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Abstract: Due to the sharp increase in household waste, its separate collection is essential in order
to reduce the huge amount of household waste, since it is difficult to recycle trash without separate
collection. However, since it is costly and time-consuming to separate trash manually, it is crucial to
develop an automatic system for separate collection using deep learning and computer vision. In this
paper, we propose two Anchor-free-based Recyclable Trash Detection Networks (ARTD-Net) which
can recognize overlapped multiple wastes of different types efficiently by using edgeless modules:
ARTD-Net1 and ARTD-Net2. The former is an anchor-free based one-stage deep learning model
which consists of three modules: centralized feature extraction, multiscale feature extraction and
prediction. The centralized feature extraction module in backbone architecture focuses on extracting
features around the center of the input image to improve detection accuracy. The multiscale feature
extraction module provides feature maps of different scales through bottom-up and top-down
pathways. The prediction module improves classification accuracy of multiple objects based on edge
weights adjustments for each instance. The latter is an anchor-free based multi-stage deep learning
model which can efficiently finds each of waste regions by additionally exploiting region proposal
network and RoIAlign. It sequentially performs classification and regression to improve accuracy.
Therefore, ARTD-Net2 is more accurate than ARTD-Net1, while ARTD-Net1 is faster than ARTD-
Net2. We shall show that our proposed ARTD-Net1 and ARTD-Net2 methods achieve competitive
performance in mean average precision and F1 score compared to other deep learning models. The
existing datasets have several problems that do not deal with the important class of wastes produced
commonly in the real world, and they also do not consider the complex arrangement of multiple
wastes with different types. Moreover, most of the existing datasets have an insufficient number of
images with low resolution. We shall present a new recyclables dataset which is composed of a large
number of high-resolution waste images with additional essential classes. We shall show that waste
detection performance is improved by providing various images with the complex arrangement of
overlapped multiple wastes with different types.

Keywords: object detection; waste management; recyclable waste dataset; deep neural networks

1. Introduction

Recently, the increasing population has been accompanied by a vast amount of resource
consumption. Therefore, separate collection is essential to reduce the huge amount of household
waste by recycling trash. Since it is costly and time-consuming to separate trash manually,
it is very important to develop an automatic system for separate collection using deep
learning and computer vision [1–4]. In previous research on automatic systems for separate
collection, many methods have been proposed for trash classification using deep learning
and computer vision [5–7]. However, they only deal with the simple case for the image with
a single trash. In order to overcome the limitations of single garbage classification, previous
research has worked on methods for detecting multiple types of trash [8,9]. However,
the trash datasets used in their research have several problems which make it difficult
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for deep learning models to detect trash in the real world. First, the existing dataset
does not efficiently deal with various wastes of the real world, since it does not include
important types of waste such as cans and PETs. Second, since the existing dataset is
used for classifying single waste in one image, it does not consider data with the complex
arrangement, i.e., with several overlapped wastes with different types. Third, most of the
existing datasets have a small number of data with low resolution. In order to resolve those
problems, we are concerned with the design of deep learning based model for recognizing
multiple wastes of different types in the complex image which may be overlapped as well
as the creation of large-scale high-resolution dataset with various types.

In this paper, we shall propose two Anchor-free based Recyclable Trash Detection
Networks (ARTD-Net) for accurately recognizing overlapped multiple wastes of different
types by using edgeless module: ARTD-Net1 and ARTD-Net2. The former is an anchor-free-
based one-stage deep learning model which consists of three modules: centralized feature
extraction, multiscale feature extraction and prediction. The centralized feature extraction
module is used as the backbone in the model, focusing on extracting features around the
center of the input image. The extracted feature maps are passed on to the multiscale
feature extraction module for further processing. The multiscale feature extraction module
generates five feature maps of different sizes through the combination of bottom-up and
top-down pathways. The prediction module improves detection accuracy by exploiting
feature maps of different sizes and efficiently finding small-sized objects using anchor-free
detection, and adjusting edge weights for each instance to improve classification accuracy
of multiple objects. The latter is an anchor-free based multi-stage deep learning model
which can efficiently finds each of waste regions by additionally exploiting Region Proposal
Network and RoIAlign. It sequentially performs classification and regression to improve
accuracy. Additionally, we build a new recyclables dataset which consists of a large number
of high-resolution images of waste. Our dataset provides various images with complex
arrangements, such as overlapped wastes of different types, and comprises additional
essential classes.

The contributions of our research are summarized as follows:

1. We propose two Anchor-free based Recyclable Trash Detection Networks (ARTD-Net)
which can recognize overlapped multiple wastes of different types efficiently by using
edgeless module: ARTD-Net1 and ARTD-Net2. ARTD-Net2 is more accurate than
ARTD-Net1, while ARTD-Net1 is faster than ARTD-Net2. We shall show that our
proposed ARTD-Net1 and ARTD-Net2 achieve competitive performance in mean
average precision and F1 score compared to other deep learning models.

2. We propose a background weight adjustment block in the centralized feature extrac-
tion module which improves the detection accuracy by focusing on around the center
of the input image based on centralized weights adjustments.

3. We propose an object instance separation block in the prediction module which
improves the classification accuracy of multiple objects based on edge weights adjust-
ments for each instance.

4. We present a multi-stage model for ARTD-Net which efficiently finds each of waste
regions by using Region Proposal Network and RoIAlign.

5. We contribute a new large scale recyclables dataset which comprises various addi-
tional essential classes, and include various high resolution images with the complex
arrangement, i.e., with several overlapped wastes with different types.

The remainder of this paper comprises four sections. In Section 2, we review studies on
waste classification and anchor-free models. In Section 3, we present the overall architecture
for our waste detection model. In Section 4, we describe our experimental results, and
finally in Section 5 we conclude with our results.
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2. Related Work
2.1. Trash Dataset
2.1.1. Classification

TrashNet dataset [10] is a collection of 2527 images of six classes of waste, including
trash, metal, plastic, glass, cardboard and paper. A number of subsequent studies have been
conducted with the TrashNet dataset [11]. RecycleNet achieved 81% accuracy on the Trash-
net dataset. The best result was achieved with the DenseNet121 [12] model. They changed the
connection pattern between high-density blocks and reduced the parameters of the 121-layer
network from 7 million to approximately 3 million in order to compensate for the slow pre-
diction time [13]. Ruiz et al. achieved an accuracy of 88.6% based on the ResNet model [14]
after adding non-waste class to the TrashNet dataset. They experimented with CNN [15],
VGG [16] and Inception for automatic garbage classification [17]. The DNN-TC model is
based on the ResNext architecture and applies several preprocessing techniques. Two fully
connected layers were added to reduce redundancy and improve performance. In addition,
they collected inorganic, organic, and medical waste from Vietnam and included them in
the dataset. The performance of DNN-TC model was compared with that of the existing
TrashNet dataset, and the results were analyzed [18].

2.1.2. Segmentation

The TACO dataset was created to detect waste dumped in the sea. This dataset consists
of 1500 images with 4,784 annotations that are labeled in 60 subcategories that belong to
28 super-categories [19]. MJU-Waste dataset was built to compensate for the shortcomings
of the TACO dataset. It consists of 2475 RGBD images taken with Microsoft Kinect RGBD
camera. They improved detection accuracy by applying the intensity and depth information
to multiple levels of spatial granularity to previous deep learning models. The model with
ResNet-101 as the backbone achieved an Intersection over Union (IoU) score of 87.84 [20].

2.2. Object Detection Method

Object detection methods can generally be divided into two main methods: one-stage
and multi-stage. One-stage method performs classification and regression at the same time.
This results in faster processing times compared to the multi-stage method. We analyze
YOLO series [21–26], SSD [27], FASF [28], FCOS [29], SABL [30], SOLO [31], CornerNet [32],
and CentripetalNet [33] and compare their performance with ARTD-Net1. The multi-stage
method performs regression and classification sequentially. It is more accurate than one-stage
method. We analyze Faster R-CNN [34], Cascade R-CNN [35], Double-Head RCNN [36],
Sparse R-CNN [37] and DetectoRS [38] and compare their performance with ARTD-Net2.

YOLO is a real-time object detector designed for high-speed processing. It finds the
location and class using a single network pass. YOLO divides the input image into multiple
grids, where the grid cell closest to the center of the object is responsible for detecting
the object. Each grid cell predicts the corresponding bounding boxes, along with their
confidence scores and conditional class probabilities. YOLO has a limitation where the
performance is somewhat reduced for small objects due to the small difference in IoU
values. To address this limitation, improved models such as YOLOx, YOLOF, YOLOv5 and
YOLOv6 have been proposed.

SSD detects objects of various sizes by dividing the input image into grids of different
sizes across six feature maps. It is constructed using six additional convolution layers on
the fifth convolution layer of VGG-16.

FSAF is a one-stage model based on RetinaNet [39]. They improved the performance
by using multi-level anchor-free branches which solved the problems of the existing anchor-
based model. During training, anchor-free branches attached to each level of the Feature
Pyramid Network (FPN) [40] select the most appropriate feature level for training, which effec-
tively represents the instance. As a result of training, the model achieves better performance
than existing one-stage detectors in detecting small objects.
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FCOS is a one-stage model which detects objects in a per-pixel prediction fashion. It
is based on an anchor-free method and reduces training time by eliminating the need for
complex calculations associated with anchor boxes such as calculating overlapping during
training. They utilize centerness to decrease the impact of bounding boxes generated
far from the center of an object. Centerness reduces the influence of predicted values at
locations far from the center of the object using the center of the bounding box, right-bottom,
left-top and corner pairs.

CornerNet predicts object bounding boxes using a keypoint pair instead of anchors,
where the keypoints represent the top-left and top-right corners of the target object. Instead
of using anchor boxes, CornerNet estimates these keypoints based on feature points. Cen-
tripetalNet is a keypoint-based object detector which utilizes centripetal shift to generate a
keypoint pair representing the corners of the same object.

Faster R-CNN is an object detection model which is developed to improve the slow
speed of R-CNN caused by selective search. The selective search is the slowest part of
R-CNN. It is computed in the CPU. To improve this, Faster R-CNN introduces RPN that
can perform computations on the GPU. RPN takes a feature map as input which is obtained
from the previous convolutional neural network layer. A 256-dimension vector is obtained
using a sliding window on the received feature map. At this time, the anchor to be used
as the window being set in advance. In Faster R-CNN, nine anchors with various width,
height, ratio, and size are used. The class and location of the object are calculated through
two layers using the 256-dimensional vector obtained in this way.

Cascade R-CNN proposes a method to address two issues that occur with the increase
in IoU thresholds. With an increase in IoU thresholds, the number of positive samples
decreases exponentially, which can lead to overfitting during training. In addition, if there is
a difference between IoU thresholds used during training and those used at inference, it can
result in decreased accuracy. Cascade R-CNN is comprised of a sequence of detectors with
different IoU thresholds set. Detectors are connected sequentially and use the output from
the previous step as input for the next step. As a result, each detector has the positive set of
examples of equivalent size to solve the overfitting problem. It shows that performance
is improved through the process of gradual training using the proposals of the learned
detectors at low IoU.

The Double-Head method utilizes the commonly used two head structures for classifi-
cation and localization tasks in R-CNN based detectors. They found that the fully connected
head is better for classification while the convolution head is better for localization. To
leverage the strengths of both structures, they proposed the Double-Head method which
combines a fully connected head for classification and a convolution head for bounding
box regression.

Sparse R-CNN is a purely sparse method for object detection. It utilizes a fixed sparse
set of learned object proposals provided to the object recognition head for classification
and location. Sparse R-CNN directly outputs final predictions without a non-maximum
suppression post-procedure and demonstrates accuracy performance on par with well-
established detector baselines on the COCO dataset.

DetectoRS proposes a backbone design utilizing a see and think mechanism with
improvements at two levels: macro and micro. At the macro level, the method involves
building Recursive Feature Pyramid by adding feedback connections to the existing FPN.
At the micro level, they propose Switchable Atrous Convolution which utilizes a switch
function to collect features extracted at various atrous rates.

3. Model Architecture

In this section, we shall present ARTD-Net which is an anchor-free based deep learn-
ing model for detecting multiple wastes with various types. We propose two versions of
ARTD-Net: ARTD-Net1 and ARTD-Net2. ARTD-Net1 is a one-stage model which performs
classification and regression at the same time, while ARTD-Net2 a multi-stage model which
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sequentially performs classification and regression. ARTD-Net1 is faster than ARTD-Net2,
but ARTD-Net2 is more accurate than ARTD-Net1.

3.1. ARTD-Net1

As shown in Figure 1, ARTD-Net1 is an anchor-free-based one-stage model which
consists of three modules: centralized feature extraction, multiscale feature extraction and
prediction. The centralized feature extraction module is used as backbone in the model.
It focuses on extracting features around the center of the input image. It consists of three
layers each of which extracts a feature map of different size. The feature map from each
layer is sent to multiscale feature extraction module. The multiscale feature extraction
module is composed of five layers each of which produces a feature map of different size.
The feature map in each layer is sent to prediction module. Each of five prediction modules
finds the region and class for multiple wastes of different size based on the feature map
from multiscale feature extraction module.

Figure 1. ARTD-Net1.

3.1.1. Centralized Feature Extraction Module

The centralized feature extraction module is obtained by adding BWAB (Background
Weight Adjustment Block) to RetinaNet. BWAB exploits a new scheme which efficiently
extracts features around the center of the input image while reducing the edge weights
around the border of the image. BWAB consists of two components: Background Weight
Adjustment kernel and the convolution layer. Let Fi ∈ RH×W×C be the feature maps at
layer i of a backbone, and H and W the height and width of the feature map, respectively,
and C the number of class. Let (x, y) be the coordinates of the feature map, x ∈ X =
{0, 1, . . . , W}, y ∈ Y = {0, 1, . . . , H}.

Then, the function of Background Weight Adjustment kernel is defined as follows:

Kback(x, y) = exp(−(| x
σ
|+ | y

σ
|)γ), (1)

where σ is the scale factor for the area of the kernel, and γ is the scale factor for the gradient
of the kernel. Following the bottom-up pathway, centralized feature extraction module
reduces the size of the feature map through downsampling by half at each layer for the
input image, and creates different feature maps with various scales, which are transferred
to multiscale feature extraction module. Regarding Figure 2, H and W are the height and
width of feature maps, respectively. s is the downsampling ratio of the feature maps.
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Figure 2. Centralized feature extraction module.

3.1.2. Multiscale Feature Extraction Module

The multiscale feature extraction module generates feature maps of different scales
through convolution layer based on feature map received from the backbone. The multiscale
feature extraction module consists of two pathways: bottom-up and top-down. The bottom-
up pathway reduces the size of the feature map by half through downsampling, and the
top-down pathway doubles the size of the feature map through upsampling. The previous
FPN produces three feature maps using only the top-down pathway as shown in Figure 3.
Our multiscale feature extraction module provides consistent detection accuracy by adding
the bottom-up pathway to FPN and thus generating five feature maps of different sizes
with level from layer 1 through layer 5.
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Figure 3. Multiscale feature extraction module and feature pyramid network.

3.1.3. Prediction Module

There are five prediction modules each of which performs classification and regression
simultaneously for object instance. They efficiently find the small-sized wastes by using
anchor-free detection, and improve detection accuracy by exploiting the feature maps of
different size. Prediction module consists of two blocks: OISB (Object Instance Separation
Block) and ODB (Object Detection Block). OISB reduces the interference between adjacent
objects by reducing the edge weight of each object through instance separation kernel. Let
bl = [bxl , byl , wl , hl ] be the bounding box information, where i denotes a layer level of
prediction module, and (bxl , byl) is the center coordinate of bounding box bl , and (wl , hl)
is the width and height of bounding box, respectively. Let (x, y) be the coordinates of
bounding box with (bxl , byl) as origin, and x ∈ X = {−wl/2, . . . , wl/2}, y ∈ Y =
{−hl/2, . . . , hl/2}.

Then, Instance Separation Kernel is defined as follows:

Kinstance(x, y) =
1

2πσ
exp(− x2 + y2

2σ
), σ = 3 (2)

Feature layer receives the feature map from multiscale feature extraction module, and
then instance separation layer adjusts the edge weight of each object using the instance
separation kernel in order to improve detection accuracy for overlapped multiple wastes of
different types. The feature map is sent to ODB after applying the convolution layer. This
phase is illustrated in Figure 4.

ODB detects multiple wastes with various sizes through anchor-free based object detec-
tion. Since the size of the anchor is fixed in the existing anchor-based models, it is difficult to
detect the object smaller than the size of the anchor. ODB in our model is trained using the
ground truth bounding box for the object instead of the fixed anchor most approximate to
the bounding box in order to efficiently find the small objects whose bounding boxes are
much smaller than the anchor candidate. ODB finds the loss value for our model by using
Class Loss Function (CLF) and Box Regression Loss Function (BRLF). CLF calculates a class
loss for the object instance based on the focal loss function. It decreases the loss for the
high probability class while increasing for the low probability class. Let p be the predicted
probability of the class for the object instance. Given p, CLF is defined as follows:

CLF(p) = −(1 − p)γlog(p), γ = 2, (3)

where γ is the adjustable parameter.
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BRLF is a bounding box regression function which calculates a loss by finding the IoU
between the ground truth bounding box and the prediction bounding box.

Figure 4. Prediction module.

Let x̃ = (xg
1 , yg

1 , xg
2 , yg

2) ∈ R4 be the coordinates of the ground truth bounding box
for the object instance, and (xg

1 , yg
1) and (xg

2 , yg
2) the top-left and bottom-right corners of the

ground truth bounding box, respectively. Let x = (xp
1 , yp

1 , xp
2 , yp

2 ) ∈ R4 be the coordinates
of the predicted bounding box of our model for the object instance, and (xp

1 , yp
1 ) and

(xp
2 , yp

2 ) the top-left and bottom-right corners of the predicted bounding box, respectively.
Given (x, x̃), BRLF is defined as follows:

X = (xp
2 − xp

1 ) ∗ (y
p
2 − yp

1 ), X̃ = (xg
2 − xg

1) ∗ (y
g
2 − yg

1)

I = (min(xg
2 , xp

2 )−max(xg
1 , xp

1 )) ∗ (min(yg
2 , yp

2 )−max(yg
1 , yp

1 ))

U = X + X̃ − I

IoU = I / U

BRLF(x , x̃) = −ln(IoU)

(4)

Then, the loss function L at layer l in the prediction module is defined as follows:

L(l) =
CLFl(p) + BRLFl(x, x̃)

2
(5)

Then, the final total loss L(l̂) is defined as the minimum loss, where

l̂ = arg minl L(l) (6)

3.2. ARTD-Net2

ARTD-Net2 is a multi-stage model which improves the accuracy of waste detection
compared to ARTD-Net1 by attaching Region Proposal Network in the prediction module
and additionally exploiting recursive feature extraction scheme as shown in Figure 5.
ARTD-Net2 is slower to detect than ARTD-Net2, but ARTD-Net2 has higher detection
accuracy than ARTD-Net1.

The centralized feature extraction module is used as the backbone in the multi-stage
model. The feature map in each layer is sent to recursive multiscale feature extraction
module connected to the layer as shown in Figure 6.
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Figure 5. ARTD-Net2.

Recursive multiscale feature extraction module recursively performs the process of
extracting features by multiscale feature extraction module to minimize feature loss. It
improves accuracy by extracting important but missing features through the feedback
network which sends the result of the first step to the input of the second step. The top-
down pathway of multiscale feature extraction module is implemented as the unrolled
iteration, and can be repeated n times.

The prediction module consists of two stages: the first stage has Region Proposal
Network (RPN) and RoIAlign, and the second stage OISB and ODB. It is designed to
combine anchor-based RPN and anchor-free ODB. RPN improves detection accuracy by
increasing the number of anchor candidates. RoIAlign converts the results of RPN, which
have different sizes, into a fixed-sized feature map in order to input them into the fully
connected layer. OISB reduces the interference between nearby objects by reducing the
edge weight of each object through instance separation kernel. ODB improves accuracy
by detecting small objects which are not detected in RPN through anchor-free-based
object detection.

Figure 6. Recursive multiscale feature extraction module.

4. Experiments

In this section, we shall describe about the performance evaluation for ARTD-Net1
and ARTD-Net2, respectively. Our experimental environment consists of eight GPUS,
each NVIDIA A100 40 GB, and one AMD EPYC Processor with 92 single-cores and 1.7TB
RAM. Our model was implemented using the Pytorch framework and MMDetection [41]
with Python. We use Stochastic Gradient Descent (SGD) as the optimizer and the initial
learning rate was set at 0.01. Weight decay of 0.0001 and momentum of 0.9 were used. The
batch size was set at 32 (four images per GPU). The parameters σ and γ of Background
Weight Adjustment kernel were set to 0.85 and 10, respectively. We use official codes
downloaded from MMdetection for performance comparison of our models, and fine-
tuned the parameters following the rules presented in the respective papers to achieve
the best performance. In the case of YOLOv5 and YOLOv6, we downloaded the models
from the official GitHub of authors. All models presented in this paper were trained on the
recyclables dataset.
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We used F1 score and mean Average Precision (mAP) as evaluation metrics to measure
the performance of model. The F1 score is the harmonic mean of precision and recall, and
is particularly useful for evaluating model performance on datasets with class imbalance.
mAP is evaluation metric in object detection tasks. It is calculated as the mean of the
Average Precision (AP) scores for each class.

This section is organized as follows: Section 4.1 describes the recyclables dataset used
in the experiments in detail. Section 4.2 evaluates the performance of ARTD-Net1 and
ARTD-Net2, respectively.

4.1. Recyclables Dataset

We build our recyclables dataset by focusing on the overlapped multiple wastes of
different types with the complex arrangement. It comprises a total of 50,183 images of
various resolutions and 110,759 annotation data, and has the largest number of annotations
among trash datasets. The resolution of the image is 1280× 720 on average and 4032× 2268
at maximum. Several types of waste, up to eight, are placed in one image in order to increase
the batch complexity over the previous dataset. Recyclable waste objects are classified into
ten classes: paper, paper pack, paper cup, can, bottle, PET, plastic, vinyl, cap, label. Our
dataset format follows COCO. Table 1 shows the number of annotations for each class of
training and validation dataset.

The cap class has the maximum number of 8462 data and the paper pack class has
the second largest number of 7705 data. Cap and label classes have the largest number of
annotations as they are obtained from PET or bottles.

As shown in Figure 7, we collect overlapped multiple wastes of different types in
various backgrounds and lighting conditions to make the deep learning model robust.

Table 1. Annotation data for each category and class.

Category Paper Paper Pack Paper Cup Can Bottle PET Plastic Vinyl Cap Label

Train 9208 15,364 7867 8661 9075 5593 12,759 9468 18,043 13,419
Validation 183 76 65 139 145 122 137 152 112 170

Total 9391 15,440 7932 8800 9220 5715 12,896 9620 18,155 13,589

4.2. Performance Evaluation
4.2.1. ARTD-Net1

We make use of our dataset in the previous section for the experiments. Experiments
are conducted for F1 Score and mAP using the same backbone, ResNet-50. As shown in
Table 2, we compare mAP according to the size of the object: small, medium and large.

First, we investigate the performance of centralized feature extraction module with
BWAB in the backbone. It shows that adding BWAB into backbone improves the accuracy
by reducing the edge weights around the border for the image. As shown in Table 2, our
model with BWAB has higher F1 score and mAP than that without BWAB, showing better
performance. Our model has F1 score of 82.043 and mAP of 0.495. It has higher F1 score of
2.12 and mAP of 0.027 than the model without both blocks.

Second, we check the performance of prediction module. It shows that adding OISB
into prediction module improves the accuracy by reducing the edge weight of each object.
our model with OISB has higher F1 score and mAP than that without OISB, showing better
performance. Our model has F1 score of 81.688 and mAP of 0.506. It has higher F1 score of
1.765 and mAP of 0.038 than the model without both blocks.
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Figure 7. Sample images of dataset.

Table 2. Performance of ARTD-Net1, S: small, M: medium, L: large.

Model F1 Score mAP mAP 50 mAP 75
mAP S mAP M mAP L

Without BWAB and OISB 79.923 0.468 0.661 0.541
0.145 0.397 0.561

With BWAB Without OISB 82.043 0.495 0.677 0.564
0.159 0.402 0.573

Without BWAB With OISB 81.688 0.506 0.663 0.565
0.16 0.398 0.593

With BWAB and OISB 82.849 0.518 0.678 0.585
0.159 0.426 0.625

Our model with both of BWAB and OISB has the highest score for F1 score and mAP.
We compare the F1 score and mAP of ARTD-Net1 with the other one-stage models.

As shown in Table 3, we compare F1 score and mAP according to the size of the object:
small, medium and large. For F1 score and mAP, ARTD-Net1 with ResNext-101 [42]
achieves the highest performance. Among the models excluding ARTD-Net1, YOLOv6
with CSPStackRep as the backbone achieved the highest F1 score, and YOLOX-X with
Modified CSPDarknet v5 as the backbone showed the highest mAP. ARTD-Net1 with
ResNext-101 has higher F1 score and mAP of 0.275 and 0.004, respectively, than those
of YOLOX-X with Modified CSPDarknet v5 as backbone. ARTD-Net1 with ResNext-101
has higher F1 score and mAP of 0.231 and 0.007, respectively than those of YOLOv6
with CSPStackRep as backbone. Among models excluding YOLO series, CornerNet with



Sensors 2023, 23, 2907 12 of 17

HourGlass-104 [43] as a backbone has the highest F1 score of 84.724 and CentripetalNet
with HourGlass-104 as a backbone has the highest mAP of 0.586. ARTD-Net1 shows the
best performance among the one-stage models.

Table 3. Comparison between ARTD-Net1 and other one-stage deep learning models.

Model Backbone F1 Score mAP mAP50 mAP75 mAPs mAPm mAPl

SSD300 VGG-16 75.573 0.307 0.511 0.326 0.045 0.255 0.377
SSD512 VGG-16 75.952 0.338 0.543 0.357 0.051 0.29 0.401

RetinaNet ResNet-50 77.161 0.353 0.567 0.384 0.031 0.308 0.481
RetinaNet ResNet-101 78.208 0.373 0.58 0.4 0.048 0.325 0.507

FCOS ResNet-50 81.46 0.52 0.698 0.577 0.144 0.467 0.612
FCOS ResNet-101 82.623 0.525 0.695 0.582 0.17 0.435 0.629
FSAF ResNet-50 80.212 0.479 0.657 0.539 0.147 0.406 0.564
FSAF ResNet-101 80.63 0.496 0.683 0.573 0.165 0.432 0.595
SABL ResNet-50 79.805 0.475 0.624 0.531 0.155 0.386 0.592
SABL ResNet-101 80.083 0.513 0.642 0.57 0.175 0.397 0.605

CornerNet HourGlass-104 84.724 0.575 0.711 0.631 0.181 0.517 0.636
CentripetalNet HourGlass-104 79.326 0.586 0.742 0.639 0.198 0.502 0.657

SOLOv2 ResNet-50 80.71 0.485 0.673 0.533 0.109 0.392 0.59
SOLOv2 ResNet-101 81.634 0.525 0.705 0.572 0.127 0.424 0.619
YOLOv3 DarkNet-53 71.379 0.239 0.411 0.25 0.046 0.175 0.367
YOLOv4 CSP-Darkent53 81.272 0.499 0.652 0.544 0.148 0.396 0.655
YOLOv5 Modified CSP v5 84.762 0.587 0.737 0.619 0.198 0.471 0.663
YOLOF ResNet-50 78.203 0.355 0.513 0.37 0.169 0.312 0.467

YOLOX-X Modified CSP v5 85.319 0.592 0.778 0.669 0.19 0.508 0.699
YOLOv6 CSPStackRep 85.363 0.589 0.761 0.681 0.197 0.49 0.716

ARTD-Net1 ResNet-50 82.849 0.518 0.678 0.585 0.159 0.426 0.625
ARTD-Net1 ResNet-101 84.899 0.545 0.711 0.621 0.193 0.439 0.666
ARTD-Net1 ResNeXt-101 85.594 0.596 0.775 0.677 0.178 0.483 0.733

4.2.2. ARTD-Net2

We make use of our dataset for the experiments. Experiments are conducted for F1
Score and mAP using the same backbone, ResNet-101. As shown in Table 4, we compare
mAP according to the size of the object: small, medium and large.

Table 4. Performance of ARTD-Net2, S: small, M: medium, L: large.

Model F1 Score mAP mAP 50 mAP 75
mAP S mAP M mAP L

Without BWAB and OISB 83.87 0.54 0.697 0.61
0.163 0.434 0.624

With BWAB Without OISB 85.31 0.57 0.742 0.635
0.182 0.445 0.638

Without BWAB With OISB 85.14 0.581 0.756 0.62
0.194 0.462 0.645

With BWAB and OISB 86.089 0.603 0.761 0.646
0.211 0.479 0.652

First, we investigate the performance of centralized feature extraction module with
BWAB in the backbone of ARTD-Net2. It shows that adding BWAB into backbone improves
the accuracy by reducing the edge weights around the border for the image. As shown
in Table 4, our model with BWAB has higher F1 score and mAP than that without BWAB,
showing better performance. Our model has F1 score of 85.31 and mAP of 0.57. It has
higher F1 score of 1.44 and mAP of 0.03 than the model without both blocks.

Second, we check the performance of prediction module of ARTD-Net2. It shows that
adding OISB into prediction module improves the accuracy by reducing the edge weight of
each object. Our model with OISB has a higher F1 score and mAP than that without OISB,
showing better performance. Our model has an F1 score of 85.14 and mAP of 0.581. It has a
higher F1 score of 1.27 and mAP of 0.041 than the model without both blocks.
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For all the cases, F1 Score and mAP achieve the highest score when using both BWAB
and OISB.

We compare the F1 score and mAP of ARTD-Net2 with the other multi-stage models.
As shown in Table 5, we compare F1 score and mAP according to the size of the object: small,
medium and large. For all the cases, ARTD-Net2 with ResNeXt-101 achieves the highest
performance. Among the models excluding ARTD-Net2, DetectoRS with ResNeXt-101 as
the backbone has the highest performance. ARTD-Net2 with ResNeXt-101 has higher F1
score and mAP of 2.105 and 0.005, respectively than those of DetectoRS with ResNeXt-101
as backbone.

Table 5. Comparison between ARTD-Net2 and other multi-stage deep learning models.

Model Backbone F1 Score mAP mAP50 mAP75 mAPs mAPm mAPl

Faster R-CNN ResNet-101 78.149 0.488 0.638 0.534 0.136 0.386 0.643
Faster R-CNN ResNeXt-101 80.733 0.521 0.677 0.588 0.167 0.418 0.66

Cascade R-CNN ResNet-101 81.373 0.529 0.686 0.575 0.152 0.41 0.653
Cascade R-CNN ResNeXt-101 83.568 0.546 0.699 0.596 0.174 0.433 0.68

Double-Head R-CNN ResNet-101 82.841 0.57 0.71 0.611 0.172 0.442 0.649
Double-Head R-CNN ResNeXt-101 84.779 0.583 0.753 0.643 0.195 0.486 0.664

Sparse R-CNN ResNet-101 83.717 0.578 0.715 0.638 0.176 0.476 0.655
Sparse R-CNN ResNeXt-101 85.635 0.593 0.766 0.653 0.208 0.491 0.673

DetectoRS ResNet-101 84.9 0.58 0.744 0.647 0.194 0.489 0.676
DetectoRS ResNeXt-101 86.246 0.612 0.782 0.659 0.224 0.507 0.686

ARTD-Net2 ResNet-101 86.089 0.603 0.761 0.646 0.211 0.479 0.652
ARTD-Net2 ResNeXt-101 88.351 0.617 0.806 0.665 0.233 0.511 0.711

4.2.3. Performance Comparison between ARTD-Net1 and ARTD-Net2

We analyze the two experimental results to compare the performance of ARTD-Net1
and ARTD-Net2: Confusion Matrix, Processing Time and Accuracy.

First, we compare the accuracy of each class by using the confusion matrix after
training our model with dataset. Figure 8 shows the accuracy of each class on ARTD-Net1
and ARTD-Net2 when using ResNet-101 as a backbone. According to the confusion matrix,
ARTD-Net has significantly higher accuracy for bottle and vinyl. Those two components
are not difficult to detect, since their features are clear. Large-sized recyclables are generally
well detected. However, in the case of cap, false positives occur frequently, since they
are small and similar to the background. In particular, the paper cup class is one of the
most difficult to detect among the recyclable classes. The accuracy for paper cup class on
ARTD-Net1 is 20%, while the accuracy for paper cup class on ARTD-Net2 is 37%, resulting
in an improvement in performance. The inference results of ARTD-Net1 and ARTD-Net2
are shown in Figure 9.

Second, we compare the performance of ARTD-Net1 and ARTD-Net2 through accu-
racy and processing time of our model. As shown in Figure 10, ARTD-Net1 with ResNet-50
achieves the fastest processing time. ARTD-Net2 with ResNeXt-101 as the backbone has the
highest performance. ARTD-Net2 with ResNet-101 has higher accuracy than ARTD-Net1
with ResNeXt-101. However, ARTD-Net1 with ResNeXt-101 has faster processing speed
than ARTD-Net2 with ResNet-101.

Finally, we show that ARTD-Net1 is faster than ARTD-Net2 but ARTD-Net2 is more
accurate than ARTD-Net1.
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Figure 8. Confusion matrix of ARTD-Net1 and ARTD-Net2.

Figure 9. Inference result of ARTD-Net1, ARTD-Net2 and existing deep learning model.
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Figure 10. Processing time (ms/img) and accuracy (mAP) using recyclables dataset on ARTD-Net1
and ARTD-Net2.

5. Conclusions

In this paper, we have proposed two anchor-free-based Recyclable Trash Detection
Networks (ARTD-Net) which can recognize overlapped multiple wastes of different types
efficiently by using edgeless module: ARTD-Net1 and ARTD-Net2. The former is an anchor-
free based one-stage deep learning model which consists of three modules: centralized
feature extraction, multiscale feature extraction and prediction. The centralized feature
extraction module in the backbone architecture is obtained by adding BWAB to RetinaNet.
BWAB exploits a new scheme which efficiently extracts features around the center of
the input image while reducing the edge weights around the border of the image. The
multiscale feature extraction module provides feature maps of different scales through
bottom-up and top-down pathways. The prediction module consists of two blocks: OISB
and ODB. OISB reduces the interference between nearby objects by reducing the edge
weight of each object through instance separation kernel. ODB improves accuracy by
detecting small objects which are not detected in RPN through anchor-free-based object
detection. The latter is an anchor-free based multi-stage deep learning model which can
efficiently finds each of waste regions by additionally exploiting Region Proposal Network
and RoIAlign. It sequentially performs classification and regression to improve accuracy.
We have presented a new recyclables dataset which is composed of a large number of
high-resolution waste images with additional essential classes. We demonstrated that
waste detection performance is improved by providing various images with the complex
arrangement of overlapped multiple wastes with different types. The performance of
ARTD-Net is confirmed through various experiments. ARTD-Net1 with BWAB and OISB
achieves F1 score and mAP of 82.849 and 0.518, respectively, which is 2.926 and 0.05 higher
than ARTD-Net1 without BWAB and OISB. Among the one-stage models, ARTD-Net1 with
ResNext-101 achieves the highest F1 score and mAP of 85.594 and 0.596, respectively. ARTD-
Net2 with BWAB and OISB achieves F1 score and mAP of 86.089 and 0.603, respectively,
which is 2.219 and 0.063 higher than ARTD-Net2 without BWAB and OISB. Among the
multi-stage models, ARTD-Net2 with ResNext-101 achieves the highest F1 score and mAP
of 88.351 and 0.617, respectively. Finally, we demonstrated that ARTD-Net1 is faster than
ARTD-Net2 but ARTD-Net2 is more accurate than ARTD-Net1.

For future works, we shall work on the details of ARTD-Net such as the number of
blocks for each module and hyperparameters, and continue to collect data under more
various lighting and background conditions to use our dataset for various works such as
field diagnostics.
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10. Aral, R.A.; Keskin, Ş.R.; Kaya, M.; Hacıömeroğlu, M. Classification of trashnet dataset based on deep learning models. In Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 2058–2062.

11. Yang, M.; Thung, G. Classification of trash for recyclability status. CS229 Proj. Rep. 2016, 2016, 3.
12. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
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