFogSim by monitoring the fog
devices for the given IoT application. Each fog node consists of multiple components of
resources with the possibility of various applications running on them. This was collected
when the system failures were recorded by the system administrator.

The dataset for the traces of the fog devices was generated along with the character-
istics of each node after running the IoT applications and is represented in Table 4. The
failure takes into consideration multiple factors where resources were insufficient to run
the IoT applications and could not function properly and is completely down. These traces
are run on various algorithms of the proposed LSTM + CRP rule-based, LSTM, SVM, and
logistic regression to determine which method is suitable to determine a proactive fault
tolerant fog device. The performance of the proposed work is evaluated using the failure
trace dataset, which has resources such as MIPS, memory, uplink, downlink bandwidth,
level of the fog device, and busy and idle power, which are collected by running the IoT
applications on various fog nodes for a period of ninety hours to obtain multiple resource
utilization. The availability of CPU and RAM is determined by the remaining resources left
when the IoT applications are running on fog devices.

Table 4. Fog node traces.

MIPS RAM Upload Bw Download Bw Level Busy Power Idle Power Available CPU Available Ram

44,800 16,000 100 10,000 0 1648 1332 2963.54 2073.37
2800 4000 10,000 10,000 1 106.339 63.67 2096.65 3074.78
2800 4000 10,000 10,000 1 97.339 84.54 623.48 1558.45
2800 4000 100 50 1 87.339 72.4333 2696.33 2135.91
1000 512 50 10 0 107.339 62.54 1581.53 3771.31
2000 750 8500 8500 1 97.349 82.5333 1723.21 1327.88
2000 1000 9000 8500 1 103.539 83.4333 965.55 2998.68
1500 3500 9500 9500 1 101.9 63.4333 2639.47 3801.73
2300 3300 7500 6000 1 91.339 83.4333 2695.63 1556.61
1750 3800 7600 7550 0 107.549 83.4333 797.44 3258.75
2100 2000 2000 1900 1 78.339 83.4333 677.98 3370.15

The experiments are executed with varying sizes of fog nodes and IoT applications
where fog nodes are allocated dynamically as per the demand of the IoT applications. In
a real computing environment, there could be an outage or massive failure of physical
servers, especially at peak hours causing overloads and resource contention. Accordingly,
we consider a sudden peak of aggregated load (resource demand) of all fog devices, which
is greater than available resource capacity, as a fog outage is predicted periodically.

5.2. Evaluation Metrics

All the performance metrics discussed are taken from the following work [47,48]. The
proposed model’s performance evaluation is based on the following parameters: minimum
delay, processing time, performance accuracy, error measures, and prediction of failure.

Sensors 2023, 23, 2913 18 of 27

a. Minimum Delay

Minimum delay is defined as the time taken to predict the failure of fog devices. It
is the time an IoT application was placed in a fog node and the time the execution of the
IoT application stops due to insufficient resource execution. The calculation is given in
Equation (13) as follows.

delayn
k = Fn

sp − Ao (13)

where delayn
k is denoted as the delay for n IoT applications running of fog, which involves

fog devices. Fsp is the start time of IoT application execution and n—Ao is the time an IoT
application has stopped the execution in a fog node.

b. Processing Time

Processing the prediction of failure of insufficient resources for IoT applications re-
quires computing time. The given Equation (14) can be used to calculate the amount of
time that passes between the start and end time for predicting the computing capability of
insufficient resources when the IoT application is processing in the fog devices.

ctn
k = cn

en − cn
st (14)

where n is the fog device that is involved in IoT application and ctk is the computation
time for prediction processing. cn

st is the start time and cn
en is the end time for predicting the

capability of computation of insufficient resources.

c. Performance Accuracy and Error Measures

The R2 score that is specified as the degree of a dependent variable’s variance that
can be predicted using the independent variable is the metric that is used to determine the
proposed work accuracy. Equation (15) provides the following R2.

R2 = 1− ∑ (yi − ŷi)
2

∑ (yi − yi)
2 (15)

R2
adj = 1−

[(
1− R2)(n− 1)

n− k− 1

]
(16)

Norm.RMSE =

√
∑(ŷi−yi)

2

n
yimaxi − yimini

(17)

The inclusion of needless variables decreases the Adjusted R2 score because it penalizes
the use of independent variables towards prediction. R2 and adjusted R2 are never greater
than one another. Equation (16) is utilized to determine the Adjusted R2

. Normalized root
mean square error (Norm. RMSE), a value between 0 and 1, where 0 indicates the most
desirable value, is used to measure errors for the model’s performance. The normalized
RMSE is calculated using the formula given in Equation (17). The number of parameters in
a model is taken into account by calculating the residuals squared denoted as R2 where
yi is the actual value of the fog node i, ŷi is the predicted failure of fog node and yi is the
mean value of y. The Adjusted R2 is denoted as R2

adj where R is the residual square, n is the
total number of fog nodes, and k is the number of resources of each fog node. yimaxi and
yimini is the maximum and minimum value of each resource.

d. Failure Prediction

The prediction of failure of inadequate resources for the fog devices is given in
Equations (18) and (19) and is used to apply the mean time before failure and the mean
time to recover to compute the failure prediction.

Sensors 2023, 23, 2913 19 of 27

MTBF =
∫ k2

k1

(
∑n

j=1 U_Tj

n_ f

)
(18)

MTTR =
∫ k2

k1

(
∑n

j=1 D_Tj

n_ f

)
(19)

AvaAvgr =
MTBF

MTBF + MTTR
(20)

Accordingly, availability average is computed using Equation (20), where n_f is the
overall number of resource failures, ∑n

j=1 U_Tj is the overall uptime, and ∑n
j=1 D_Tj is the

overall downtime of n fog devices running the applications of IoT experienced throughout
a time period (k1,k2)

5.3. Evaluation and Inference

A scalable deep learning framework for python, Keras, is used to efficiently generate
and train models. The training data consist of an input sequence and a target output. Rele-
vant features are retrieved to build the trace data while taking into account IoT application
events, resource utilization statistics, and limitations. The attributes of memory instructions
per cycle (MIPS), RAM, uplink and downlink, level of placement of fog node, and power
are all expressed as properties of a class in the input sequence. The desired output is the
fog device’s termination as finish or fail. The LSTM prediction model is made up of dense
layers in which the input sequence is transformed into an intermediate sequence, after
which an average pooling changes the sequence into a single representation that is fed into
the CRP policy to get the output of the insufficient resource. Five-fold cross-validation is
used to train and test the model. To forecast failure, the LSTM + CRP model is compared to
the baseline LSTM [49], SVM [50], and logistic regression [51] models.

(a) Prediction of Minimum Delay

The given IoT applications were run on different fog devices having a range of 1 to
25 and the prediction of failure of different fog nodes was done based on the minimum
delay given in Equation (13). It was observed that the prediction of failure was done with
a minimum delay by LSTM + CRP in comparison to LSTM, SVM, and logistic regression,
which seemed to predict a greater delay. As the fog nodes increased to 13, 18, and 25, the
proposed LSTM + CRP model performed better than LSTM, SVM, and logistic regression
by identifying the precise resource of the fog node that was determined as inadequate. The
observations are illustrated in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 21 of 31

Figure 7. Prediction of minimum delay.

(b) Processing Time
The processing time to predict the failure of insufficient resources of fog nodes for

the IoT applications given in Equation (14) is minimized when LSTM + CRP is applied
when compared to LSTM, SVM, and logistic regression. As the number of fog nodes varies
in the range of 2–25, it was observed that the proposed model of LSTM + CRP has faster
computation in the prediction of insufficient resources than LSTM, SVM, and logistic re-
gression models are capable of, as it only predicts the failure of the fog node. The obser-
vations are plotted in Figure 8.

Figure 7. Prediction of minimum delay.

Sensors 2023, 23, 2913 20 of 27

(b) Processing Time

The processing time to predict the failure of insufficient resources of fog nodes for
the IoT applications given in Equation (14) is minimized when LSTM + CRP is applied
when compared to LSTM, SVM, and logistic regression. As the number of fog nodes
varies in the range of 2–25, it was observed that the proposed model of LSTM + CRP
has faster computation in the prediction of insufficient resources than LSTM, SVM, and
logistic regression models are capable of, as it only predicts the failure of the fog node. The
observations are plotted in Figure 8.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 31

Figure 8. Minimum processing time.

(c) Accuracy and Error Measures
For the proposed LSTM + CRP approach, LSTM network, SVM, and logistic regres-

sion, the performance metrics R2, Adjusted R2 and Normalized RMSE are computed for
the training and testing data, and are given accordingly in Equations (15)–(17). The obser-
vations for the proposed approach are plotted in Figure 9. The proposed approach R2 was
determined to be 0.9516 on training data and 0.9869 on testing data, which indicates that
it obtained an accuracy of 95.16% on training data and 98.69% on testing data. On the
training data and testing data, the adjusted R2 of the method proposed is 0.949 and 0.972,
respectively. On train data, the model’s normalized RMSE score is 0.017, and for the test-
ing data, it is 0.024.

Figure 8. Minimum processing time.

(c) Accuracy and Error Measures

For the proposed LSTM + CRP approach, LSTM network, SVM, and logistic regression,
the performance metrics R2, Adjusted R2 and Normalized RMSE are computed for the
training and testing data, and are given accordingly in Equations (15)–(17). The observa-
tions for the proposed approach are plotted in Figure 9. The proposed approach R2 was
determined to be 0.9516 on training data and 0.9869 on testing data, which indicates that
it obtained an accuracy of 95.16% on training data and 98.69% on testing data. On the
training data and testing data, the adjusted R2 of the method proposed is 0.949 and 0.972,
respectively. On train data, the model’s normalized RMSE score is 0.017, and for the testing
data, it is 0.024.

In Tables 5 and 6, the proposed framework is applied to compare the R2 scores of the
training and testing data with the LSTM, SVM, and logistic regression. The LSTM model’s
R2 scored 0.912 for training data and 0.954 for testing data. The SVM approach received
scores of 0.878 for training data and 0.895 for testing data, respectively. The R2 value for the
logistic regression was, respectively, 0.825 and 0.834 on the training and testing sets of data.
However, the suggested strategy performs better compared to every other method. The
values are plotted epoch-wise in Figures 10 and 11 for training and testing data. According
to this, it can be demonstrated that the proposed method, when related to other methods
such as LSTM, SVM, and logistic regression, can predict insufficient resource failure with a
higher degree of accuracy.

Sensors 2023, 23, 2913 21 of 27Sensors 2023, 23, x FOR PEER REVIEW 23 of 31

Figure 9. Performance metrics of LSTM + CRP.

In Tables 5 and 6, the proposed framework is applied to compare the R2 scores of the
training and testing data with the LSTM, SVM, and logistic regression. The LSTM model’s
R2 scored 0.912 for training data and 0.954 for testing data. The SVM approach received
scores of 0.878 for training data and 0.895 for testing data, respectively. The R2 value for
the logistic regression was, respectively, 0.825 and 0.834 on the training and testing sets of
data. However, the suggested strategy performs better compared to every other method.
The values are plotted epoch-wise in Figures 10 and 11 for training and testing data. Ac-
cording to this, it can be demonstrated that the proposed method, when related to other
methods such as LSTM, SVM, and logistic regression, can predict insufficient resource
failure with a higher degree of accuracy.

0 0.2 0.4 0.6 0.8 1 1.2

R2

Adjusted R2

Norm. RMSE

Testing and Training Data

R2 Adjusted R2 Norm. RMSE
Testing Data 0.9869 0.972 0.024
Training Data 0.9516 0.949 0.017

Testing Data Training Data

Figure 9. Performance metrics of LSTM + CRP.

Table 5. Multiple epochs of training data R2 vs. various prediction techniques.

Epochs LSTM + CRP LSTM SVM Logistic
Regression

10 41.8608 37.0656 35.6928 32.5523
35 70.7184 66.4632 64.0016 57.8932
50 83.322 78.0948 75.2024 70.8313
55 85.4496 81.3672 78.3536 73.2553
70 90.2016 85.1796 82.0248 76.9923
75 91.0548 86.1948 83.0024 78.0225
90 93.9384 89.1648 85.8624 80.9212
95 94.824 90.072 86.736 81.7292

100 95.1696 91.206 87.828 82.5978

Table 6. Multiple epochs of testing data R2 vs. various techniques.

Epochs LSTM + CRP LSTM SVM Logistic
Regression

10 43.4112 38.7816 36.3792 32.8746
35 73.3376 69.5402 65.2324 58.4664
50 86.408 81.7103 76.6486 71.5326
55 88.6144 85.1342 79.8604 73.9806
70 93.5424 89.1231 83.6022 77.7546
75 94.4272 90.1853 84.5986 78.795
90 97.4176 93.2928 87.5136 81.7224
95 98.336 94.242 88.404 82.5384

100 98.6944 95.4285 89.517 83.4156

(d) Failure Prediction

The performance metric given in Equations (18) and (19) is for the applications of
IoT of various sizes on varied fog devices (20–100) over a time frame of ninety hours,
which includes meantime (to recover, before failure) (MTTR) and (MTBF), availability

Sensors 2023, 23, 2913 22 of 27

average (Ava avgr), failure prediction accuracy (fpa), and number of failures predicted
(n_fp). The performance metrics with respect to MTTR, MTBF, Ava Avgr, fpa, and n fp for
GCD workload for different sizes of fog nodes 20 to 100 over the timeframe of 200 min are
reported in Table 7. The performance of metrics with regards to Precision (P), Recall (R),
and F-measure are characterized by the prediction accuracy of several resources using the
proposed technique to calculate the average prediction failure accuracy. The fog nodes’
resources and prediction errors directly but unevenly affect how well failures are predicted.

Sensors 2023, 23, x FOR PEER REVIEW 24 of 31

Figure 10. Train data R2 comparison.

Table 5. Multiple epochs of training data R2 vs. various prediction techniques.

Epochs LSTM + CRP LSTM SVM Logistic Regression
10 41.8608 37.0656 35.6928 32.5523
35 70.7184 66.4632 64.0016 57.8932
50 83.322 78.0948 75.2024 70.8313
55 85.4496 81.3672 78.3536 73.2553
70 90.2016 85.1796 82.0248 76.9923
75 91.0548 86.1948 83.0024 78.0225
90 93.9384 89.1648 85.8624 80.9212
95 94.824 90.072 86.736 81.7292
100 95.1696 91.206 87.828 82.5978

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

A
cc

ur
ac

y

Number of Epochs

LSTM + CRP LSTM SVM Logistic Regression

Figure 10. Train data R2 comparison.

Sensors 2023, 23, x FOR PEER REVIEW 25 of 31

Figure 11. Test data R2 comparison.

Table 6. Multiple epochs of testing data R2 vs. various techniques.

Epochs LSTM + CRP LSTM SVM Logistic Regression
10 43.4112 38.7816 36.3792 32.8746
35 73.3376 69.5402 65.2324 58.4664
50 86.408 81.7103 76.6486 71.5326
55 88.6144 85.1342 79.8604 73.9806
70 93.5424 89.1231 83.6022 77.7546
75 94.4272 90.1853 84.5986 78.795
90 97.4176 93.2928 87.5136 81.7224
95 98.336 94.242 88.404 82.5384
100 98.6944 95.4285 89.517 83.4156

(d) Failure Prediction
The performance metric given in Equations (18) and (19) is for the applications of IoT

of various sizes on varied fog devices (20–100) over a time frame of ninety hours, which
includes meantime (to recover, before failure) (MTTR) and (MTBF), availability average
(Ava avgr), failure prediction accuracy (fpa), and number of failures predicted (n_fp). The
performance metrics with respect to MTTR, MTBF, Ava Avgr, fpa, and n fp for GCD work-
load for different sizes of fog nodes 20 to 100 over the timeframe of 200 min are reported
in Table 7. The performance of metrics with regards to Precision (P), Recall (R), and F-
measure are characterized by the prediction accuracy of several resources using the pro-
posed technique to calculate the average prediction failure accuracy. The fog nodes’ re-
sources and prediction errors directly but unevenly affect how well failures are predicted.

Table 7. Values of MTTR and MTBF.

Fog Nodes Time (Mins) MTTR MTBF Ava Avgr fpa n_fp

20

50 0.11 888.43 99.98 98.2 2
100 0.19 976.12 99.98 97.7 5
150 0.21 1001.89 99.89 99.2 8
200 0.09 1078.45 99.99 98.5 11

0

20

40

60

80

100

120

0 20 40 60 80 100 120

A
cc

ur
ac

y

Number of Epochs

LSTM + CRP LSTM SVM Logistic Regression

Figure 11. Test data R2 comparison.

Additionally, the obtained MTBF and recovery rely on the number of failures. In
fog node failure scenarios, MTTR is determined by the number of failures that are unpre-
dicted, which differs from the number of fog nodes. The MTBF and recovery obtained

Sensors 2023, 23, 2913 23 of 27

throughout timeframe {k1, k2} and Equation (20) are used to calculate the corresponding
availability values. Contrasting the evaluation of the proposed LSTM + CRP network’s
failure prediction accuracy with that of the LSTM, SVM, and logistic regression. The MTBF
and MTTR values that were obtained during the processing of IoT applications over the
timeframe {k1, k2} influence availability. Table 7 displays the differences in the values of
MTBF and MTTR that were noticed during the experimental simulation. As fog nodes
and IoT applications are expanded, MTTR increases while MTBF decreases, indicating an
inverse relationship between the two. Figure 12 shows the relationship between various
parameters such as Fog Nodes, Time, MTTR, MTBF, Ava_Avgr, fpa, and n_fp.

Table 7. Values of MTTR and MTBF.

Fog Nodes Time (Mins) MTTR MTBF Ava Avgr fpa n_fp

20

50 0.11 888.43 99.98 98.2 2
100 0.19 976.12 99.98 97.7 5
150 0.21 1001.89 99.89 99.2 8
200 0.09 1078.45 99.99 98.5 11

40

50 0.31 1011.21 99.96 98.3 4
100 0.28 1078.92 99.99 97.4 9
150 0.21 1103.53 99.99 99.1 13
200 0.19 1179.28 99.98 97.4 18

60

50 0.42 1202.16 99.96 98.5 7
100 0.37 1276.29 99.97 99.7 16
150 0.33 1329.03 99.97 97.3 22
200 0.30 1399.45 99.97 97.7 31

80

50 0.54 1448.91 99.96 98.4 12
100 0.41 1496.29 99.97 96.6 19
150 0.38 1521.28 99.97 97.3 29
200 0.33 1535.74 99.97 98.7 45

100

50 0.78 1623.12 99.95 98.3 19
100 0.62 1622.88 99.96 98.8 26
150 0.57 1705.28 99.96 99.4 49
200 0.41 1794.48 99.97 98.1 62

Sensors 2023, 23, x FOR PEER REVIEW 26 of 31

40

50 0.31 1011.21 99.96 98.3 4
100 0.28 1078.92 99.99 97.4 9
150 0.21 1103.53 99.99 99.1 13
200 0.19 1179.28 99.98 97.4 18

60

50 0.42 1202.16 99.96 98.5 7
100 0.37 1276.29 99.97 99.7 16
150 0.33 1329.03 99.97 97.3 22
200 0.30 1399.45 99.97 97.7 31

80

50 0.54 1448.91 99.96 98.4 12
100 0.41 1496.29 99.97 96.6 19
150 0.38 1521.28 99.97 97.3 29
200 0.33 1535.74 99.97 98.7 45

100

50 0.78 1623.12 99.95 98.3 19
100 0.62 1622.88 99.96 98.8 26
150 0.57 1705.28 99.96 99.4 49
200 0.41 1794.48 99.97 98.1 62

Additionally, the obtained MTBF and recovery rely on the number of failures. In fog
node failure scenarios, MTTR is determined by the number of failures that are unpre-
dicted, which differs from the number of fog nodes. The MTBF and recovery obtained
throughout timeframe {k1, k2} and Equation (20) are used to calculate the corresponding
availability values. Contrasting the evaluation of the proposed LSTM + CRP network’s
failure prediction accuracy with that of the LSTM, SVM, and logistic regression. The MTBF
and MTTR values that were obtained during the processing of IoT applications over the
timeframe {k1, k2} influence availability. Table 7 displays the differences in the values of
MTBF and MTTR that were noticed during the experimental simulation. As fog nodes and
IoT applications are expanded, MTTR increases while MTBF decreases, indicating an in-
verse relationship between the two. Figure 12 shows the relationship between various pa-
rameters such as Fog Nodes, Time, MTTR, MTBF, Ava_Avgr, fpa, and n_fp.

 (a)

Figure 12. Cont.

Sensors 2023, 23, 2913 24 of 27Sensors 2023, 23, x FOR PEER REVIEW 27 of 31

 (b)

(c) (d)

Figure 12. (a): Fog nodes, time, and MTTR. (b): Fog nodes, time, and MTBF. Represents the
relationship between various parameters of MTBR and MTBF. (c): Fog nodes, time, MTTR, and MTBF.
(d): Fog nodes, Time, MTTR, MTBF, Ava_Avgr, fpa, n_fp.

Sensors 2023, 23, 2913 25 of 27

(e) Significance Test Using Paired t-Test

To determine whether our suggested method is statistically significant, a paired t-test
was run. Table 8 shows that the paired t-test has a p-value of 0.01, which is significantly
lower than 0.05. It signifies that, at a 95% level of confidence, the enhancement of our
proposed approach is statistically significant compared to that of LSTM.

Table 8. Paired t-test for significant test.

Accuracy of the
Proposed Approach

Accuracy of the
LSTM Approach

Mean 0.98 0.84
Observations 5 5

Variance 0.0001 0.0009
Mean Difference Hypothesized 0 -

df 2 -
Pearson Correlation −0.16423367 -

t Stat 4.6690876545 -
One tail when P(T ≤ t) 0.08679823 -
Two tail when P(T ≤ t) 0.17895624 -

T critical two tail 3.3198679 -

6. Conclusions and Future Work

This work proposes a proactive prediction of failure of insufficient resources, using
LSTM and CRP, which reduces the dependence on identifying and working on fog node
resources. LSTM and CRP are used to enable effective failure predictions, allowing the sys-
tem to predict faults. A specific resource that could fail while IoT applications are running
is identified in the framework by providing knowledge about fog devices. The major steps
considered to predict the proactive failure were to develop an LSTM model to determine
the failure of fog devices, to further enhance the binary classification, CRP network policy
is merged with LSTM to extract the resource that could fail. The experimental predictive
model implemented using iFogSim indicates that there is a minimization of delay and
processing time when compared to the standard LSTM, SVM, and logistic regression. With
the addition of the CRP network policy, the accuracy of the model is improved, which
brings in a promising approach to overcome failure by managing it before it occurs, so that
IoT applications run smoothly. The experimental findings also demonstrate that MTTR and
MTBF, which were determined from the processing of the failure prediction of the fog nodes
across the time interval k1 and k2 vary with fog node availability. The variances in MTBR
and MTBF values that were seen during the experimental simulation show that inverse
correlations exist between MTTR and MTBF, with MTTR decreasing as MTBF increases.
The future work in this research is a multidimensional perspective mechanism to tolerate
faults based on the prediction of the faults in the devices.

Author Contributions: Conceptualization, S.H. and N.V.; Methodology, S.H.; Formal analysis, S.H.
and N.V.; Investigation, S.H.; Resources and data collection, S.H. and N.V.; Writing; S.H.; Validation,
S.H.; Funding Acquisition, N.V. All authors have read and agreed to the published version of
the manuscript.

Funding: The Article Processing Charges for this research is funded by the Vellore Institute of
Technology, Chennai, India.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: All authors acknowledge Vellore Institute of Technology, Chennai, India.

Conflicts of Interest: The authors have no competing interest to declare that are relevant to the
content of this article.

Sensors 2023, 23, 2913 26 of 27

References
1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
2. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things: A survey. Future Gener.

Comput. Syst. 2016, 56, 684–700. [CrossRef]
3. Bittencourt, F.L.; Rana, O.; Petri, I. Cloud computing at the edges. In International Conference on Cloud Computing and Services

Science; Springer: Cham, Switzerland, 2015; pp. 3–12.
4. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First Edition

of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.
5. Vaquero, M.L.; Rodero-Merino, L.; Caceres, J.; Lindner, M. A break in the clouds: Towards a cloud definition. ACM Sigcomm

Comput. Commun. Rev. 2008, 39, 50–55. [CrossRef]
6. Sabireen, H.; Neelanarayanan, V. A review on fog computing: Architecture, fog with IoT, algorithms and research challenges. ICT

Express 2021, 7, 162–176.
7. Barroso, L.A.; Clidaras, J.; Hölzle, U. The datacenter as a computer: An introduction to the design of warehouse-scale machines.

Synth. Lect. Comput. Archit. 2013, 8, 1–154.
8. Oppenheimer, D.; Ganapathi, A.; Patterson, D.A. Why do Internet services fail, and what can be done about it? In 4th Usenix

Symposium on Internet Technologies and Systems (USITS 03); USENIX Association: Berkeley, CA, USA, 2003.
9. Hochreiter, S.; Bengio, Y.; Frasconi, P.; Schmidhuber, J. Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term

Dependencies; IEEE Press: Piscataway, NJ, USA, 2001.
10. Graves, A.; Schmidhuber, J. Offline handwriting recognition with multidimensional recurrent neural networks. In Proceedings of

the Advances in Neural Information Processing Systems 21, Vancouver, BC, Canada, 8–11 December 2008.
11. Razgon, M.; Mousavi, A. Relaxed rule-based learning for automated predictive maintenance: Proof of concept. Algorithms 2020,

13, 219. [CrossRef]
12. Mukwevho, M.A.; Celik, T. Toward a smart cloud: A review of fault-tolerance methods in cloud systems. IEEE Trans. Serv.

Comput. 2018, 14, 589–605. [CrossRef]
13. Tsigkanos, C.; Nastic, S.; Dustdar, S. Towards resilient internet of things: Vision, challenges, and research roadmap. In Proceedings

of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019;
pp. 1754–1764.

14. Hasan, M.; Goraya, M.S. Fault tolerance in cloud computing environment: A systematic survey. Comput. Ind. 2018, 99, 156–172.
[CrossRef]

15. Sharif, A.; Nickray, M.; Shahidinejad, A. Energy-efficient fault-tolerant scheduling in a fog-based smart monitoring application.
Int. J. Ad Hoc Ubiquitous Comput. 2021, 36, 32–49. [CrossRef]

16. Ghobaei-Arani, M.; Souri, A.; Rahmanian, A.A. Resource management approaches in fog computing: A comprehensive review.
J. Grid Comput. 2019, 18, 1–42. [CrossRef]

17. Fu, S.; Xu, C.Z. Exploring event correlation for failure prediction in coalitions of clusters. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, Reno, NV, USA, 10–16 November 2007; Volume 41, p. 112.

18. Alarifi, A.; Abdelsamie, F.; Amoon, M. A fault-tolerant aware scheduling method for fog-cloud environments. PLoS ONE 2019,
14, e0223902. [CrossRef]

19. Tajiki, M.M.; Shojafar, M.; Akbari, B.; Salsano, S.; Conti, M. Software defined service function chaining with failure consideration
for fog computing. Concurr. Comput. Pract. Exp. 2019, 31, e4953. [CrossRef]

20. Battula, S.K.; Garg, S.; Montgomery, J.; Kang, B.H. An efficient resource monitoring service for fog computing environments.
IEEE Trans. Serv. Comput. 2019, 13, 709–722. [CrossRef]

21. Zhang, J. Overview on Fault Tolerance Strategies of Composite Service in Service Computing. Wirel. Commun. Mob. Comput. 2018,
2018, 9787503. [CrossRef]

22. Abdulhamid, S.M.; Latiff, M.S.A.; Madni, S.H.H.; Abdullahi, M. Fault tolerance aware scheduling technique for cloud computing
environment using dynamic clustering algorithm. Neural Comput. Appl. 2018, 29, 279–293. [CrossRef]

23. Amoon, M. A job checkpointing system for computational grids. Open Comput. Sci. 2013, 3, 17–26. [CrossRef]
24. Liu, Y.; Fieldsend, J.; Min, G. A Framework of Fog Computing: Architecture, Challenges and Optimization. IEEE Access 2017, 5,

25445–25454. [CrossRef]
25. Goiri, I.; Julià, F.; Guitart, J.; Torres, J. Checkpoint-based fault-tolerant infrastructure for virtualized service providers. In

Proceedings of the 12th IEEE/IFIP Network Operations and Management Symposium (NOMS’10), Osaka, Japan, 19–23 April
2010; pp. 455–462.

26. Cao, J.; Simonin, M.; Cooperman, G.; Morin, C. Checkpointing as a service in heterogeneous cloud environments. In Proceedings
of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015;
pp. 61–70.

27. Abdulhamid, S.; Abd Latiff, M.A. Checkpointed League Championship Algorithm-Based Cloud Scheduling Scheme with Secure
Fault Tolerance Responsiveness. Appl. Soft Comput. 2017, 61, 670–680. [CrossRef]

28. Louatia, T.; Abbesa, H.; Ce´rinb, C.; Jemnia, M. LXCloud-CR: Towards LinuX Containers Distributed Hash Table based
Checkpoint-Restart. J. Parallel Distrib. Comput. 2018, 111, 187–205. [CrossRef]

http://doi.org/10.1016/j.future.2013.01.010
http://doi.org/10.1016/j.future.2015.09.021
http://doi.org/10.1145/1496091.1496100
http://doi.org/10.3390/a13090219
http://doi.org/10.1109/TSC.2018.2816644
http://doi.org/10.1016/j.compind.2018.03.027
http://doi.org/10.1504/IJAHUC.2021.112978
http://doi.org/10.1007/s10723-019-09491-1
http://doi.org/10.1371/journal.pone.0223902
http://doi.org/10.1002/cpe.4953
http://doi.org/10.1109/TSC.2019.2962682
http://doi.org/10.1155/2018/9787503
http://doi.org/10.1007/s00521-016-2448-8
http://doi.org/10.2478/s13537-013-0103-3
http://doi.org/10.1109/ACCESS.2017.2766923
http://doi.org/10.1016/j.asoc.2017.08.048
http://doi.org/10.1016/j.jpdc.2017.08.011

Sensors 2023, 23, 2913 27 of 27

29. Ozeer, U.; Etchevers, X.; Letondeur, L.; Ottogalli, F.-G.; Salaün, G.; Vincent, J.-M. Resilience of stateful IOT applications in
a dynamic fog environment. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, New York, NY, USA, 5–7 November 2018; pp. 1–10.

30. Souza, V.B.; Masip-Bruin, X.; Marín-Tordera, E.; Ramírez, W.; Sánchez-López, S. Proactive vs. reactive failure recovery assessment
in combined fog-to-cloud (F2C) systems. In Proceedings of the IEEE 22nd International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Lund, Sweden, 19–21 June 2017; pp. 1–5.

31. Takami, G.; Tokuoka, M.; Goto, H.; Nozaka, Y. Machine learning applied to sensor data analysis. Yokogawa Tech. Rep. Engl. 2016,
59, 27–30.

32. Sahoo, S.K.; Rodriguez, P.; Savinovic, D. 2015 IEEE International Electric Machines & Drives Conference (IEMDC); IEEE: Piscataway,
NJ, USA, 2015; pp. 1398–1404.

33. Fürnkranz, J.; Gamberger, D.; Lavrač, N. Foundations of Rule Learning; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012.

34. Park, D.; Kim, S.; An, Y.; Jung, J.-Y. LiReD: A light-weight real-time fault detection system for edge computing using LSTM
recurrent neural networks. Sensors 2018, 18, 2110. [CrossRef] [PubMed]

35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
36. Gers, A.F.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471.

[CrossRef]
37. Cortez, B.; Carrera, B.; Kim, Y.-J.; Jung, J.-Y. An architecture for emergency event prediction using LSTM recurrent neural networks.

Expert Syst. Appl. 2018, 97, 315–324. [CrossRef]
38. Ross, S. A First Course in Probability, 8th ed.; Pearson: London, UK, 2009.
39. Schroeder, B.; Gibson, G.A. A large-scale study of failures in high-performance computing systems. IEEE Trans. Dependable Secur.

Comput. 2009, 7, 337–350. [CrossRef]
40. Heath, T.; Martin, R.P.; Nguyen, T.D. Improving cluster availability using workstation validation. In Proceedings of the 2002

ACM Sigmetrics International Conference on Measurement and Modeling of Computer Systems, Marina Del Rey, CA, USA,
15–19 June 2002; pp. 217–227.

41. Sahoo, K.R.; Squillante, M.S.; Sivasubramaniam, A.; Zhang, Y. Failure data analysis of a large-scale heterogeneous server
environment. In Proceedings of the International Conference on Dependable Systems and Networks, Florence, Italy, 28 June–1 July
2004; pp. 772–781.

42. iFogSim Toolkit. Available online: https://github.com/Cloudslab/iFogSim (accessed on 29 August 2021).
43. Awaisi, K.S.; Abbas, A.; Zareei, M.; Khattak, H.A.; Khan, M.U.S.; Ali, M.; Din, I.U.; Shah, S. Towards a fog enabled efficient car

parking architecture. IEEE Access 2019, 7, 159100–159111. [CrossRef]
44. Aazam, M.; St-Hilaire, M.; Lung, C.-H.; Lambadaris, I. Cloud-based smart waste management for smart cities. In Proceedings of

the 2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks
(CAMAD), Toronto, ON, Canada, 23–25 October 2016; pp. 188–193. [CrossRef]

45. Afrin, M.; Jin, J.; Rahman, A.; Tian, Y.-C.; Kulkarni, A. Multi-objective resource allocation for Edge Cloud based robotic workflow
in smart factory. Future Gener. Comput. Syst. 2019, 97, 119–130. [CrossRef]

46. Awaisi, K.S.; Abbas, A.; Khan, S.U.; Mahmud, R.; Buyya, R. Simulating Fog Computing Applications using iFogSim Toolkit. In
Mobile Edge Computing; Springer: Cham, Germany, 2021; pp. 565–590. [CrossRef]

47. Naha, R.K.; Garg, S.; Chan, A.; Battula, S.K. Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud
environment. Future Gener. Comput. Syst. 2020, 104, 131–141. [CrossRef]

48. Naha, R.K.; Garg, S. Multi-criteria–based Dynamic User Behaviour–aware Resource Allocation in Fog Computing. ACM Trans.
Int. Things 2021, 2, 1–31. [CrossRef]

49. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

50. Kwon, J.-H.; Kim, E.-J. Failure prediction model using iterative feature selection for industrial internet of things. Symmetry 2020,
12, 454. [CrossRef]

51. Manoharan, H.; Teekaraman, Y.; Kirpichnikova, I.; Kuppusamy, R.; Nikolovski, S.; Baghaee, H.R. Smart grid monitoring by
wireless sensors using binary logistic regression. Energies 2020, 13, 3974. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s18072110
http://www.ncbi.nlm.nih.gov/pubmed/29966374
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1162/089976600300015015
http://doi.org/10.1016/j.eswa.2017.12.037
http://doi.org/10.1109/TDSC.2009.4
https://github.com/Cloudslab/iFogSim
http://doi.org/10.1109/ACCESS.2019.2950950
http://doi.org/10.1109/CAMAD.2016.7790356
http://doi.org/10.1016/j.future.2019.02.062
http://doi.org/10.1007/978-3-030-69893-5_22
http://doi.org/10.1016/j.future.2019.10.018
http://doi.org/10.1145/3423332
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.3390/sym12030454
http://doi.org/10.3390/en13153974

	Introduction
	Literature Survey
	Problem Definition
	Proposed Methodology
	Fault Detector
	LSTM Fault Prediction Network
	CRP Rule-Based Network Policy

	Fault Monitor

	Results and Discussion
	Experimental Setup and Failure Modelling
	Evaluation Metrics
	Evaluation and Inference

	Conclusions and Future Work
	References

