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Abstract: A high-order Kalman filter for full-dimensional variables is proposed for a class of dynamic
systems whose state model and measurement model are both nonlinear. The filter requires Taylor
expansion of the system equations, and then performs Kronecker product operation on the linear part
in the Taylor expansion. Finally, a linear dynamic model is achieved based on the full-dimensional
vector formed by the state variables and the high-order dimension expansion variables. After
designing the filter, the Kalman filter for the original state variables estimation was selected through
the projection operator. The excellent performance of the novel filter is analyzed from the aspects
of the information utilization of the state estimation value and the size of the state estimation error
covariance matrix. The numerical verification is carried out by computer simulation.

Keywords: full-dimensional variables; Taylor expansion; Kronecker product; projection operator

1. Introduction

In the fields of target tracking, unmanned driving, fault diagnosis, etc., an important
indicator to judge the performance of the system is to determine whether the state esti-
mation value of the system is accurate [1–6]. The filtering algorithm is commonly used in
state estimation. In order to obtain an accurate state estimation, various filters have been
studied by predecessors. Among them, the Kalman filter (KF) is the most representative.
KF is an optimal filter based on the minimum variance criterion under the linear Gaussian
system [7,8]. However, most of the real systems are nonlinear, and the application of KF
is limited. To obtain greater practical value in engineering applications, the researchers
retreated to the next best thing and proposed the extended Kalman filter (EKF). EKF has
been proven to be an effective filter in weakly nonlinear systems and has a wide range
of application scenarios [9,10]. However, EKF performs Taylor expansion on nonlinear
functions, only the first-order linear polynomial items are retained, and all other high-order
polynomial items are discarded. Due to the introduction of a large number of model
rounding errors, EKF filtering performance is often reduced or even diverged. To solve this
problem, an unscented Kalman filter (UKF) and a cubature Kalman filter (CKF) have been
proposed. The core idea of UKF is unscented transformation (UT), which uses the set of
sampling points to approximate the nonlinear system [11,12]. CKF optimizes the sampling
method and weight distribution of the sampling points in UKF through a spherical integral
and a radial integral [13]. Both UKF and CKF can achieve the second-order polynomial
approximation ability for nonlinear systems [14]. However, as the degree of nonlinearity of
the model increases, not only will the performance of the filter decrease, but it also often
causes the filter to diverge. At the same time, due to improper selection of weights in UKF
and CKF, the calculated prediction error appears as a non-negative definite phenomenon,
resulting in filter overflow.
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KF, EKF, UKF, and CKF are only applicable to Gaussian noise, therefore approximate
analytical solutions can be obtained regardless of whether the model is linear or not.
However, a particle filter (PF) has no limitation of the model or Gaussian noise. It directly
calculates the mean value of posterior probability through weighted random samples.
However, PF still faces the problem of a lack of particle diversity and high computational
complexity [15]. In order to improve the applicability of the KF method in the nonlinear
non-Gaussian system, reference [16] proposed the characteristic function filter (CFF) by
replacing the probability density function with the characteristic function. However, the
proposal and development of CFF are currently only designed for systems where the state
equation is linear and the measurement equation is generally nonlinear [17]. The scope of
application is still limited.

After CKF was proposed, the research on EKF did not make substantial progress until
the emergence of the polynomial extended Kalman filter (PEKF). PEKF approximates the
nonlinear system by the polynomial, which can be based on the nonlinear function form of
the system and the estimated performance index. It can achieve higher accuracy than EKF,
but the nonlinear form of PEKF expansion is complex and difficult to understand. Not only
does each step require complex Kronecker product operation on the original system, but
complex high-order Taylor expansion and more complex multivariate binomial expansion
based on Taylor expansion [18–24] are also required. The Kronecker product operation can
transform the two matrices into a larger matrix, which contains all possible products of
the two matrices. It is often used to solve problems in linear algebra and its applications.
For example, reference [25] introduced the Kronecker product in speech processing and
expressed the linear prediction coefficients as two sub-filter coefficient vectors, which
improves the computational efficiency and speech quality. In addition, the nonlinear filter
of the linear parameter was proposed by the Kronecker integral solution in reference [26],
and it can provide better noise reduction capabilities in nonlinear active noise control
scenarios. Reference [27] proposed an iterative multi-channel Wiener filter based on the
Kronecker integral solution of the impulse response in the multi-input and single-output
system problem, which can have good accuracy when the amount of statistically estimated
data is small.

In order to solve the computational complexity of PEKF, the high-order extended
Kalman filter (HEKF) was proposed for a class of strongly nonlinear systems [28]. HEKF
only performs high-order Taylor expansion similar to PEKF on the original state model
and defines all high-order polynomial terms as hidden state variables of the corresponding
order. A simplified version of PEKF is established by establishing a random walk model
of the hidden variables. Compared with PEKF, the computational complexity of HEKF is
greatly reduced. However, because it does not use any prior information from the original
state model, the established model of extended dimension is relatively rough, and its
performance also greatly suffered a large loss.

Therefore, in order to overcome the above-mentioned shortcomings of the high preci-
sion but high complexity of PEKF, and the low complexity but low estimation accuracy of
HEKF, this paper proposes a compromise-friendly filter design method, which is for both
PEKF and HEKF. In the high-order Taylor expansion polynomial of the original model, only
the linear part of the state and measurement equations is used to model by the Kronecker
product. It can not only reduce the complexity of the problem, but also effectively improve
the accuracy of the estimation. The main work of this paper is: (1) firstly, the first-order
Taylor expansion of the system state equation and measurement equation is carried out
to obtain the approximate linearized equation. (2) Then, the items of the approximate
linearized state equation are respectively operated by Kronecker product. The dimension
of the model can be expanded, and the hidden variables are introduced. Then, the items of
the approximate linearized measurement equation (except the noise term) are also operated
through the Kronecker product. Together with the expanded state equation, a complete
standard Kalman filter form is established. (3) After obtaining the expanded dimension
of the system equation, the standard Kalman filter method is used to filter. Finally, after
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projecting through the projection matrix, only the estimated value of the original system
state is retained. Therefore, the complexity of the algorithm is reduced, more information
from the model is included, and the estimated accuracy is improved.

The remainder of this paper is organized as follows: the second section briefly de-
scribes the nonlinear systems; the third section gives the design idea and design method
steps of Kalman filter based on the Kronecker product; the fourth section verifies the
effectiveness of the proposed method through simulation examples; and the fifth section
gives a summary of this paper.

2. Description of Nonlinear System

The state equation and measurement equation of the nonlinear system is given:

x(k + 1) = f (x(k)) + w(k) (1)

y(k + 1) = h(x(k + 1)) + v(k + 1) (2)

where x(k) ∈ Rn is the system state; y(k + 1) ∈ Rm is the measured output; and f (x(k))
and h(x(k + 1)) are time continuously differentiable nonlinear maps, indicating the state
transition function and measurement function of the system, respectively. The state noise
w(k) and the output noise v(k + 1) are assumed to be uncorrelated white noise sequences
with zero mean. The noises satisfy the following statistical characteristics:E{w(k)} = 0,
E
{

w(k)w(j)T
}
= Q(k)δkj; E{v(k + 1)} = 0, E

{
v(k + 1)vT(j + 1)

}
= R(k + 1)δkj. The pro-

cess noise variance Q(k) is a positive semidefinite matrix, and the measurement noise vari-
ance R(k + 1) is a positive definite matrix. δkj is a Dirac function and if k = j, δkj = 1, other-
wise δkj = 0. The initial state x(0) is a random variable independent of the noise sequences.

It is assumed that E{x(0)} = x0, E
{
[x(0)− x0][x(0)− x0]

T
}

= P0, E
{

x(0)wT(k)
}
= 0,

E
{

x(0)vT(k + 1)
}
= 0, P0 is a positive definite matrix.

3. Nonlinear System Filter Design Based on Kronecker Product

In this paper, the designed filter needs to use first-order Taylor expansion and a
Kronecker product. Using the Kronecker product on the Kalman filter can achieve the
expansion of the state dimension. Through the extended dimension, it can avoid losing too
much information due to the existence of truncation error in the approximate linearized
process, so that more useful information can be obtained by using high-order nonlinear
characteristics in state estimation. Ultimately, the estimation accuracy is improved. First,
the first-order Taylor expansion of the system equation is performed to obtain the Jacobian
matrix and the fixed deviation term. After obtaining the linearized form, the Kronecker
product operation is performed on the terms of the approximate state equation and the
terms of the approximate measurement equation (except for the noise term). The operation
of extended dimension is performed on the entire system equation. Finally, after project-
ing through the projection matrix, only the state estimation value of the original system
is retained.

Theorem 1. Let M and N be matrices of dimensions r × s and p × q, respectively. Then the
Kronecker product M⊗ N is defined as the (r·p)× (q·s) matrix [29,30]

M⊗ N =

 m11N · · · · · · m1sN
· · · · · · · · · · · · · · · · · · · · ·

mr1N · · · · · · mrsN

 (3)

where mij are the entries of M. Of course, this kind of product is not commutative.

Moreover, the Kronecker power of M is defined as:

M[0] = 1 ∈ R (4)
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M[r] = M⊗M[r−1], r ≥ 1 (5)

(1) First, the nonlinear function f (x(k)) in Equation (1) is first-order Taylor expanded
around the nominal state x̂(k|k) :

x(k + 1) ≈ f (x̂(k|k)) + ∂ f (x(k))
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

[x(k)− x̂(k|k)] + w(k) (6)

The approximate linearization equation of the state equation can be obtained:

x(k + 1) = A(k + 1, k)x(k) + f (x̂(k
∣∣∣k)) + w(k) (7)

where

A(k + 1, k) =
∂ f (x(k))

∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

=


∂ f1(x(k))

∂x1(k)
· · · ∂ f1(x(k))

∂xn(k)
...

. . .
...

∂ fn(x(k))
∂x1(k)

· · · ∂ fn(x(k))
∂xn(k)


∣∣∣∣∣∣∣∣∣
x(k)=x̂(k|k)

(8)

f (x̂(k|k)) = f (x̂(k|k))− ∂ f (x(k))
∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

· x̂(k|k) (9)

The nonlinear function h(x(k + 1)) in Equation (2) is first-order Taylor expanded
around the state x(k + 1):

y(k + 1) ≈ h(x̂(k + 1|k)) + ∂h(x(k + 1))
∂x(k + 1)

∣∣∣∣
x(k)=x̂(k+1|k)

[x(k + 1)− x̂(k + 1|k)] + v(k + 1) (10)

The approximate linearized equation of the measured equation can be obtained:

y(k + 1) = H(k + 1)x(k + 1) + h(x̂(k + 1
∣∣∣k)) + v(k + 1) (11)

where

H(k + 1) =
∂h(x(k + 1))

∂x(k + 1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

=


∂h1(x(k+1))

∂x1(k+1) · · · ∂h1(x(k+1))
∂xm(k+1)

...
. . .

...
∂hm(x(k+1))

∂x1(k+1) · · · ∂hm(x(k+1))
∂xm(k+1)


∣∣∣∣∣∣∣∣∣
x(k+1)=x̂(k+1|k)

(12)

h(x̂(k + 1|k)) = h(x̂(k + 1|k))− ∂h(x(k + 1))
∂x(k + 1)

∣∣∣∣
x(k+1)=x̂(k+1|k)

· x̂(k + 1|k) (13)

(2) The linear term, fixed deviation term, and noise term of Equation (7) are respec-
tively subjected to Kronecker product operation to obtain the r-order state extended
equation:

x[r](k + 1) = A[r](k + 1, k)x[r](k) + f
[r]
(x̂(k

∣∣∣k)) + w[r](k) (14)

where
A[r](k + 1, k) = A(k + 1, k)⊗ A(k + 1, k)⊗ · · · ⊗ A(k + 1, k)︸ ︷︷ ︸

r

(15)

f
[r]
(x̂(k|k)) = f (x̂(k

∣∣∣k))⊗ f (x̂(k
∣∣∣k))⊗ · · · ⊗ f (x̂(k

∣∣∣k))︸ ︷︷ ︸
r

(16)
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w[r](k) = w(k)⊗ w(k)⊗ · · · ⊗ w(k)︸ ︷︷ ︸
r

(17)

x[r](k + 1) = x(k + 1)⊗ x(k + 1)⊗ · · · ⊗ x(k + 1)︸ ︷︷ ︸
r

=


x1(k + 1)
x2(k + 1)

...
xn(k + 1)

⊗


x1(k + 1)
x2(k + 1)

...
xn(k + 1)

⊗ · · · ⊗


x1(k + 1)
x2(k + 1)

...
xn(k + 1)


︸ ︷︷ ︸

r

=



x1(k + 1)x1(k + 1) · · · x1(k + 1)x1(k + 1)︸ ︷︷ ︸
r

x1(k + 1)x1(k + 1) · · · x1(k + 1)x2(k + 1)︸ ︷︷ ︸
r
...

xn(k + 1)xn(k + 1) · · · xn(k + 1)xn(k + 1)︸ ︷︷ ︸
r



(18)

Combining Equation (7) and Equation (14), the general form of the state equation of
extended dimension can be obtained:

x[1](k + 1)
x[2](k + 1)

...
x[r](k + 1)

 =


A[1](k + 1, k) 0 0 0

0 A[2](k + 1, k) 0 0

0 0
. . . 0

0 0 0 A[r](k + 1, k)




x[1](k)
x[2](k)

...
x[r](k)



+


f
[1]
(x̂(k|k))

f
[2]
(x̂(k|k))

...

f
[r]
(x̂(k|k))

+


w[1](k)
w[2](k)

...
w[r](k)


(19)

Set,

X(k + 1) =


x[1](k + 1)
x[2](k + 1)

...
x[r](k + 1)

, A(k + 1, k) =


A[1](k + 1, k) 0 0 0

0 A[2](k + 1, k) 0 0

0 0
. . . 0

0 0 0 A[r](k + 1, k)



∆ f (x̂(k|k)) =


f
[1]
(x̂(k|k))

f
[2]
(x̂(k|k))

...

f
[r]
(x̂(k|k))

, W(k) =


w[1](k)
w[2](k)

...
w[r](k)


(20)

Then the extended dimension equation of the state can be written as:

X(k + 1) = A(k + 1, k)X(k) + ∆ f (x̂(k
∣∣k)) + W(k) (21)

(3) The Kronecker product operation is performed on the linear term and the fixed
deviation term of Equation (11), and the noise term is independently modeled to
obtain the corresponding r-order measured equation of extended dimension:

y[r](k + 1) = H[r](k + 1)x[r](k + 1) + h
[r]
(x̂(k + 1|k)) + v(r)(k + 1) (22)
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where

y[r](k + 1) = y(k + 1)⊗ y(k + 1)⊗ · · · ⊗ y(k + 1)︸ ︷︷ ︸
r

=


y1(k + 1)
y2(k + 1)

...
ym(k + 1)

⊗


y1(k + 1)
y2(k + 1)

...
ym(k + 1)

⊗ · · · ⊗


y1(k + 1)
y2(k + 1)

...
ym(k + 1)


︸ ︷︷ ︸

r

=



y1(k + 1)y1(k + 1) · · · y1(k + 1)y1(k + 1)︸ ︷︷ ︸
r

y1(k + 1)y1(k + 1) · · · y1(k + 1)y2(k + 1)︸ ︷︷ ︸
r
...

ym(k + 1)ym(k + 1) · · · ym(k + 1)ym(k + 1)︸ ︷︷ ︸
r



(23)

H[r](k + 1) = H(k + 1)⊗ H(k + 1)⊗ · · · ⊗ H(k + 1)︸ ︷︷ ︸
r

(24)

h
[r]
(x̂(k + 1|k)) = h(x̂(k + 1

∣∣∣k))⊗ h(x̂(k + 1
∣∣∣k))⊗ · · · ⊗ h(x̂(k + 1

∣∣∣k))︸ ︷︷ ︸
r

(25)

Combining Equation (11) with Equation (22), the general form of the measured equa-
tion of the extended dimension is obtained:

y[1](k + 1)
y[2](k + 1)

...
y[r](k + 1)

 =


H[1](k + 1) 0 0 0

0 H[2](k + 1) 0 0

0 0
. . . 0

0 0 0 H[r](k + 1)




x[1](k + 1)
x[2](k + 1)

...
x[r](k + 1)



+


h
[1]
(x̂(k + 1|k))

h
[2]
(x̂(k + 1|k))

...

h
[r]
(x̂(k + 1|k))

+


v(1)(k + 1)
v(2)(k + 1)

...
v(r)(k + 1)


(26)

Set,

Z(k + 1) =


y[1](k + 1)
y[2](k + 1)

...
y[r](k + 1)

, H(k + 1) =


H[1](k + 1) 0 0 0

0 H[2](k + 1) 0 0

0 0
. . . 0

0 0 0 H[r](k + 1)



∆h(x̂(k + 1|k)) =


h
[1]
(x̂(k + 1|k))

h
[2]
(x̂(k + 1|k))

...

h
[r]
(x̂(k + 1|k))

, V(k + 1) =


v(1)(k + 1)
v(2)(k + 1)

...
v(r)(k + 1)


(27)

Then the measured equation of the extended dimension can be written as:

Z(k + 1) = H(k + 1)X(k + 1) + ∆h(x̂(k + 1
∣∣k)) + V(k + 1) (28)
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(4) Combining Equations (21) and (28), the systematic equation after the extending
dimension can be obtained:

X(k + 1) = A(k + 1, k)X(k) + ∆ f (x̂(k
∣∣k)) + W(k)

Z(k + 1) = H(k + 1)X(k + 1) + ∆h(x̂(k + 1
∣∣k)) + V(k + 1)

(29)

The statistical characteristics of the system after the extending dimension:

E
{

W(k)WT(k)
}
= QW(k)

E
{

V(k + 1)VT(k + 1)
}
= RV(k + 1)

E
{

W(k)VT(k + 1)
}
= 0

(30)

(5) The steps of the designed filter algorithm are given below.

Step 1: Set the initial values for the new system.
The initial value x(k) of the original state satisfies:

E{x(0)} = x̂0 = [x̂10, x̂20, · · · , x̂n0]
T

E
{
[x(0)− x0][x(0)− x0]

T
}
= P0 = diag{[p1,0, p2,0, · · · , pn,0]}

(31)

The new system satisfies the following characteristics:

X(0) = [(x(1)(0))
T

, (x(2)(0))
T

, · · · , (x(s)(0))
T
]
T

E{X(0)} = X̂0 = [(x̂(1)0 )
T

, (x̂(2)0 )
T

, · · · ,(x̂(s)0 )
T
]
T

E
{
[X(0)− X̂0]

}
= P0 = diag

{
[P(1)

0 , P(2)
0 , · · · , P(s)

0 ]
}

where, s = n + n2 + · · ·+ nr

(32)

Step 2: Recursive filtering
Assuming that X̂(k

∣∣k) and P(k
∣∣k) of the new system is known, the new Kalman filter

is designed as follows:

X̂(k + 1
∣∣k + 1) = E

{
X(k + 1)

∣∣X̂0, y(1), y(2), · · · , y(k), y(k + 1)
}

= E
{

X(k + 1)
∣∣X̂(k

∣∣k), y(k + 1)
} (33)

The corresponding estimated error covariance matrix:

P(k + 1|k + 1) = E
{
[X(k + 1)− X̂(k + 1|k + 1)][X(k + 1)− X̂(k + 1|k + 1)]T

}
(34)

Step 3: Time update
According to X̂(k|k), A(k + 1, k) and ∆ f (x̂(k|k)) , the predicted value is obtained:

X̂(k + 1|k) = A(k + 1, k)X̂(k|k) + ∆ f (x̂(k|k)) (35)

According to A(k + 1, k), P(k
∣∣k) and QW(k), the predicted error covariance matrix

is obtained:
P(k + 1|k) = A(k + 1, k)P(k|k)AT

(k + 1, k) + QW(k) (36)

Step 4: Measurement update
According to P(k + 1|k) and related measurement information, the Kalman gain can

be obtained:

K(k + 1) = P(k + 1|k)HT
(k + 1)[H(k + 1)P(k + 1|k)HT

(k + 1) + RV(k + 1)]
−1

(37)
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According to X̂(k + 1|k), K(k + 1) and the actual measurement and estimated mea-
sured information, the estimated value of the new Kalman filter can be obtained:

X̂(k + 1
∣∣k + 1) = X̂(k + 1

∣∣k) + K(k + 1)[Z(k + 1)− H(k + 1)X̂(k + 1
∣∣k)] (38)

The corresponding estimated error covariance matrix:

P(k + 1
∣∣k + 1) = [I − K(k + 1)H(K + 1)]P(k + 1

∣∣k) (39)

Step 5: Preserving the state estimate of the original system by the projection matrix.
Assuming that the projection matrix pn = [In×n, 0n×n2 , · · · , 0n×nr ], where In×n and

0n×nr are, respectively, the identity matrix of the corresponding dimension of the original
state and the zero matrix of the corresponding dimension of the expanded state, the
estimated value of the original system state is

x̂(k + 1
∣∣k + 1) = pn·X̂(k + 1

∣∣k + 1) = [In×n, 0n×n2 , · · · , 0n×nr ]X̂(k + 1
∣∣k + 1)

= [In×n, 0n×n2 , · · · , 0n×nr ]X̂(k + 1
∣∣∣k) + [In×n, 0n×n2 , · · · , 0n×nr ]K(k + 1)Z̃(k + 1

∣∣∣k)
= x̂(k + 1

∣∣∣k) + K(k + 1)H(k + 1)X̃(k + 1
∣∣∣k) + K(k + 1)v(k + 1)

= x̂(k + 1|k) + K(k + 1)


H(k + 1) 0 0 0

0 H[2](k + 1) 0 0

0 0
. . . 0

0 0 0 H[r](k + 1)




x̃(k + 1|k)
x̃[2](k + 1

∣∣∣k)
...

x̃[r](k + 1
∣∣∣k)


+K(k + 1)v(k + 1)
= x̂(k + 1|k) + K(k + 1)H(k + 1)x̃(k + 1|k)
+

r
∑

i=2
K(k + 1)H[i](k + 1)x̃[i](k + 1|k) + K(k + 1)v(k + 1)

(40)

The original systematic error covariance matrix is:

P(k + 1|k + 1) = pnP(k + 1|k + 1)pn
T = [In×n, 0n×n2 , · · · , 0n×nr ]P(k + 1|k + 1)


In×n

0n×n2

...
0n×nr



= [In×n, 0n×n2 , · · · , 0n×nr ][I − K(k + 1)H(K + 1)]P(k + 1|k)


In×n

0n×n2

...
0n×nr



= P(k + 1|k)− K(k + 1)


H(k + 1) 0 0 0

0 H[2](k + 1) 0 0

0 0
. . . 0

0 0 0 H[r](k + 1)




P(k + 1|k)
P2(k + 1|k)

...
Pr(k + 1|k)


= P(k + 1|k)− K(k + 1)H(k + 1)P(k + 1|k)−

r
∑

i=2
K(k + 1)H[i](k + 1)Pi(k + 1

∣∣∣k)

(41)

After projecting through the projection matrix, it can be seen that more information
r
∑

i=2
K(k + 1)H[i](k + 1)x̃[i](k + 1|k) is used in the original systematic state estimated value,

and the item
r
∑

i=2
K(k + 1)H[i](k + 1)Pi(k + 1|k) is subtracted from the original systematic

error covariance matrix so that the error covariance matrix is reduced. Therefore, it not
only retains the state estimated value of the original system and improves the estimated
accuracy, but also reduces the complexity and calculation amount of filtering.
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4. Simulation Experiment

In this section, the effectiveness of the proposed method is demonstrated through
three examples.

(1) The case where the nonlinear system consists of the accumulation of several nonlinear
functions [28].


x1(k + 1) = x1(k)− x2(k)− 1

6 x3
1(k)−

1
6 x3

2(k) +
1

120 x5
1(k) +

1
120 x5

2(k) + w1(k)
x2(k + 1) = 1− 1

2 x2
1(k)−

1
2 x2

2(k) +
1

24 x4
1(k) +

1
24 x4

2(k) + w2(k)
y(k + 1) = x1(k + 1) + x2(k + 1)− 1

6 x3
1(k + 1)− 1

6 x3
2(k + 1)

− 1
2 x2

1(k + 1)x2(k + 1)− 1
2 x1(k + 1)x2

2(k + 1) + v(k + 1)

(42)

where process noise and measurement noise satisfy the following statistical properties: w(k)
and v(k) are uncorrelated zero mean noise, and w1(k) ∼ N(0, 0.01), w2(k) ∼ N(0, 0.01),
v1(k + 1) ∼ N(0, 0.01), and v2(k + 1) ∼ N(0, 0.01). The process noise variance
Q = diag(0.01, 0.01), and the measurement noise variance R = diag(0.01, 0.01). The initial

values of the system are x(0) = [1, 1]T , P(0) = I2×2. Figures 1 and 2 show the real value,
the estimated value of EKF, the estimated value of the second-order extended dimension,
and the estimated value of the third-order extended dimension for the state x1 and state
x2, respectively. Figures 3 and 4 show the estimated error of EKF, the estimated error of
the second-order extended dimension, and the estimated error of the third-order extended
dimension, respectively. Table 1 shows the error comparison between EKF and the extended
dimension methods.

(2) The case where a nonlinear system is multiplied by several nonlinear functions [31].
x1(k + 1) = 0.5x2(k) sin(x1(k)) + w1(k)
x2(k + 1) = −0.5x1(k) sin(x2(k)) + w2(k)
y1(k + 1) = x2(k + 1) + v1(k + 1)
y2(k + 1) = x1(k + 1)ex1(k+1) + v2(k + 1)

(43)

where process noise and measurement noise satisfy the following statistical properties:w(k)
and v(k) are uncorrelated zero mean noise, and w1(k) ∼ N(0, 0.01), w2(k) ∼ N(0, 0.01),
v1(k + 1) ∼ N(0, 0.01), and v2(k + 1) ∼ N(0, 0.01). The process noise variance
Q = diag(0.01, 0.01), and the measurement noise variance R = diag(0.01, 0.01). The
initial values of the system are x(0) = [1, 1]T , P(0) = I2×2. Figures 5 and 6 show the
real value, the estimated value of EKF, the estimated value of the second-order extended
dimension, and the estimated value of the third-order extended dimension for the state x1
and state x2, respectively. Figures 7 and 8 show the estimated error of EKF, the estimated
error of the second-order extended dimension, and the estimated error of the third-order
extended dimension, respectively. Table 2 shows the error comparison between EKF and
the extended dimension methods.

(3) The case where a nonlinear system is accumulated by several nonlinear functions,
each of which can be multiplied by a nonlinear function.

x1(k + 1) = −0.85x1(k) + 0.5x2(k) sin(x1(k)) + w1(k)
x2(k + 1) = −0.5x1(k) sin(x2(k)) + w2(k)

y1(k + 1) = x1(k + 1) + v1(k + 1)
y2(k + 1) = x1(k + 1)ex1(k+1) + x2(k + 1) + v2(k + 1)

(44)

where process noise and measurement noise satisfy the following statistical properties:w(k)
and v(k) are uncorrelated zero mean noise, and w1(k) ∼ N(0, 0.01), w2(k) ∼ N(0, 0.01),
v1(k + 1) ∼ N(0, 0.01), and v2(k + 1) ∼ N(0, 0.01). The process noise variance
Q = diag(0.01, 0.01), and the measurement noise variance R = diag(0.01, 0.01). The
initial values of the system are x(0) = [1, 1]T , P(0) = I2×2. Figures 9 and 10 show the
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real value, the estimated value of EKF, the estimated value of the second-order extended
dimension, and the estimated value of the third-order extended dimension for the state x1
and state x2, respectively. Figures 11 and 12 show the estimated error of EKF, the estimated
error of the second-order extended dimension, and the estimated error of the third-order
extended dimension, respectively. Table 3 shows the error comparison between EKF and
the dimension expansion methods.
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Table 1. Error comparison between the proposed filter and EKF in case 1.

EKF Proposed Filter
(r = 2)

Proposed Filter
(r = 3)

MAE of x1 0.1009 0.0746 0.0659
Improved of x1(%) / 26.1% 34.7%

MAE of x2 0.0908 0.0687 0.0610
Improved of x2(%) / 24.3% 32.8%
Improved of x(%) / 25.2% 33.8%
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Table 2. Error comparison between the proposed filter and EKF in case 2.

EKF Proposed Filter
(r = 2)

Proposed Filter
(r = 3)

MAE of x1 0.0553 0.0064 0.0023
Improved of x1(%) / 88.4% 95.9%

MAE of x2 0.0595 0.0055 0.0040
Improved of x2(%) / 90.7% 93.3%
Improved of x(%) / 89.6% 94.6%

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18 
 

 

Table 2. Error comparison between the proposed filter and EKF in case 2. 

 EKF 
Proposed Filter 

(r = 2) 

Proposed Filter 

(r = 3) 

MAE of 
1x  0.0553 0.0064 0.0023 

Improved of 
1x (%) / 88.4% 95.9% 

MAE of 
2x  0.0595 0.0055 0.0040 

Improved of 
2x (%) / 90.7% 93.3% 

Improved of x (%) / 89.6% 94.6% 

(3) The case where a nonlinear system is accumulated by several nonlinear functions, 

each of which can be multiplied by a nonlinear function. 

1

1 1 2 1 1

2 1 2 2

1 1 1

( 1)

2 1 2 2

( 1) 0.85 ( ) 0.5 ( )sin( ( )) ( )

( 1) 0.5 ( )sin( ( )) ( )

( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)
x k

x k x k x k x k w k

x k x k x k w k

y k x k v k

y k x k e x k v k
+

+ = − + +


+ = − +


+ = + + +
 + = + + + + +

 (44) 

where process noise and measurement noise satisfy the following statistical properties:
( )w k  and ( )v k  are uncorrelated zero mean noise, and 1( ) (0,0.01)w k N ,

2 ( ) (0,0.01)w k N , 1( 1) (0,0.01)v k N+ , and 2 ( 1) (0,0.01)v k N+ . The process noise 

variance (0.01,0.01)Q diag= , and the measurement noise variance (0.01,0.01)R diag= . 

The initial values of the system are (0) [1,1]Tx = , 2 2(0)P =  . Figures 9 and 10 show the 

real value, the estimated value of EKF, the estimated value of the second-order extended 

dimension, and the estimated value of the third-order extended dimension for the state 

1x  and state 2x , respectively. Figures 11 and 12 show the estimated error of EKF, the 

estimated error of the second-order extended dimension, and the estimated error of the 

third-order extended dimension, respectively. Table 3 shows the error comparison be-

tween EKF and the dimension expansion methods. 

 

Figure 9. The actual value of state 1 and its estimation. Figure 9. The actual value of state 1 and its estimation.



Sensors 2023, 23, 2894 14 of 17

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. The actual value of state 2 and its estimation. 

 

Figure 11. Estimation error of state 1. 

 

Figure 12. Estimation error of state 2. 

Figure 10. The actual value of state 2 and its estimation.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. The actual value of state 2 and its estimation. 

 

Figure 11. Estimation error of state 1. 

 

Figure 12. Estimation error of state 2. 

Figure 11. Estimation error of state 1.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. The actual value of state 2 and its estimation. 

 

Figure 11. Estimation error of state 1. 

 

Figure 12. Estimation error of state 2. Figure 12. Estimation error of state 2.



Sensors 2023, 23, 2894 15 of 17

Table 3. Error comparison between the proposed filter and EKF in case 3.

EKF Proposed Filter
(r = 2)

Proposed Filter
(r = 3)

MAE of x1 0.0564 0.0184 0.0070
Improved of x1(%) / 67.3% 87.6%

MAE of x2 0.0515 0.0073 0.0045
Improved of x2(%) / 85.7% 91.3%
Improved of x(%) / 76.5% 89.5%

For Case 1, when the dimension of the designed filter is extended to the second order,
the estimation accuracy is improved by 25.2% compared with EKF, and when the dimension
is extended to the third order, it is improved by 35.8%. For Case 2, when the designed filter
is extended to the second order, the estimation accuracy is improved by 89.6% compared
with EKF, and when it is extended to the third order, it is improved by 94.6%. For Case
3, when the designed filter is extended to the second order, the estimation accuracy is
improved by 76.5% compared with EKF, and when it is extended to the third order, it is
improved by 89.5%. All three cases show that the proposed filter has better filtering effect
and is more suitable for complex strongly nonlinear systems.

5. Conclusions and Future

A novel Kalman filter based on the Kronecker product is proposed for dynamic
stochastic systems composed of the polynomial nonlinear state model and measurement
model. Compared with the existing polynomial Kalman filter (PEKF) and high-order
extended Kalman filter (HEKF), although PEKF can achieve higher estimated accuracy,
its complexity is also high. While HEKF reduces the complexity, the estimated accuracy
is also reduced. The novel Kalman filter proposed in this paper can achieve satisfactory
estimated accuracy, and its problem complexity is not high. Firstly, the first-order Taylor
expansion of the systematic equation is performed to obtain the Jacobian matrix and fixed
deviation term. After the linearized form is obtained, the Kronecker product operation is
performed on each item, and the operation of extended dimension is achieved for the state
equation and the measurement equation. Finally, after projecting through the projection
matrix, only the state estimated value of the original system is retained. Because more
model information is used, the estimated accuracy is improved. The effectiveness of the
filter is verified by simulation.

However, the filter proposed in this paper has some shortcomings. The linear term and
the noise term after the approximate linearized expansion are respectively subjected to Kro-
necker product operation, which leads to an artificial act in describing the expanded state
model error. It needs further optimization. In future research, we hope to combine the linear
term and the noise term based on this paper and perform the Kronecker product operation
together. A rigorous derivation will be given for the extended dimension of the modeling
errors, and at the same time, the performance of the filter will be further improved.
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