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Abstract: The established efficacy of electronic volatile organic compound (VOC) detection technolo-
gies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has
been demonstrated from multiple studies using a variety of experimental and commercial electronic
devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of
numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic
methods, have generated empirical laboratory and clinical trial test results based on the detection
of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-
specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways
by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to
explain how COVID-19 causes damage to multiple organ systems throughout the body are associated
with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal
biochemical processes through gene dysregulation to generate disease-specific VOC metabolites
targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and
related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In ad-
dition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of
host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources
of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.

Keywords: COVID-19; early disease diagnosis; e-nose devices; disease-specific biomarkers; metabolomic
biomarkers; metabolite profiles; pathophysiology; point-of-care testing; volatile organic compounds
(VOCs)

1. Introduction

The high human and economic costs of the COVID-19 worldwide pandemic, caused by
the severe acute respiratory syndrome coronavirus (SARS-CoV-2), have challenged health-
care providers with the difficult tasks of detecting the viral pathogen in both symptomless
carriers and symptomatic patients as well as developing effective therapeutic treatments.
Current methods developed for this task in large-scale, mass-screening efforts initially
utilized semi-invasive sampling methods involving somewhat painful deep nasal swabs of
sinus tissue to acquire clinical samples for diagnostic testing. The discomfort associated
with COVID-19 sampling coupled with low detection accuracy for early COVID-19 infec-
tions, persistent positive results after infection, the delay in receiving results, and fears of
being quarantined or isolated have discouraged many from getting tested and reduced
the utility of diagnostic results [1,2]. These problems have pointed to the need for new
noninvasive detection methods that provide effective and efficient results in point-of-care
testing (POCT) situations where rapid, high-volume, accurate testing results are required.
Numerous other problems associated with conventional COVID-19 detection methods
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have prompted the continuous development of improvements in COVID-19 sampling and
detection methods [3].

Four primary methods have been developed for SARS-CoV-2 detection, including nu-
cleic acid (NA)-based testing, antibody-based testing, antigen based-testing, and computed
tomography (CT) chest scans [4]. The use of CT chest scans produces results with high ac-
curacy and sensitivity (67–100%), but low specificity (25–80%), and they do not distinguish
between pneumonia caused by SARS-CoV-2 from other types of viral pneumonia [5]. The
quantitative real-time reverse transcription polymerase chain reaction (rRT-qPCR) method
is still the gold standard for NA-testing of SARS-CoV-2 infections because it is very reliable
and offers high sensitivity and specificity [5–9]. Nevertheless, most current PCR-based
methods do not currently support rapid and point-of-care diagnosis, although recent stud-
ies have reported development of ultrafast PCR systems for COVID-19 detection [10–12].
You et al. [10] performed NA amplification in a nano-localized environment to significantly
increase the thermocycling rate, but this improvement has not been widely implemented.
Other COVID-19 detection methods based on antibodies, cytokines, RNA, and portable
biosensors were discussed by Taleghani and Taghipour [13].

Current PCR-based technologies generally provide slow delivery of results 1 to 2 days
after sampling which allow further SARS-CoV-2 transmissions to occur before symptoms
appear [14]. Asymptomatic individuals may have similar viral loads to those with symp-
toms. Consequently, more rapid antigenic tests such as enzyme-linked immunosorbent
assays (ELISA), providing results within 10−30 min and sensitivity up to 90%, are rou-
tinely used as prescreening methods. These tests also have limitations in that they require
properly equipped testing sites and trained personnel which may cause logistic challenges
associated with limitations of test product supply chains due to the large number of tests
that must be performed each day for large populations. In addition, rapid tests similarly
require somewhat painful or unpleasant semi-invasive swab sampling of nasopharyngeal
and oropharyngeal cavities with the aim of acquiring sufficiently high viral test loads,
although this goal is not always met, sometimes leading to false-negative test results.
These problems with various detection methods have delayed acquisition of COVID-19
test results, sometimes precluding more effective early treatments [15].

Recent developments of electronic-nose (e-nose) and related gas sensing technologies
have demonstrated the potential to help slow the spread of contagious diseases through
rapid early detection of diagnostic volatile organic compounds (VOCs), including disease-
specific biomarkers present in the exhaled breath of infected patients, particularly prior to
symptom development [16,17]. Understanding the biochemistry and metabolic effects of
COVID-19 are critical to revealing specific target VOC gases, emitted in the breath of severe
acute respiratory syndrome coronavirus (SARS-CoV-2) infected individuals, necessary for
effective sensor array selection for e-nose disease detection and VOC quantification using
selective breathomics-based diagnostic screening tools [18–20]. Thorough studies on the
metabolomics and pathogenesis of COVID-19 are needed to elucidate the mechanisms by
which the viral pathogen affects and alters the metabolic pathways of a human host to
generate specific VOCs in certain organ systems [3,20–23].

Electronic-nose instruments have been developed for numerous healthcare applications
ranging from detection of infectious diseases caused by numerous microbial pathogens [24–26],
to prescreening detection of genetic disorders [27,28], and noninfectious diseases (such as
asthma and COPD [29–31], cancer [32–35], cardiovascular diseases [36–38], diabetes [39], pre-
dicting effectiveness of chemotherapy treatments [40], and mental health [41] to long-term
disease monitoring [17,42]. These devices represent various types of electronic aroma
detection (EAD) technologies capable of discriminating between a wide range of com-
plex gas mixtures composed of relatively low-molecular-weight (<300 Daltons) biomarker
metabolites, primarily volatile organic compounds (VOCs) derived from a wide diversity
of chemical classes [43]. E-nose devices with multisensor arrays discriminate between
complex VOC mixtures, released in the headspace of clinical air samples, through the
production of unique sensor–response patterns (smellprint signatures) specific to diseases
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and use of specialized statistical models and pattern recognition algorithms to facilitate
sample discriminations [44,45].

Previous reviews on applications of e-nose technologies using breath-based analyses
for COVID-19 disease detection are limited and none have addressed the full range of
electronic and e-nose devices tested or the important COVID-19-specific metabolomic VOC
biomarkers that have been identified [15]. Miller et al. [3] mentioned clinical detection of
COVID-19 in patients’ breath using electronic-nose devices and discussed the need for
future work to further develop e-nose devices for detecting COVID-19 complex mixtures
of VOC inflammatory biomarkers. In addition, they focused on neurological complications
of COVID-19 associated with viral infection routes from olfactory epithelium in the nasal
cavity to the central nervous system (CNS) and its angiotensin-converting enzyme 2 (ACE2)
interaction. Subali et al. [46] examined six studies comparing the sensitivity and specificity
of VOC-based e-nose breath analysis diagnostic performance for SARS-CoV-2 infection
compared with RT-PCR. Their subgroup analysis using gas chromatography-mass spec-
trometry (GC-MS) and pattern recognition with e-nose devices revealed higher sensitivity
in the e-nose group and more promising specificity for COVID-19 public screening. The
current review provides a more detailed and comprehensive evaluation of e-nose and
breathalyzer-type devices that have been developed for early COVID-19 detection.

This review summarizes considerable evidence showing the strong potential for us-
ing electronic-nose and related VOC sensor devices to noninvasively detect and monitor
COVID-19 human infections at early and later stages of disease development in asymp-
tomatic, presymptomatic, and symptomatic individuals. We include many identified
COVID-19-associated exhaled breath VOCs from different chemical classes now known
as potential targets for e-nose detection which were identified in clinical samples. These
COVID-19 VOC biomarkers may be noninvasively detected collectively as complex mix-
tures using e-nose devices without discomfort or anxiety to patients. Furthermore, we
summarize and compare major world viral pandemics and their associated differences in
physical manifestations on human populations compared with COVID-19-specific symp-
toms. We describe how these differences in COVID-19 symptomology result from different
mechanisms of disease, affecting different metabolic pathways in multiple organ systems,
generating unique organ- and pathway-specific VOCs. We describe and evaluate current
standard diagnostic testing methods used for COVID-19 detection and expounded on
experimental and clinical results of e-nose detection methods being developed for cheaper
and more rapid COVID-19 detection. Individual e-nose devices were evaluated for accuracy
with associated advantages and disadvantages for use in different application settings,
including clinical and POCT sites where COVID-19 disease diagnostics are performed.

2. Factors Affecting E-Nose Early Detection of Human Disease

Investigations into the potential for using e-nose devices for early COVID-19 disease
detection necessarily require considerations of various extraneous or intervening factors
that may affect or possibly interfere with disease diagnoses based on VOC emissions. A
thorough assessment relative to the analysis of VOC-emissions from clinical samples has
indicated that most extraneous and intervening factors fall into categories, including the
state of a patient’s health, existence of other coinfections of the lungs or upper respiratory
tract, their history of pre-existing conditions, exposure to exogenous gases, diet, predis-
posing risk factors, age classes, race, responses of affected organs, physiological pathways
affected within individual organs, and volatility of produced disease-associated metabolites.
Schematic diagrams showing some pertinent factors causing variations in VOC within
human exhaled breath were provided by Phillips et al. [47].

Human breath composition may change considerably in association with numerous
variables that must be taken into consideration when sampling of exhaled breath for
the purposes of e-nose COVID-19 diagnostics and VOC breathomic studies. There are
a number of procedural clinical practices used to minimize the temporal variability of
breath composition to provide more consistent data in assessing SARS-CoV-2 infections.
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Patients are often required to abstain from eating any foods, smoking tobacco, vaping
nicotine, taking oral drugs, or drinking anything but water for a minimum of 3–7 h prior
to breath sampling. Oral cavities are often rinsed and the patient may be required to
breathe purified and carbon-filtered air, devoid of VOCs, for a period prior to breath air
sampling. Other strategies to avoid the adverse affects of variable factors on breath VOC
emissions include the use of creative statistical procedures. Individuals with a habit of
alcohol, tobacco, or drug use may be placed into separate sampling categories for more
effective statistical comparisons. For example, confounding dietary effects on breath VOC
emissions monitoring may be processed out during statistical modelling by adjusting
sampling schedules around mealtimes to prevent the introduction of dietary artefacts into
data analyses [48]. Common exogenous VOCs in the human breath may be corrected by
subtracting the background VOCs in room air from the VOCs observed in the breath [47].

2.1. States of Human Health

Electronic-nose devices are well known for the versatile capabilities of measuring and
monitoring the overall health condition of clinical patients having many variable states
of health [29,36,45]. The acquisition of VOC patterns from patients, recorded as an e-nose
smellprint signature, provides a snap-shot indication of a patient’s health state, based on
breath VOC profiles, at a single point in time. Multiple periodic acquisitions of e-nose
smellprint data over time allow for the monitoring of a patient’s health state continuously
to determine the rate of recovery from disease and provide improved indications of more
accurate prognoses as more data is acquired [40,42]. The normal VOC profiles of relatively
healthy patients can vary considerably with age, dietary habits, level of nutrition, drug
use, exposure to environmental pollutants, level of exercise, strength of immune system
responses, and many other factors. These multiple variables affecting a patient’s VOC
profile must be considered while assessing health states based on VOC emissions.

The most effective approach for assessing a patient’s health state is to acquire a history
of personal VOC profiles over time during known periods of relative good health and
during episodes of known sicknesses diagnosed by conventional methods recommended
for individual diseases. A historical record of VOC profiles of individual patients under
various states of health can provide valuable reference data indicating how an individual’s
unique physiology and immune system responses to specific diseases are reflected in
their corresponding real-time VOC profiles. In this way, e-nose devices may be used as
effective tools to monitor changes in VOC profiles of individual patients in various states of
health. Likewise, similar data of VOC profiles obtained from many healthy and COVID-19
patients, with and without disease symptoms, may be used to investigate and determine
any commonality of metabolic effects induced by the disease which may be reflected by
changes in VOC profiles in the majority of patients infected by the SARS-CoV-2 coronavirus.

Further metabolomic investigations could identify the presence of unique VOC metabo-
lites, consistently associated with COVID-19 pathogenesis, which might serve as effective
early chemical biomarkers of the disease prior to symptom development. Disease biomark-
ers provide an additional source of confirmation of diagnoses determined initially from
unique e-nose smellprint signatures indicative of specific diseases [49]. The detection of
multiple specific disease VOC biomarkers strengthens this secondary confirmation particu-
larly for biomarker metabolites that are not known to be produced in association with any
other known disease or in healthy COVID-19-negative individuals.

2.2. Location and Occurrence of COVID-19 Disease Effects

The location of disease within different compartments and organs of the body can de-
termine the types of host metabolic pathways affected by COVID-19 disease processes. For
example, variations in biochemical processes associated with specialized functions of dif-
ferentiated tissues within different organs and organ systems influence the interactions and
responses of host tissues to host–pathogen metabolic interactions. Furthermore, the types of
host metabolic changes (abnormal diversions in metabolic pathways) induced by pathogen-
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esis are strongly influenced by the types and categories of microbial pathogens attacking
healthy tissues [18]. This phenonomenon is easily explained by the many unique molecular
mechanisms (e.g., pathogenic determinants) by which different types of pathogens initiate
and generate diseased states within the body. This information is often determined by
metabolomic studies investigating the precise groups of host metabolic pathways affected
by specific disease-causing agents. Consequently, abnormal metabolic pathways (generated
by pathogenesis) often lead to the production of unique volatile metabolites that may be
identified and associated with specific pathogens and associated diseases [18]. In many
cases, specific VOC-metabolites may be derived from both the altered host metabolisms
(pathways affected) or from the metabolism of the pathogen itself. These unique pathogen-
and disease-associated metabolites often serve as effective chemical biomarkers of specific
diseases, particularly useful as targets for e-nose disease detection. In the case of noncellu-
lar viral pathogens, most VOC disease biomarkers are derived primarily from abnormal
alternations in host metabolic processes induced by pathogenesis.

The unique characteristics and differences in viral disease mechanisms associated
with different types of coronavirus infections of human and nonhuman host cells result
in unique alterations in physiological processes with associated distinct manifested symp-
toms, depending on the combination of affected organs and metabolic pathways. These
differences in the effects of major viral pathogens on human organ systems with associated
symptomology are summarized for the most important viral diseases responsible for global
pandemics in recent human history in Table 1. A list of abbreviations for respiratory-related
human viral diseases causing global pandemics, analytical VOC-sensitive instruments
used for early disease detection, instrument sensor types and arrays, clinical methods,
and VOC-metabolite (analyte) categories cited in this review is provided just before the
References section.

The major viral pandemics that have occurred in the 20th and 21st century are tax-
onomically divided into three major viral families: the Orthomyxoviridae, Retroviridae,
and Coronaviridae. The Orthomyxoviridae consist of negative-sense single-stranded RNA
viruses that are responsible for most of the historical flu pandemics. The Retroviridae and
Coronaviridae families contain both positive-sense and single-stranded RNA viruses and
are the etiologic agents that have caused HIV, SARS, and Camel flu pandemics, as well
as the current COVID-19 pandemic. Differences in the genetic construct of viral genomes
influence the mechanisms by which viruses from individual families attack their host
and initiate disease. These differences result in widely varying combinations of mani-
fested symptom types due to variable effects of viral replication and controls on host gene
dysregulation initiated within individual infected organs and tissues of human hosts.
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Table 1. Molecular characteristics, classifications, and physiological impacts to human organs and organ systems caused by major viral diseases responsible for
global pandemics.

Viral Disease 1 Pandemic
Name 2

Years of
Occurrence Serotypes Viral Family 3 Nucleic Acid

Composition 4

Human
Infections (inf.)/

Deaths (d.)
Main Disease Effects 5

Major
Organ-Systems

Affected
Reference

Influenza A Spanish flu 1918–1920 A/H1N1 Orthomyxoviridae (-) ssRNA 500 million inf.,
17–50 million d.

Cytokine storms, acute
secondary infections

Lungs,
alimentary tract,
nervous system

[50]

Asian flu 1957–1958 H2N2 Orthomyxoviridae (-) ssRNA 500 million inf.,
1–4 million d.

Pneumonia, wobbly
legs, achy limbs,

headache, high fever

Lungs,
muscular [51]

Hong Kong
flu 1968–1969 H3N2 Orthomyxoviridae (-) ssRNA 300 million inf.,

1–4 million d.

Chills, fever, muscle
aches, fatigue,

headache, sore throat

Lungs,
alimentary tract [52]

Swine flu 2009–2010 H1N1/09 Orthomyxoviridae (-) ssRNA 0.7–1.4 billion inf.,
>575,000 d.

Tissue inflammation,
Pneumonia, respiratory

failure, worsening
asthma and heart

disease, fever,
diarrhea, fatigue

Lungs,
muscular [53–55]

AIDS HIV 1985-present HIV-1, HIV-2 Retroviridae (+) ssRNA 40 million inf.,
35 million d.

ARS, diminished
immunity, secondary
infections and disease

(especially TB, recurrent
URTI, candidiasis, brain

toxoplasmosis, KS,
lymphoma), joint pain,

rash, muscle pain
Lymphadenopathy

Immune system,
lungs, brain,

skin
[56,57]

SARS SARS 2002–2004 SARS-CoV-1 Coronaviridae (+) ssRNA 8000 inf., 700 d.

ARDS, diarrhea,
headaches, liver

dysfunction,
lymphocyte damage,
myalgia, pneumonia,

Lungs,
intestines,

lymph nodes,
spleen

[58,59]
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Table 1. Cont.

Viral Disease 1 Pandemic
Name 2

Years of
Occurrence Serotypes Viral Family 3 Nucleic Acid

Composition 4

Human
Infections (inf.)/

Deaths (d.)
Main Disease Effects 5

Major
Organ-Systems

Affected
Reference

MERS Camel flu 2012–2020
(intermit.) MERS-CoV Coronaviridae (+) ssRNA 3000 inf., 1000 d. Diarrhea, pneumonia, Lungs,

intestines, [60,61]

Coronavirus
Disease of 2019

(COVID-19)
COVID-19 2019-present SARS-CoV-2 Coronaviridae (+) ssRNA 670 million inf.,

6.7 million d.

Pulmonary
inflammation,

pneumonia, ARDS,
heart failure,

myocarditis, sepsis,
septic shock, stress
cardiomyopathy,

kidney failure, loss of
senses (taste and smell)

Lungs, heart,
kidneys, liver,

pancreas, bowel,
central nervous

system and
brain

[62–64]

1Viral disease name abbreviations: AIDS = Acquired Immunodeficiency Syndrome; COVID-19 = Coronavirus disease 2019, originating SARS-CoV-2 infections occurred in Wuhan, China;
MERS = Middle East Respiratory Syndrome; SARS = Severe Acute Respiratory Syndrome. 2 Pandemic name abbreviations: HIV = Human Immunodeficiency Viruses; SARS = Severe
Acute Respiratory Syndrome. 3 Viral families: Coronaviridae (SARS-related species, Group IV); Orthoviridae (Alphainfluenzavirus species, Group V); Retroviridae (Lentivirus species,
Groups N, O). 4 Nucleic acid RNA type and sense. 5 Main physical effects, including symptoms and other manifestations.
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The disease mechanisms by which different viral groups take control of human cells
and initiate replication cycles are determined to a significant extent by the relative sus-
ceptibility and level of involvement in which individual organ systems are attacked, the
associated metabolic pathways affected, and the types and severity of damage sustained
over short- and long-term time scales. Some organ systems sustain short-term damage
that can be repaired to restore normal functions. However, other organs may become
dysfunctional due to chronic persistent viral attacks with prolonged disease mechanisms
that may result in lasting effects including permanent organ damage with reduced or
limited capabilities for restored functions. For example, the susceptibility of individual
patients to both acute COVID-19 and long-COVID-19 effects can vary widely and depend
on a complex combination of many predisposing factors including race, obesity, general
level of health and immune response, nutritional state, prior exposures to SARS-CoV-2 at
various levels, and many genetic factors affecting unique metabolic processes occurring
within specific organ systems of different individuals [49,65,66].

Disease mechanisms associated with different pandemic viruses result in unique
combinations of symptoms and physical effects in different individuals. The types and
range of manifested symptoms of various viral infections can change dramatically during
the disease process until the individual eventually recovers. As a virus mutates following
multiple passings and disease cycles through susceptible hosts, the disease mechanism can
change, as new strains form, that may result in different intensities and symptomology in
future infected individuals and new or different organ systems may be affected. The SARS-
CoV-2 coronavirus has caused combinations of symptoms that have differed significantly
from those of previous viral pandemics. Differences in viral biochemical effects ultimately
result in changes in human host metabolic pathways in various ways that determine the
types and quantitative effects of viral infection on VOC emission within the breath of
SARS-CoV-2-infected patients which may be detected by e-nose and advanced electronic
chemical-analysis technologies.

2.3. Pathophysiological Effects of SARS-CoV-2 Coronavirus on Human Hosts

Viral pathogens take control of cellular machinery and initiate viral replication mecha-
nisms that disrupt a number of important host metabolic pathways. Viral pathogenesis
may lead to significant effects on human organ systems and generate disruptions in critical
physiological and neurological functions, potentially leading to long-term physical damage,
lasting adverse symptoms, and occasionally death. The following discussion provides an
overview of the wide range of COVID-19 symptom groupings and associated biochemical
and physiological effects of SARS-CoV-2 infections on different age groups, races, and
patient classes that ultimately result in detectable changes in exhaled breath VOCs relative
to healthy individuals.

2.3.1. Multisystem Inflammatory Syndrome in Children

The majority of children and early adolescents acquiring SARS-CoV-2 infections are
asymptomatic or have only mild to moderate illness, but severe or critical illnesses do occur
in rare cases [49,67,68]. Examples of differential lingering effects and damage caused by
COVID-19 in individual patients with various predisposing factors are largely dependent
on the combination and extensiveness of organ systems affected and the resulting diversity
of associated symptoms manifested, which are all expressed among cases of Multisystem
Inflammatory Syndrome in children (MIS-C). The first reported occurrence of MIS-C, ob-
served initially only in children (ages 4–15) with hyperinflammatory shock symptoms
similar to Kawasaki disease and toxic shock syndrome, occurred in England (April 2020)
during the peak of the COVID-19 pandemic in Europe [69]. A unique combination of symp-
toms, presumed to have occurred 2–4 weeks post-acute COVID-19 based on serological
evidence of infection with SARS-CoV-2, were discovered to be divided into three distinct
clusters (symptom categories) that were strongly associated with viral attack and damage to
specific organs systems [65]. A total of 570 MIS-C patients who met the case definition were
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almost exclusively SARS-CoV-2-positive, determined by reverse transcription–polymerase
chain reation (RT-PCR), and characterized by elevated inflammation markers, abdominal
pain, cardiac dysfunction, and shock. Of these 570 total patients, 63.9% required treatment
in an intensive care unit (ICU), and 10 patients (1.8%) died. MIS-C generally caused adverse
effects involving at least four organ systems, primarily and commonly including gastroin-
testinal (90.9%), cardiovascular (86.5%), dermatologic or mucocutaneous (70.9%), and
hematologic (73.9%) involvement. The majority of patients (67%) did not have preexisting
underlying medical conditions prior to MIS-C onset [69].

Individuals in the first patient class exhibited additional clinical signs and symptoms
of conjuctivitis, peripheral edema, rash, fever, gastrointestinal symptoms, and elevated
markers for cardiac damage. Class 1 patients (35.6%) had the highest number of organ
systems affected (six or more involved) with cardiovascular and gastrointestinal being the
most commonly affected [65]. The patients in this group had significantly higher preva-
lences of myocarditis, abdominal pain, shock, lymphopenia, elevated C-reactive protein
(indicative of liver inflammation), ferritin (accute-phase reactant), troponin (indicative of
cardiac damage), brain natriuretic peptide (BNP), or proBN (indicative of heart failure). By
contrast, class 2 patients (29.6%) had somewhat reduced cardiovascular and gastrointestinal
involvement and the lowest incidence of dermatologic and mucocutaneous involvement,
but significant respiratory system involvement, and were more likely to have shortness of
breath, coughing, pneumonia, and acute respiratory distress syndrome (ARDS), suggesting
that their illness primarily developed from acute COVID-19. These patients exhibited
the highest fatality rate among the three classes (5.3%). Class 3 patients had the lowest
prevalence of organ system involvement (four or less) and the lowest incidence of underly-
ing medical conditions, complications (including shock and myocarditis), and markers of
cardiac damage and inflammation. The hematological organ system was least prevalent
in class 3 patients among the three classes. Class 3 patients also more commonly met
the criteria for Kawasaki disease (6.6%), compared with class 1 (4.9%), and class 2 (3.0%).
Patients in class 3 were further distinguished by the highest incidence of rash (62.6%) and
mucocutaneous lesions (44.9), and a higher prevalence of coronary artery aneurysm and
dilatations than class 2 patients, but lower than in class 1 patients. The neurologic and
renal organ systems, as well as others such as periorbital (4.7%) and cervical (13.3%) organ
systems were least affected in MIS-C patients of all three classes.

The most commonly reported underlying medical condition for MIS-C patients was
obesity, occurring in 30.5% of Hispanic, 27.5% of Black, and 6.6% of White MIS-C patients.
Hispanic and Black patients (combined) accounted for the largest proportion (73.6%) of
reported MIS-C patients. Similarly, these two groups have been reported to be dispropor-
tionally affected by acute COVID-19 [10], often with higher risk for COVID-19 and more
severe illness, possibly including more adverse effects of MIS-C [65].

The adverse affects of COVID-19 on multiple organs were quantitied and categorized
based on the percentage of all patients having symptoms associated with specific organs and
the relative involvement of each, primarily including seven organs: gastrointestinal (90.9%),
cardiovascular (86.5%), hematologic (73.9%), dermatologic (70.9%), respiratory (63.0%),
neurologic (38.2%), and renal (18.4%) effects in decreasing order [65]. Gastrointestinal
effects were manifested mainly as abdominal pain, vomiting, and diarrhea. Cardiovascular
symptoms included congestive heart failure, cardiac dysfunction, coronary artery dilatation
or aneurysm, elevated BNP or troponin, hypotension, mitral regurgitation, myocarditis,
pericardial effusion, and shock. Dermatologic and mucocutaneous symptoms involved
conjunctival injection, mucocutaneous legions, and rash, whereas hematological manifes-
tations were elevated D-dimer, thrombocytopenia, and lymphopenia. Respiratory effects
included acute respiratory distress syndrome (ARDS), cough, shortness of breath, chest
pain or tightness, pleural effusion, and pneumonia. Headache was the only neurologic
symptom evaluated and acute kidney injury was the sole renal symptom recorded. Other
minor miscellaneous effects included cervical lymphadenopathy and periorbital edema.
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A multicenter study estimated that there was an 80% increase in new-onset type 1 dia-
betes (T1DM) in children during the COVID-19 pandemic [70]. They found that angiotensin-
converting enzyme 2 (ACE2) receptor, the binding site for SARS-CoV-1 and -2, was strongly
expressed in pancreatic endocrine cells. They speculated that the SARS-CoV-1 virus may
have entered pancreatic islet cells via the ACE2 receptor leading to β-cell damage and
new-onset, transient diabetes. They further postulated that SARS-CoV-2 viral exposure
contributed to an observed increase in T1DM in children by precipitating or accelerating
type 1 diabetes onset.

2.3.2. Multisystem COVID-19 Effects on Adults

The current concensus is that COVID-19 may be considered to be equally categorized
as an acute multiorgan disease in adults as it is in severe cases for children [71]. The
SARS-CoV-2 coronavirus does not merely cause a localized respiratory infection affect-
ing the lungs, but a systemic, multisystem disease affecting many organs and involving
multiple interlinked interactions between complex processes resulting in immunological,
inflammatory and coagulative cascades [49]. Major extrapulmonary clinical manifestations
(symptoms) in COVID-19 patients include the following (with relative frequency percent-
ages listed in decreasing order), based on 4200 total patients: fatigue (72.22%), ageusia
or impaired sense of taste (58.73%), appetite loss (52.78%), anosmia or impaired sense of
smell (46.83%), heart palpitation (33.33%), headache (33.17%), nausea/vomiting (31.43%),
and diarrhea (25.40%) [72]. The frequencies (%) of symptoms occurring among symp-
tomatic COVID-19 patients include the following (in decreasing order): sinus tachycardia
(95.56%), lymphocytopenia (38.49%), hepatitis (36.83%), leukopenia (35.48%), gastroenteri-
tis (27.83%), sepsis (22.22%), proteinuria (20.87%), coronary artery disease (17.30%), and
acute kidney injury (16.34%) [72]. The prevalence of coagulation defect-associated disorder
(CDAD) was attributed to deep venous thrombosis in 15.56% of patients, acute coronary
syndrome in 7.78%, brain infarction in 6.35%, pulmonary artery thrombosis in 3.25%, and
SMA thrombosis in 0.32% of symptomatic patients [72].

The most frequently reported early extrapulmonary manifestations include deep ve-
nous thrombosis, non-specific abdominal symptoms, hypogeusia, hyposmia, and corneal
congestion [73]. Some additional rarer extrapulmonary manifestations in certain organs
and locations such as in the brain, eyes, ears, intestines, myocardium, peripheral nerves,
muscles (aches), skin, and vessels also have been reported upon onset of COVID-19. Gut
microbiome composition is often significantly altered in COVID-19 patients compared
with non-COVID-19 individuals irrespective of whether patients had received medication
(p < 0.01) [74]. Perturbed microbiome composition increases with disease severity along
with elevated plasma concentrations of blood markers and inflammatory cytokines, such
as C-reactive protein (CRP), aspartate aminotransferase, gamma-glutamyl transferase, and
lactate dehydrogenase. These associations between gut microbiota composition, levels of
cytokines, and inflammatory markers in COVID-19 patients suggest that the gut micro-
biome may be affect the magnitude of COVID-19 severity by possibly modulating host
immune responses [74]. Several gut commensals including Faecalibacterium prausnitzii,
Eubacterium rectale, and bifidobacteria with known immunomodulatory potential were
underrepresented in COVID-19 patients and remained low up to 30 days after disease
resolution. Gut microbial dysbiosis after disease resolution could contribute to persistent
symptoms (long-COVID), highlighting the need to better understand how gut microorgan-
isms may modulate COVID-19-induced inflammation.

Multiple mechanisms proposed to explain the pathobiology of liver damage include
ACE2 receptor cholangiocytes-mediated systemic inflammation, cytokine storm, hyper-
inflammation, and hypoxic changes [75]. Pre-existing liver and GI diseases may increase
susceptibility to COVID-19 damage by altering tissue expression and distribution of viral
entry via ACE2 receptor along with host protease TMPRSS2, which is also required for
both spike protein binding and cleavage to initiate viral infection [75]. Altered immune
status due to pre-existing conditions may result in delayed SARS-CoV2 virus clearance
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or prolonged viremia. Even though GI and hepatic manifestations of are less severe, the
detection of SARS-CoV2 virus in a patient’s stool indicates GI tropism, virus replication
and shedding from the GI tract. Thus, COVID-19-induced liver injury, acute hepatic de-
compensation, and incidences of acute-on-chronic liver failure may change the outcomes of
liver and GI diseases. COVID-19 patients often have liver injury. High levels of interleukin-
6 (IL-6) and its circulating receptor, which form a complex to induce the inflammatory
signal, have been observed in patients with COVID-19 [76]. The pathogenesis of liver
involvement in COVID-19 includes the secondary effect of immune dysregulation, hypoxia
from respiratory failure, ischemic damage caused by vascular endotheliitis, congestive
heart failure, drug-induced liver injury, and viral cytotoxicity. Patients with cirrhosis,
chronic liver diseases, and hepatocellular carcinoma are at high risk of acute COVID-19
and mortality [77].

The SARS-CoV-2 virus causes a complex pulmonary disease that includes pneu-
monia with vascular leakage, resulting in respiratory failure, acute respiratory distress
syndrome (ARDS), and many other extrapulmonary manifestations of COVID-19 affecting
the cardiovascular, dermatologic, endocrinologic, gastrointestinal, hematologic, hepatobil-
iary, myocardial, neurologic, ophthalmologic, pharyngeal, and renal systems in variable
combinations in different individuals, each with unique physiochemical susceptibilities, im-
munities, and health states [78–80]. Multi-organ injury secondary to SARS-CoV-2 infection
results in endothelial cell damage, thromboinflammation, immune response dysregulation,
and dysregulation of the renin–angiotensin–aldosterone system (RAAS) [66,81].

COVID-19 pathophysiology is largely attributed to dysfunction of innate and adaptive
immune responses to SARS-CoV-2 that lead to inflammation, delayed viral clearance, and
tissue damage not restricted or localized in the lungs, but systemically affecting other organs
with the potential for multiorgan failure [82,83]. Lymphopenia in the blood, a condition of
lower-than-normal number of lymphocytes such as T cells, B cells, and innate lymphoid
cells is one of the hallmarks of COVID-19 [84,85]. Increased aberrant activation and re-
cruitment of myeloid cells in COVID-19 also may contribute to immune pathology [86–88].
Patients with severe COVID-19 have increased circulatory inflammatory cytokines asso-
ciated with acute lung injury [89,90]. Inflammatory cytokines and chemokines are highly
expressed in the bronchoalveolar lavage (BAL) fluid of COVID-19 compared with blood in
patients with severe COVID-19, suggesting continuous exposure to viral influence in the
lung microenvironment and resulting in heightened local inflammatory status [91].

Host immune response to SARS-CoV-2 plays a critical role in disease pathogenesis
and clinical manifestations. SARS-CoV-2 activates antiviral immune responses and causes
uncontrolled inflammatory responses with marked pro-inflammatory cytokine release in
severe COVID-19 cases, leading to granulocyte and monocyte abnormalities, lymphopenia,
and lymphocyte dysfunction. These SARS-CoV-2-induced immune abnormalities may lead
to microbial infections, septic shock, and severe multiple-organ dysfunction [83].

Interactions of the SARS-CoV-2 virus with the angiotensin-converting enzyme 2
(ACE2) receptor to gain entry into cells appears to be the predominant mechanism in
most organ systems since ACE2 mRNA is present in almost all human organ systems.
ACE2 is present in the brain, lung alveolar epithelial cells, arterial smooth muscle cells in
the lungs, arterial and venous endothelial cells, kidney parietal epithelial cells, stomach,
small intestine, colon, lymph nodes, liver bile ducts, and the skin. However, tissues of the
upper respiratory tract tissues (oral, nasal mucosa, and nasopharynx) do not show surface
expression of ACE2 on epithelial cells, and thus have less susceptibility to SARS-CoV-2
infection [92]. Multi-organ tissue injuries are linked to altered ACE2 expression and im-
balances between expression of the ACE2/angiotensin-(1–7)/mitochondrial Ang system
(MAS) and renin–angiotensin system (RAS) in COVID-19 patients [93]. Thus, COVID-19 is
characterized as a devastating disease that targets multiple organs because it causes acute
complications via organ-specific pathogenesis that ends with the destruction of almost
universally present ACE2+ cells. Although the precise pathogenesis of multi-organ damage
in COVID-19 is still obscure, the mechanism certainly involves altered ACE2 expression
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linked with direct/indirect damages due to virus-induced immune responses, such as
cytokine storm.

Certain pre-existing health conditions that increase hazard ratios of COVID-19 mor-
tality are considered molecular risk factors possibly due to dysregulated gene expression,
in these cases leading to COVID-19-related deaths [94]. Thus, the magnitude of the gene
dysregulation is correlated with severity of COVID-19 outcome. These molecular risk fac-
tors are potential prognostic biomarkers and targets for therapeutic intervention. Among
genes differentially expressed in multiple health conditions, there were 70 upregulated
genes and 181 downregulated genes correlated with hazard ratios of COVID-19 mortality,
including genes enriched with endoplasmic reticulum, interferon production, mitochondria
function, proinflammatory reaction, those involved in programmed cell death, suppressed
autophagy that clears virus-infected cells, escalated apoptosis, and necroptosis to eliminate
infected cells that participate in viral replication and innate immune responses to viral
infections [94–97].

2.3.3. Long COVID-19 Effects of Post-Acute-COVID-19 Syndrome Sequale

The wide ranging effects of COVID-19, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is manifested in two phases: (1) an acute phase (generally
4 weeks after onset) and (2) a chronic phase (>4 weeks after onset), both of which include
a wide variety of physical, neurological, and psychiatric symptoms [98]. The well recog-
nized existence of chronic COVID-19 symptoms, also referred to in various layman and
medical vernacular as Long COVID-19, Post Acute COVID-19 Syndrome (PACS), and Post
Acute Sequale Coronavirus (PASC), have provided a variety of long-term symptomologies
associated with delayed or prolonged physiological effects on host organ systems. Many
of these physiological effects are different from those that occur during the acute phase of
COVID-19. Long COVID-19 syndrome affects persons of all age groups and is associated
with substantial reductions of quality of life [99].

The specific pathophysiological effects and disease mechanims of PASC have not yet
been fully clarified, so there are no well-defined criteria or symptomologies specified for
the condition. As a consequence, the World Health Organization’s (WHO) definition for
PASC is quite broad and it is therefore difficult to confidently diagnose PASC without
adequate criteria. The range of PASC symptoms may include general weakness or fatigue,
alopecia, amnesia, anxiety, depression, dysosmia, dyspnea, fever, gastrointestinal problems,
hypertension, loss of concentration, numbness, pain, palpitation, and sleeping difficul-
ties [98]. Up to 50% of patients may show at least one PASC symptom within one year
after acute COVID-19 infection, but the exact occurrence frequencies for individual PASC
symptoms has not been determined. The WHO estimates that about 25% of individuals
with COVID-19 continue to experience symptoms 4–5 weeks after acute diagnosis and 10%
have continuing symptoms after 12 weeks [100].

The difficulty in diagnosing PASC is an ongoing medical challenge that requires
more specific information such as PASC-specific VOC biomarkers as well as quantifying
SARS-CoV-2 antigens, cytokine levels, and inflammatory markers in plasma samples.
Sorting out the complex biochemical processes of PASC and interactions with host metabolic
pathways relies on the identification of specific biomarkers that enable classification of
patient complex phenotypes (symptomologies) [101]. Patterson et al. [102] analyzed B-cell,
T-cell, and monocytic subsets in both severe COVID-19 patients and in PASC patients.
They found levels of intermediate (CD14+, CD16+) and non-classical monocytes (CD14Lo,
CD16+) were significantly elevated in PASC patients up to 15 months post-acute infection
compared with healthy controls (p = 0.002 and p = 0.01, respectively).

Other definitions of PASC have included persistence of disease >28 days following
onset of symptoms, observed in 27–80% of convalescent individuals [103]. In these cases,
symptoms range from general fatigue, brain fog, dyspnea, and joint pain to multiorgan im-
pairments [66]. Apart from acute manifestations of COVID-19 illness, increasing evidence
points to the development of chronic pulmonary and extrapulmonary effects [104]. Chronic
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pulmonary effects of PASC often cause diminished lung function and capacity in addition
to radiological anomalies, including atelectasis, persistent inflammation, ground-glass
opacities, reticulation, and fibrotic-like changes. [71,105]. Extrapulmonary manifestations
frequently observed have included myocardial injury, neuropsychiatric symptoms, and
thrombotic complications [66,103,105]. Long-term persistence of SARS-CoV-2 viral rem-
nants have been observed in the brain, kidneys, lungs, and gut, possibly by instigating
aberrant immune responses [106]. Longitudinal PASC studies have revealed sustained
immune response dysregulation of T-cells, highly activated myeloid cells, elevated proin-
flammatory cytokine levels, and reduction in naive T- and B-cells [107–110]. In independent
PASC cohort studies, a sustained reduction in circulating cortisol immunosuppressive factor
has also been reported [111,112].

Possible disease mechanisms involved in Long COVID-19 syndrome may include
chronic inflammation, endothelial dysfunction, metabolic perturbations, and gut dysbio-
sis [99]. Some of these pathogenic mechanisms involving immunologic and systemic effects
likely overlap with those of the aging process and may aggravate pre-existing degener-
ative conditions such as cognitive decline and sarcopenia [113–115]. Viral persistence is
associated with alterations in immunometabolic pathways, autoimmune processes, chronic
inflammation, dysbiosis, endothelial damage, and unresolved organ damage [71,116,117].
Other potential contributors to PASC pathogenesis and symptom longevity may include
consequences of disease-related injuries to multiple organs, persistent SARS-CoV-2 reser-
voirs in certain tissues, reactivation of neurotrophic pathogens (herpesviruses etc.) dur-
ing COVID-19 immune dysregulation, SARS-CoV-2 effects on host microbiome/virome
communities, clotting and coagulation issues, dysfunctional brainstem and vagus nerve
signaling, activities of primed immune cells, and autoimmunity [118]. The multifactorial
pathophysiology of PASC, causing a multiorgan disease with broad spectrum of manifes-
tations, also has been proposed to involve immobility and metabolic alterations during
critical illness and microvascular ischemia and injury [71,119].

3. Identification of COVID-19-Specific Chemical Biomarkers

Metabolic processes in healthy individuals maintain a balanced system of homeostasis
that give rise to normal volatile metabolites which become dissolved in the blood, and if
sufficiently volatile, are released from the body via the lungs through the human breath.
The normal or healthy state metabolome consists of VOCs components that are released
in the human breath at concentration (levels) indicative of a healthy state within certain
ranges and molar ratios. When the levels of breath VOCs change from normal health
ranges, which vary with age, race classes, and other factors, this is an indication of possible
disease developing at early stages of pathogenesis. By virtue of the circulatory system that
links and transports volatile metabolites from all organs throughout the body to the lungs,
one cannot assume that VOC metabolites, expelled in breath from lung tissue, originated
from metabolic pathways occurring in the lung itself or from other organs of the body. This
problem precludes easy identification of the specific metabolic pathways giving rise to
volatile metabolites released in exhaled breath without the use of additional techniques
such as radioactively C-labeled metabolites.

Altered changes in metabolic processes not only arise from the effects of infectious
diseases on human tissues, but also development because of other major health problems
such as metabolic diseases, including diabetes mellitus, dyslipidemia, osteoporosis, and
obesity which are often due to an unhealthful lifestyle or poor diet [120]. Recently, analyses
of breath VOCs, particularly short-chain fatty acids (SCFAs), have been considered useful
tools for mechanistic understanding and diagnosis of metabolic diseases, especially those
associated with poor diet or microbial dysbiosis of the gut microbiome [121].

Metabolomics is now considered a powerful approach for disease biomarker discovery
associated with metabolic dysregulations. However, the diagnosis of diseases based on
metabolomics is difficult and cumbersome when based on breath analysis alone because
this diagnostic approach involves measuring altered levels of key physiological metabolite
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biomarkers occurring in metabolic pathways in various organs and tissues distally sepa-
rated from the lungs. The biggest problem is the difficulty in determining the originating
distal sources (organs, tissues, and associated metabolic pathways) involved in generat-
ing VOC disease biomarkers identified in exhaled breath. This work typically requires
the use of radioactively labeled metabolites or metabolite precursors introduced into dis-
eased patients, through ingestion or injection, to detect and identify the physical sources
and metabolic pathways from which these labeled metabolites originated before passing
through the circulatory system to the lungs. One such example is the use of radioactively
labeled carbon, 13C-labeled prebiotic inulin, fed to subjects and microbially fermented
in the human gut to produce 13C-labeled short-chain fatty acids which were detected
as having higher plasma acetate concentrations compared with controls, and increased
13CO2 enrichment in the human breath following translocation of metabolite intermediates
through the circulatory system [122].

Research into the metabolomics of COVID-19 pathogenesis has revealed numerous
metabolic pathways affected by the disease, which may indirectly help explain many
quantitative changes in certain VOCs levels present in the breath of COVID-19 patients.
Most of the COVID-19 biomarker metabolites identified hitherto from metabolomic studies
of various organ systems are nonvolatile and thus of little use in COVID-19 disease detection
via breath analysis. The quantitative nonvolatile metabolite biomarkers identified from
various organ systems are metabolites that have already been well associated with metabolic
pathways occurring in specific organ systems. However, determining differences in VOCs
present in exhaled breath of COVID-19 patients vs. non-COVID-19 individuals using
metabolomic chemical-analysis techniques, such as GC-MS and NMR, does not strictly
qualify as metabolomic studies unless this breath VOC information can be directly linked
to specific metabolic pathways (distal to lung tissue) affected by COVID-19 pathogenesis.

Determining the specific metabolic pathways in the body that are being affected by
pathogenesis gives strong clues as to the pathogen involved and the likelihood of which
VOCs will change due to disruptions of specific metabolic pathways [18]. Investigations
into detailed information concerning pathogenesis and the pathophysiological mechanisms
of disease, especially in specialized area of cellular metabolomics, provide more details
about how a particular disease affects and diverts normal metabolic processes in the body
to generate an abnormal disease state.

3.1. COVID-19 Induced Quantitative Changes in Volatile Metabolites Released in Breath

A firm understanding of the pathophysiological mechanisms by which the SARS-CoV-2
virus affects the body at the chemical level is essential for identifying candidate COVID-19-
specific volatile disease biomarkers as potential VOC metabolic targets for disease detection.
As with all infectious diseases, the mechanisms by which pathogenic agents cause dis-
ruptions of normal cellular metabolic pathways to induce host cellular responses, and
ultimately changes in cellular metabolites, are unique to individual microbial groups [18].
Pathogenesis-induced changes in metabolic pathways produce volatile metabolites which
are carried through the circulatory system and are ultimately released from the lungs via
exhaled breath [16,123]. The chemical effects of COVID-19 on cellular metabolism are first
initiated by a multistep process at the cellular level, beginning with viral attack at the cell
surface, leading to virus entrance into cells to initiate disruptive controls and redirection of
normal cellular metabolic processes to new processes involved in virus replication. The
resulting wide variety of possible metabolic effects of COVID-19 are determined by the
specific types of tissues being infected and the unique chemistry of metabolic processes
that occur in the specialized tissues of different organs involved.

At least five major pathophysiological mechanisms have been identified to explain the
key pathogenesis processes involved in COVID-19 systemic effects and SARS-CoV-2 virus–
host interactions, including (1) SARS-CoV-2 spike protein interacting with angiotensin-
converting enzyme 2 (ACE2) on the cell surface of epithelial cells to induce cytotoxicity,
(2) dysregulation of the renin–angiotensin–aldosterone system (RAAS) as a result of virus-
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mediated ACE2 downregulation, (3) dysregulation of immune responses causing acute
inflammatory responses elicited with overproduction of pro-inflammatory cytokines and
chemokines, (4) endothelial cell injury leading to activation of the coagulation cascade
with intravascular thrombo-inflammation, and (5) extensive tissue destruction, interstitial
thickening, fibroblast proliferation, and tissue fibrosis [66]. This list does not include the
many additional detailed mechanisms by which COVID-19 disrupts the normal processes
of many other metabolic pathways that occur in different organ systems throughout the
body. Viral disruptions of these many metabolic pathways generate both volatile and
nonvolatile metabolites, depending on the molecular weight of metabolite intermediates
that occur within any given metabolic pathway affected. The following sections summarize
some of the effects of COVID-19 on the metabolic pathways of specific organs, but focus
mostly on SARS-CoV-2’s viral effects causing dysregulation of sometimes currently un-
known metabolic pathways that produce quantitative changes in volatile metabolites (i.e.,
VOCs), which are the only ones of interest as potential biomarker targets for COVID-19
detection in human-exhaled breath. The effects of COVID-19 on metabolic pathways giving
rise to nonvolatile metabolites, detected in blood serum and plasma and other biologi-
cal fluids, are discussed in more detail under Section 6, titled Metabolomic research of
nonvolatile biomarkers.

Most breath-analyses studies to identify COVID-19-specific volatile metabolites to
date have not thoroughly investigated the actual sources of these volatile biomarkers and
have only documented quantitative differences between sample types (from healthy and
diseased individuals) and correlated this data for the purposes of COVID-19 diagnostic
determinations. Despite the existence of only limited studies and information to help
identify the specific mechanisms by which volatile metabolites found in the exhaled breath
of COVID-19 patients are generated, some basic information has provided clues to possibly
explain at least some of the metabolic pathway dysregulation that leads to quantitative
changes in breath VOC concentrations. Individuals with COVID-19 often have exhibited
higher levels of aldehydes and ketones in their exhaled breath. Greater production of
aldehydes often may occur when tissues are damaged by inflammation [124]. COVID-19
induction of systemic cytokine storms, with associated metabolic cascades, affects many
organs and cause widespread cellular damage, acute inflammation of tissues, and immuno-
suppression. Increases in breath ketones indicate that the SARS-CoV-2 virus damages the
pancreas and liver, worsening complications of diabetes, disrupting key metabolic signals
causing symptoms of ketosis, hyperglycemia, or hypoglycemia due to effects on insulin
and glucose metabolism [125,126]. COVID-19 often causes comorbidity effects that result in
worsening preexisting diseases that exist in the body prior to SARS-CoV-2 infections. Pre-
existing hyperglycemia can contribute to SARS-CoV-2 increased entry and replication [127].
Individuals with obesity and related metabolic diseases, such as type 2 diabetes (T2D),
typically have more devastating COVID-19 disease courses. COVID-19 pathogenesis mech-
anisms and the dysregulation of host metabolism are intimately connected, although the
details of the molecular mechanisms of deregulated glucose metabolisms that determine
vulnerability of cells and organs in a diabetic environment are not well understood.

Other known COVID-19 VOC metabolic sources, such as certain aldehydes and alkanes
derived from lipid oxidation and ketones from carbohydrate and fatty acid metabolism, may
help explain some of the indirect up-regulation due to COVID-19 pathogenesis [128,129]. The
causes of up-regulation in certain alcohols (ethanol, propanol, and butanol), but down-
regulation of methanol are not yet fully explained. The up-regulation of ethanol is likely
associated with COVID-19 effects on acetaldehyde metabolism that occurs primarily in the
liver, resulting in increases in blood concentrations of this alcohol, possibly causing alcohol
intoxication-like symptoms in severe cases. The breakdown products and derivatives of
these COVID-19 induced dysregulated low molecular weight VOC metabolites, originating
from many endogenous metabolic processes, also are carried through the circulatory system
and rapidly excreted from the lungs.
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Human exhaled breath typically contains thousands of VOCs that are a culmination of
intermediate and end products of many metabolic pathways occurring throughout the body.
The sensor array of e-nose devices collectively responds proportionally to all VOCs present
in a breath sample (for which individual sensors are sensitive), with individual sensors
responding variably as indicated by a net sensor response intensity. Thus, e-nose devices
do not identify individual VOCs in the sample. Not all, but only a smaller subset of VOCs
present in breath samples are identified as COVID-19 disease biomarkers. A breath VOC is
not recognized as a COVID-19-specific biomarkers unless it is consistently established and
highly correlated with the presence of the disease only in SARS-CoV-2 infected individuals
as confirmed by many independent studies. The associated chemical classes of individual
VOC biomarkers are usually determined by metabolomic studies first, providing clues as
to the likely types of metabolic pathways being affected by disease processes.

Some researchers have used and defined the term ‘biomarker’ incorrectly by extending
the definition to include groups or clusters of VOCs that collectively are referred to loosely
as a composite biomarker, usually based on complex statistical models developed to
discriminate between clinical sample types. Chemical biomarkers largely lose their meaning
and effectiveness as diagnostic tools, in many cases, when they are aggregated into cluster
groupings. By contrast, the diagnostic value of well-established individual chemical
biomarkers, identified by metabolomics, can strongly support diagnoses based on breath
e-nose analyses. The more individual disease VOC biomarkers detected in co-analyzed
(e-nose + metabolomic method) breath samples as being dysregulated (quantitatively
changed in concentration relative to controls) or uniquely present (qualitatively unique to
SARS-CoV-2 infections), the stronger the confirmation and diagnostic value of biomarkers
detected. Thus, the statistical certainty and confidence of e-nose based diagnoses generally
increases exponentially as more disease biomarkers are detected in the same samples
by metabolomic methods [16,18,123]. This principle supports the combined use of both
e-nose and metabolomic methods, or dual-technology instruments containing e-nose and
chemical-analysis capabilities, when necessary for diagnostic confirmations.

An early study by Ruszkiewicz et al. [48], who analyze the breath VOC profile signa-
ture of inflammatory and oxidative stress metabolites detected from COVID-19 positive
patients (compared to COVID-19 negative patients) using gas chromatography and ion
mobility spectrometry (GC-IMS), identified the following ten VOCs (in alphabetical or-
der) as possible quantitative disease biomarkers: acetone, alcohol, butanone, heptanal,
isoprene, methanol, octanal, propanal, and propanol along with one unidentified metabo-
lite (Table 2). The SARS-CoV-2 virus caused an upregulation in the production of nine
volatile metabolites, resulting in increases in VOC concentrations of these components in
the human breath relative to healthy controls, and a downregulation of only methanol
that decreased in concentration relative to controls. The chemical classes of these possible
COVID-19 quantitative biomarkers included four aldehydes, two ketones, two alcohols,
and one alkadiene or hemiterpene.

Table 2. Potential disease-specific metabolomic VOC biomarkers identified for possible early detec-
tion of COVID-19, caused by SARS-CoV-2 coronavirus.

VOC Sample
Source

VOC-
Collection

Apparatus 1
Total Patients,

N =
Chemical
Analysis 2

COVID-19 Disease
Biomarkers 3 Metabolomic 4 Chemical

Class 5 Reference

Oral Breath
Polypropylene
Haldane tube

breath-sampler
98 GC-IMS

Acetone Increase Ketone

[48]

Isoprene Increase Alkadiene,
Hemiterpene

Heptanal Increase Aldehyde
Propanol Increase Alcohol
Propanal Increase Aldehyde
Butanone Increase Ketone
Ethanal Increase Aldehyde

Methanol Decrease Alcohol
Octanal Increase Aldehyde

1 unidentified Increase ND
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Table 2. Cont.

VOC Sample
Source

VOC-
Collection

Apparatus 1
Total Patients,

N =
Chemical
Analysis 2

COVID-19 Disease
Biomarkers 3 Metabolomic 4 Chemical

Class 5 Reference

Expired air
from

endo-tracheal
tube, (all

mechanically
ventilated
patients)

Heated transfer
line connected

to end of
endotracheal

tube

28 PTR-MS

2,4-octadiene Increase Alkadiene

[23]Methylpent-2-enal Increase Aldehyde
Nonanal Increase Aldehyde

1-chloroheptane Increase Alkane deriv.
NE

End-tidal
breath

ALTEF gas
sample bags 56 GC-IMS

Acetone Decrease Ketone
[130]Propanol Increase Alcohol

10 unidentified ND ND

Direct Exhaled
Breath

Tedlar bag 340 PTR-TOF-MS

Nitrogen monoxide Increase Nitric oxide
(NO)

[131]

Butane Increase Alkane
Acetaldehyde Increase Aldehyde

Heptanal Increase Aldehyde
Ethanol Increase Alcohol

Methanol Increase Alcohol
Propionic acid Increase Carboxylic acid

Direct Exhaled
Breath

2-way valve,
which is

connected to
3L SamplePro
flexFilm bag

26 GC-TOF-MS

Octanal Increase Aldehyde

[132]
Nonanal Increase Aldehyde
Heptanal Increase Aldehyde
Dodecane Increase Alkane
Tridecane Increase Alkane

2-pentyl furan Increase Furan deriv.

Direct Exhaled
Breath

Mouthpiece
with HEPA

filter connected
to 3 L Tedlar

bag

81 TD-GC-MS

Benzaldehyde Increase Aromatic
aldehyde

[133]

1-propanol Increase Alcohol
3,6

methylundecane Increase Alkane

Camphene Increase Bicyclic
monoterpene

β-cubebene Increase tricyclic
sesquiterpene

Iodobenzene Increase organoiodine
benzene deriv.

1 unidentified ND ND

Direct Exhaled
Breath

1.5 L Tedlar
bags 85 FTIR

Methanol Increase Alcohol

[134]
Ethanol Increase Alcohol

Acetaldehyde Increase Aldehyde
Carbon dioxide Decrease CO2

1 Air sample collection source apparatus: Sample collected in bags or connected directly to chemical analysis
devices. 2 Chemical analysis device abbreviations: FTIR = Fourier Transform Infra-Red Spectrometry; GC-
IMS = Gas chromatography-Ion mobility spectrometry; PTR-MS = Proton-transfer-reaction-Mass spectrometry;
GC-TOF-MS = Gas Chromatography-Time-of-Flight-Mass spectrometry; TD-GC-MS = Thermal Desorption-Gas
chromatography-Mass spectrometry. 3 Disease VOC biomarker chemical identifications list. 4 VOC concentration
in COVID-19 vs. healthy patient air samples: Increase = higher concentrations; Decrease = lower concentrations;
5 ND = not determined; NE = non-endogenous.

Most other metabolomic studies investigating COVID-19 induced breath volatiles also
found various aldehydes as the predominant chemical class representing VOC components
that increased in concentration relative to controls [23,131,132]. All references detected
at least one aldehyde except for Chen et al. [130] who detected a ketone (acetone) that
decreased in concentration, but increases occurred for alcohol and ten other unidentified
metabolites. Alkanes and alcohols also were significant VOC components found to increase
in the breath of COVID-19 individuals [48,131,133]. Berna et al. [132] indicated that heptanal
was identified as the most consistent and key VOC biomarkers elevated in SARS-CoV-2
infected patients.

Some unusual minor volatile metabolites were found in some studies to be present
and increasing in the breath of COVID-19 positive individuals including isoprene and
2,4-octadiene (both alkadienes), propionic acid (a carboxylic acid), 2-pentyl furan (a furan
derivative), benzaldehyde (an aromatic aldehyde), camphene (a bicylic monoterpene),
and β-cubebene three terpenes (a tricyclic sesquiterpene) [131–133]. Some of these minor
metabolites may actually turn out to also be qualitative biomarkers of COVID-19, but
occur at sufficiently low concentrations due low levels of upregulation that they are non-
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detectable in many COVID-19 individuals. A few VOCs present in COVID-19 such as
1-chloroheptane (a chloronated alkane) and iodobenzene (an organoiodine benzene deriva-
tive) were halogen-containing hydrocarbons that were probably artifacts in the analysis
because they are not normally produced endogenously [23,133].

Laird et al. [134] used the AtmosFTIR platform to determine that higher concentrations
of methanol, ethanol, and acetaldehyde were found in the exhaled breath of the COVID-19
group with symptomatic patients being higher than in SARS-CoV-2 infected asymptomatic
patients. In addition, they found that carbon dioxide levels decreased in SARS-CoV-2
infected symptomatic patients compared to infected asymptomatic and control patients.
These results are consistent with increases in alcohols and aldehydes found in COVID-19
patients. The occurrence of the lowest CO2 concentration in symptomatic patients indicated
that this may be linked to the severity of the disease and ability to breathe.

Liangou et al. [131] detected an increase in the inorganic gas nitric oxide (NO), also
known as nitrogen monoxide, in the breath of COVID-19 individuals. Gould et al. [135]
found that NO production was associated with oxidative stress caused by many types of
viral infections. However, Nikolaidis et al. [136] concluded that the comorbidities associated
with negative clinical patient outcomes of COVID-19 sickness are linked to depletion of
NO in the body.

The presence of NO in the breath is normally considered a strong diagnostic indicator
of asthma and NO levels in the breath are commonly used to detect the severity of asthma
effects on the lungs [137]. These observations suggest that the mechanism by which the
SARS-CoV-2 virus attacks the lungs could be similar to the effects of asthma. NO is gener-
ated during conversion of the amino acid L-arginine to L-citrulline by nitric oxide synthase
(NOS) using NG-hydroxyl-L-arginine as an intermediate [138]. L-arginine is a common
substrate of both nitric oxide synthase and the arginase pathway. NO nitric oxide is pro-
duced by constitutive and inducible nitric oxide synthases which have pathophysiological
important roles via direct or indirect effects on oxidative stress production.

The importance of NO in the pathogenesis of COVID-19 was elucidated in a review
by Ranjbar et al. [139]. NO is a vasodilator produced by endothelial cells which could
potentially be used to treat COVID-19. NO synthesis and release are promoted by Ang-
(1–7), a metabolite produced by ACE. Since SARS-CoV-2′s spike protein binds to ACE2, it
affects the production of NO by decreasing production of Ang-(1–7) [140]. NO is able to
inhibit the COVID-induced cytokine storm, improve oxygenation of the arteries, and inhibit
pulmonary hypertension by its vasodilatory actions within the lungs [141]. These findings
suggest that patients could benefit from exogenous NO because of its anti-inflammatory
effects. Because NO now has been associated with protective measures, especially for
ARDS patients resulting from COVID-19 virus infections, the prescription of NO treatments
for COVID-19 patients is justly warranted. Supplemental NO administered through in-
haled nitric oxide or donor compounds could help combat the detrimental effects of this
virus [142]. The NO donor, S-nitroso-N-acetylpenicillamine (SNAP) is able to interfere with
the fusion of the SARS-CoV spike protein with its receptor and diminish the virus’ RNA
synthesis [143]. The increased severity of COVID-19 symptoms associated with old age
and the age-related decline of NO levels have tied low NO levels to all major high-risk
groups of COVID-19 infection. This correlation of low NO levels to increased COVID-19
infection severity and COVID-exclusive symptomatology, along with successful utilization
of NO gas as a therapeutic option, should stimulate further research on this basis to further
improve COVID-19 treatment options [136].

Respiratory viral infections induce the release of inflammatory cytokines in the body
which result in the production and release of nitric oxide (NO), ammonia (NH4), and VOCs.
Besides GC-MS gas detection, certain nanosensor systems also are capable of detect these
exhalents and have the potential for early detection and disease monitoring of patients
with viral respiratory infections. The specific targeting of volatile inorganic, nonVOC-type
chemical biomarkers, known to be associated with SARS-CoV-2 infections, provides and
alternative approach using of a single selective, resistive chemosensor. Exline et al. [144]
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developed a novel breathalyzer electronic technology that utilizes a single sensor made of a
catalytically active, semiconducting sensing film, produced by means of sol-gel processing
using tungsten alkoxide precursors, that targets NO and ammonia detection in breath
within 15 s. The single sensor allows for rapid analysis and diagnostic results. The
sensitivity of the γ-phase tungsten trioxide (WO3) sensor to NO, selectivity and response in
the presence of various interfering compounds have been demonstrated previously [145].
The specificity of the instrument for detecting COVID-19 is based on the production of
a distinctive pattern or breathprint for patients with active COVID-19 pneumonia. The
breathprint identified COVID-19 pneumonia patients with 88% accuracy upon admission
to the ICU. The sensitivity index of the breathprint, scaled with the key biomarker ammonia
concentration, correlated with duration of the SARS-CoV-2 infection.

3.2. Disease-Specific Qualitative COVID-19 Biomarkers

The previous section demonstrates that the vast majority of COVID-19-specific breath
VOC biomarkers identifed so far are of the quantitative or metabolomic type in which
the levels of normal breath VOCs produced and released in healthy individuals are either
increased or decreased due to COVID-19 pathogenesis. Investigations into the possible
existence of qualitative COVID-19 disease-specific VOC biomarkers produced only in
diseased individuals with SARS-CoV-2 infections, but not produced in healthy or non-
COVID-19 individuals, have only just begun and much more research is still required.
One possible example of a qualitative COVID-19 biomarker was detected by Ruszkiewicz
et al. [48] who found a large, unidentifed VOC peak in a 3-D GC-IMS plot of data acquired
by breath analysis and comparisons from 98 COVID-19-positive and -negative patients
located at two hospital sites in Edinburgh, UK and Dortmund, Germany. They identified
specific biomarkers distinguishing between the two groups used in the final PCA Modeling.
They found one of the VOC peaks (M7 or Feature 144) was not yet identified from the
GC-IMS reference database. Other diagnoses among the cohort included asthma, COPD,
bacterial pneumonia, and cardiac conditions. The use of multivariate analysis identified
two aldehydes (ethanal, octanal), two ketones (acetone, 2-butanone), and methanol that
discriminated COVID-19 from the other conditions. Other VOC biomarkers among the
best discriminants between COVID-19-positive and COVID-19-negative patients included
isoprene, propanal, and propanol, and heptanal. The unidentified M7-VOC isolated in
Edinburgh had very significant predictive power for severity/death, whereas heptanal
was identified as most significant in Dortmund. The study concluded that the identity
of the nine VOC biomarker compounds were consistent with COVID-19 derangement
of breath-biochemistry by ketosis, gastrointestinal effects, and inflammatory processes.
More GC-IMS research at multiple other locations will be required to determine if the M-7
VOC is consistent enough to be considered a qualitative biomarker, since it may vary in
detecteability depending on different sources and methods of patient air sample acquisition.
Other possible qualitative biomarkers may be identified with additional research.

3.3. Human Cell-Line COVID-19 Culture Viral Biomarkers

Viral infected human cell cultures have been used extensively in the past to study
the release of VOCs associated with previous flu and coronavirus pandemics, which are
biosafety level-2 viral agents. However, relatively few studies of this type have been
carried out for COVID-19 research into disease biomarkers because of the higher biosafety
level of this viral agent. The SARS-CoV-2 virus is classified as a biosafety level-3 (BSL-3)
agent, impeding basic research into its biology and development of effective antivirals.
Consequently, Ju et al. [146] had to develop a biosafety level-2 (BSL-2) cell culture system
for production of transcription and replication-competent SARS-CoV-2 virus-like-particles
(trVLP) to study this virus. This trVLP expresses only a reporter gene (GFP), replacing
the viral nucleocapsid gene (N) required for viral genome packaging and virion assembly
(SARS-CoV-2 GFP/∆N trVLP). The complete viral life cycle was exclusively confined in
the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV
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N. Genetic recombination of N supplied in trans into the viral genome was not detected
from sequence analysis one-month after serial passages in the N-expressing cells.

Several cellular and animal 2-D cell models have been used for studying SARS-CoV-2
infection. In vitro models are useful for studying virus biology under highly controlled
conditions, but these models are limited in utility because they often fail to duplicate
the complex biochemical interactions occurring in whole human body systems [147,148].
However, in vivo models for SARS-CoV-2 infection have the potential to elucidate some
details of COVID-19 pathophysiology, contributing to the discovery of COVID-19 antivi-
rals and vaccines [149], but are costly, requiring BSL-3 animal facilities, and raise valid
ethical concerns. Cellular models do not resemble the complexity of a whole organism
and thus in vitro data are not translatable to in vivo models [150]. The use of 3-D cell
models in SARS-CoV-2 research has gained attention due to closer similarity with the
host organism. Organ-derived explants, produced by induced stem cells, are now widely
applied to the study of respiratory viral infections [151]. Results obtained from specific
tissues are important for determining possible responses to viral infection and finding new
therapeutic targets. Patient-derived explants have the advantage of preserving overall
tissue architecture and complexity compared with organoids, but organoids may be more
easily standardized.

3.4. Application and Uses of COVID-19-Specific Chemical Biomarkers

Samprathi et al. [49] recently listed nine ways in which identifying COVID-19-volatile
and -nonvolatile biomarkers could be useful in more effectively dealing with decisions
relating to treatment of infected patients, including early detection of the disease (con-
firming infection status), confirmation and classification of disease severity, defining and
implimenting hospital and ICU admission criteria, identification of high-risk cohorts, ratio-
nalizing appropriate therapies, assessing response to therapies, developing prognoses, and
establishing criteria for discharge from the ICU and/or hospital.

4. Experimental and Clinical COVID-19 Detection by E-Noses

Research involving the development of e-nose technologies for COVID-19 detection
was initiated soon after the pandemic began, and the SARS-CoV-2 virus started spread-
ing globally in the early months of 2020. The efficacy testing of new experimental and
commercially available electronic-nose devices for potential detection of SARS-CoV-2 in-
fections, based on different applications and approaches for disease detection at various
stages of COVID-19 development, have utilized a variety of e-nose sensor arrays with
variable sensor numbers and sensor types (Table 3). Most of the seven e-nose devices
tested so far are of the MOS sensor type and contain 10 or less MOS sensors. The few
uniquely different sensor array type instruments include the portable Cyranose 320 e-nose
device with 32 carbon black polymer composite (CBPC) sensors and the NaNose with
8 gold nanoparticle (GNP) sensors. All except one of these devices had preexisted with
earlier developmental histories prior to the occurrence of the COVID-19 pandemic and
were not originally developed specifically for COVID-19 detection but had been tested for
use in detecting other respiratory diseases and cancers. The one exception is the newer
experimental e-nose device developed by Kwiatkowski et al. [152] that consists of a sensor
array composed of three micro-electro–mechanical system (MEMS) sensors and a single
MOS sensor. MEMS is a chip-based technology in which the sensors are composed of a
suspended mass between a pair of capacitive plates that creates a difference in electrical
potential when the sensors are tilted, which is measured as a change in capacitance. By
contrast, MOS sensors detect various types of gases by measuring the electrical resistance
change that is induced when the gases adsorb to the sensor surface coating. As with MOS
sensors, different GNP sensors have a diverse sensing layer on the sensing surface that
swells or shrinks upon exposure to different types of VOCs, causing changes in electric
resistance. GNP sensors are multilayered and are composed of gold nanoparticles linked
to different kinds of organic ligands with an organic film element that provides sites for
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the adsorption of VOCs and an inorganic nanomaterial layer responsible for changes in
electrical conductivity. [153,154]. When the sensors are exposed to VOCs, the gases adsorb
onto or diffuse into the sensing layer and react with the organic segment, having exposed
the functional groups that cap the inorganic nanomaterials.

Table 3. Experimental electronic-nose systems tested for COVID-19 detection with performance and
efficacy results.

VOC
Sample
Source

VOC-
Collection

Apparatus 1

Sample Size
(N =) 2

E-Nose
Device

Sensor
no./Type 3

Accuracy
ROC AUC 4

Application
Efficacy Reference

Oral exhaled
breath

Direct
breathing
through
Aeonose

device

219 Aeonose
(portable)

8 MOS
1 CO

(AS-MLC)
1 NO2

(AS-MLN)
1 VOC

(AS-MLX)

0.74

Pre-operative
screening of
SARS-CoV-2

infections

[155]

Oral exhaled
breath

Hand-held
breathalyzer

system
140 NaNose 8 GNP 0.76; 0.95

Differentiated
COVID-19 from

controls and
other lung
infections

[44]

Oral exhaled
breath

BioVOC
breath

sampler
56 Experimental 3 MEMS,

1 MOS 0.79–0.89
Differentiated

COVID-19 from
controls

[152]

Intranasal air
extraction

Nasal
sampling

valve
54 PEN3 eNose 10 MOS 0.58; 0.63

57% false +
precludes clinical

use
[156]

Oral exhaled
breath

T-piece valve;
5L

NalophanTM

bags

55 EOS-
AROMA 4 MOS 0.81

Differentiated
respiratory
failure vs.

controls and
asymptomatic
SARS-CoV-2

infections

[157]

Oral exhaled
breath

Mask-
integrated

sampling bag
615 GeNose C19

(portable) 10 MOS 0.88–0.95

Screening
tool to

distinguish
patients with

COVID-19 from
other diseases

[158]

Oral exhaled
breath

3 L Tedlar
sampling

bags

123–132
(5 trials)

Cyranose 320
(portable) 32 CBPC 1.00 Post-COVID-19

patient screening [159]

Oral exhaled
breath

1.4 L
metallized
plastic bag

102
Cyranose-

320
(portable)

32 CBPC 0.98; 1.00
Post-coronavirus

disease
syndrome (PCS)

[45]

Oral exhaled
breath

1 L medical-
grade PVC

sampling bag
460 GeNose C19

(portable) 10 MOS 0.86 COVID-19
detection [160]

1 Human breath air sampling methods. 2 Sample size: Total number of patients evaluated from several sampling
classes including controls, SARS-CoV-2 infected, and other respiratory diseases. 3 Sensor type abbreviations:
CBPC = carbon black polymer composite; GNP = gold nanoparticle; MEMS = microelectromechanical systems;
MOS = metal oxide semiconductor. 4 Accuracy of the specified diagnostic application method based on Receiver
Operating Characteristic (ROC) area under the curve (AUC).
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The MOS sensor types used in most e-nose tests for COVID-19 detection applications
generally operate at higher temperatures and their application is limited to situations
where there is a readily available power source at the site of breath air sample analysis.
Consequently, MOS-sensor-based e-noses often are not as useful in outdoor field situations
for real-time diagnostic applications where mass sampling is carried out, such as in drive-
by testing centers. In these situations, e-nose devices designed for operating a lower or
room temperatures may be more effective without the availability of electrical power
sources. Alternatively, breath air samples may be acquired from individuals using special
VOC-retentive air bags for quick analysis later at indoor sample-processing facilities.

The handheld portable electronic nose Aeonose, developed by Aeonose Company in
Zutphen, the Netherlands, was tested as a pre-operative screening tool for the detection of
SARS-CoV-2 infections to distinguish COVID-19-positive from -negative participants based
on VOC patterns in exhaled breath with a high negative predictive value (NPV) of 0.92 [155].
This e-nose consists of eight micro hotplate MOS sensors and carbon monoxide (AS-MLC),
nitrogen dioxide (AS-MLN), and VOC (AS-MLX) sensors. Breath air sample types were ob-
tained directly into the e-nose without a special mouthpiece device for filtering particulates
or other contaminants. The use of eight MOS sensors for VOC discrimination in addition
to the single AS-MLX VOC sensor provides adequate power for analyzing differences in
volatile organics, but this is also augmented by two non-VOC sensors that measure the
dysregulation of other gases frequently associated with COVID-19 patients. The reduction
in output of both CO and nitrogen dioxide gases in exhaled breath associated with gener-
ally reduced lung capacity indicate additional, measured lung gas flux parameters to help
confirm sensor response pattern changes in VOC emissions. The advantages of adding
additional sensors to measure inorganic gas exchange emissions are confirmed by known
effects of COVID-19 on these emissions as co-factors in diagnoses.

The study included 219 participants, 57 of which were COVID-19-positive and 162
were COVID-19-negative. The Aeononse breath test failed due to dyspnea or technical
difficulties in only 3% of the samples. The Aeonose may be a useful noninvasive and
promising low-cost triage tool for excluding SARS-CoV-2 infection in patients elected for
surgery. Important reasons for e-nose screening are that COVID-19 patients have increased
risk for adverse postoperative outcomes from aerosol exposures of other hospitalized
infected patients and hospital workers. COVID-19-positive pre-operative patients might be
rescheduled to avoid these risks or necessary precautions could be taken to limit chances of
transmission [161].

An exploratory clinical study, initiated in Wuhan China in March 2020 during the
early months of the COVID-19 pandemic near its origination, was conducted using a cohort
that included 49 confirmed COVID-19 patients, 58 healthy controls, and 33 non-COVID-19-
infected lung infection controls [44]. The NaNose e-nose, consisting of eight NGP sensors in
the array, was integrated with electronic circuitry to an advanced apparatus that collected
exhaled breath samples from subjects blowing air into the device for 2–3 s from a maximum
distance of 1–2 cm. A built-in sensor system composed of a nanomaterial-based hybrid
sensor array with multiplexed detection capabilities provided a means to detect COVID-19
disease-specific biomarkers from exhaled breath, enabling rapid and accurate diagnosis.
The device contained sensors with surface-sensing layers within the organic segment with
specific organic functionalities (exposed functional groups) including dodecanethiol, 2-
ethylhexanethiol, 4-tertmethylbenzenethiol, decanethiol, 4-chloro-benzenemethanethiol,
3-ethoxythiophenol, tert-dodecanethiol, and hexanethiol capable of the detection of possible
VOC breath biomarkers. Study results showed an AUC of 0.81 (95% CI, 0.70 to 0.89) in
patients with COVID-19 vs. with controls. A higher AUC of 0.97 (95% CI, 0.92 to 0.99) was
observed in COVID-19 vs. other lung infection/conditions, and an AUC of 0.87 (95% CI,
0.67 to 1.00) for COVID-19 first samples vs. COVID-19 sample tests. Significance of the
results (p < 0.001) was found for the comparisons of the training set for each of binary
classification. The high-functioning of this e-nose attests to the proper selection of specific
sensors in the sensor array that were appropriately determined to be effective in the design
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phase for applications in detecting viral respiratory diseases. The extended application to
COVID-19 detection was fortunate and efficacious based on current performance data.

Kwiatkowski et al. [152] developed an experimental e-nose composed of three MEMS
sensors and 1 MOS sensor, all commercially available VOC gas sensors, to fill the need
for a relatively cheap POCT device for mass daily screening of large crowds in airports,
schools, and stadiums where rapid noninvasive methods are required which also deliver
fast results. The exploratory study utilized patients from a local hospital to test the efficacy
of the methods and device to help limit the spread of COVID-19 and similar viral infec-
tions. The breath samples were collected using a BioVOC sampler from COVID-19-infected
patients during the third wave of the pandemic in Poland between March and July 2021
when SARS-CoV-2 Alpha and Delta variants dominated within this period in Poland. The
test included hospitalized COVID-19 patients and a control group from which 56 breath
samples were taken (33 patients with severe course of COVID-19 disease, 17 breath samples
collected within the healthy control group, and 6 samples of ambient air). Discriminating
models presented divergent results with AUC above 0.83 for these algorithms for both
cohorts. Discrimination between COVID-19-infected and healthy patients only resulted in
84% classification accuracy for the Neural Network and Random Forest algorithms. Worse
results of 70% classification accuracy were observed for the KNN algorithm. Exclusion
of humidity sensor data resulted in a drop in classification accuracy to 66% for the KNN
algorithm only. The other algorithms secured better classification accuracy between 70 and
74%. COVID-19 infection was more severe for elderly patients who had statistically greater
changes in exhaled breath than for younger patients over time with disease progress. The
cohort was divided into two subsets using as a threshold the median age of COVID-19-
infected (55 years) and healthy volunteers (45 years) analyzed separately. The evaluated
ROC curves confirmed better e-nose detection results for the older group with a classifi-
cation accuracy over 91% for all algorithms. However, the detection accuracy dropped
to 80% for the younger group of patients in the worst-case neural network algorithm.
These results endorse the proposed methodology for use with an e-nose that is statistically
more effective in exposing the most vulnerable elderly patients. The lower performance
level of this e-nose is largely due to the minimal number of sensors selected in the sensor
array that do not effectively discriminate between complex VOC mixtures, associated with
different sample types, because of reduced permutations possible in smellprint signature
combinations. Many variables associated with changes in VOC compositions in breath
samples can reduce the effectiveness of sample discrimination power if the sensor arrays
lack sufficient sensor numbers to cover the wide variation of VOC types encountered in air
sample analytes.

The commercially available compact PEN3 eNose (AIRSENSE Analytics GmbH, Schw-
erin, Germany), containing a 10 MOS sensor array, was used by Snitz et al. [156] in com-
bination with a one-way disposable intranasal sampling valve to acquire subject air and
a canister of pressurized medical grade air to continuously inflate a large breathing bag
that served as clean reference air for the eNose. The apparatus was tested at a national
testing station ran by Magen David Adom in Tel Aviv, Israel where people were sent via a
national referring system that assigned tests to individuals who had a lengthy exposure
to a verified COVID-19 patient and/or were experiencing persistent COVID-19 symp-
toms. They obtained a mean AUC of 0.63, with a true positive rate ranging from 47.4% to
94.4% and mean of 75.8% with this apparatus. The researchers concluded that additional
e-nose improvements and results were possible by optimizing the sensor coating speci-
ficity, based on analysis of COVID-19 volatile biomarkers, to provide effective real-time
diagnoses in locations such as airports, the workplace, and cultural events. The authors
acknowledge the need to modify the composition of sensor coatings to improve targeting
of COVID-19-specific volatiles to increase sensitivity and improve diagnostic performance.

Bax et al. [157] developed breath aroma fingerprints from exhaled breath samples,
assessed using a commercial EOS-AROMA e-nose with a custom 4-MOS sensor array in
combination with a T-piece valve and 5L NalophanTM bags as a system to help the manage-
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ment of respiratory failure patients. They carried out a feasibility study on 33 SARS-CoV-2
patients, consisting of 25 with respiratory failure, 8 asymptomatic, and 22 controls to gather
data on tolerability to the breath analysis apparatus and for a preliminary assessment of
sensitivity and specificity. The most significant features for discrimination of breath aroma
fingerprints from respiratory failure patients vs. controls were identified using the Boruta
algorithm and support vector machine (SVM) classification model. The SVM differentiated
between respiratory failure patients and controls with an AUC of 0.81, sensitivity of 0.920,
and specificity of 0.682, respectively. The selected analyzed features were significantly
different in SARS-CoV-2 patients with respiratory failure vs. controls and asymptomatic
SARS-CoV-2 patients (p < 0.001). The developed analysis system was determined to be
suitable for exhaled breath collection from respiratory failure patients to obtain diagnostic
breath fingerprints useful as sensitive markers of lung disease severity and etiology. This
e-nose design is also somewhat compromised by limited numbers of sensors in the sensor
array that reduced specificity, accuracy, sensitivity, and performance. An increase in the
number of sensors in the sensor array with diverse capabilities of discriminating a wider
range of COVID-19-specific VOCs would improve the effectiveness of this e-nose.

The portable GeNose C19 e-nose with 10 MOS sensors was assessed for COVID-19
detection by two independent research groups. Nurputra et al. [158] originally developed
and tested the potential of the instrument as a low-cost, noninvasive screening tool to
distinguish patients with COVID-19 from other respiratory diseases at the bedside clini-
cal setting. They employed a mask-integrated sampling bag for collecting and profiling
615 breath samples composed of 333 COVID-19-positive and 282 -negative samples ob-
tained from 43 positive and 40 negative COVID-19 patients. They utilized four different
machine learning algorithms, including linear discriminant analysis (LDA), support vector
machine (SVM), stacked multilayer perceptron (SMP), and deep neural network (DNN)
to determine the best-performing pattern recognition methods and obtain a high system
detection accuracy of 88–95%, sensitivity of 86–94%, and specificity of 88–95%. Their re-
sults suggested that the GeNose C19 device had high potential as a breathalyzer for fast
COVID-19 screening. Hidayat et al. [160] tested an instrument with similar accuracy results.
They developed a hybrid machine learning-based algorithm that combined hierarchical
agglomerative clustering analysis and a permutation feature importance method to im-
prove the data analysis of the instrument. With this this learning approach, they obtained
an effective and optimum feature combination which allowed reduction of the number
of sensors employed by half without downgrading the classification performance. Based
on cross-validation test results, the hybrid algorithm resulted in values for accuracy of
86 ± 3%, sensitivity of 88 ± 6%, and specificity of 84 ± 6%. The effectiveness of using this
hybrid filter wrapper and feature-selection method helped to optimize the GeNose C19
instrument’s performance. The use of several statistical sample discrimination models to
facilitate distinguishing between clinical sample types improved data analysis and perfor-
mance of this e-nose. The authors effectively developed machine learning-based algorithms
to combine hierarchical agglomerative clustering analysis with permutation features to
improve test results.

Nidheesh et al. [159] conducted a pilot study using the Cyranose C-320 e-nose device
with a 32-sensor carbon black polymer composite (CBPC) sensor array for point-of-care
diagnostic testing of post-coronavirus disease syndrome (PCS). Breath samples of cohorts
consisting of PCS, asthma, and normal (control) subjects were tested. Match/no-match
and k-nearest neighbors (KNN) algorithm was used to assess the sensor’s performance to
discriminate between sample types and to confirm the diagnosis of PCS. Their prediction
model yielded 100% sensitivity and specificity with an accuracy for the prediction model
AUC of 1.0. The analysis of sensor intensity responses of all sensors in the sensor array
indicated that sensor numbers 5, 23, and 31 had significantly higher sensor responses to
breath samples from post-COVID-19 PCS individuals than with asthma and normal control
subjects. They further determined that the higher sensor responses to breath samples of
PCS subjects suggested that the main VOC differences in these samples (compared with
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asthma and control samples) were most probably due to higher concentrations of aldehydes,
alcohols, and ketones in post-COVID-19-positive individuals, based on 32-sensor response
data obtained from the C-320 e-nose by running pure analytical grade samples from specific
chemical classes according to Doty et al. [162]. These data are consistent with the same
VOC biomarker chemical classes identified in metabolomic studies presented previously
in Section 3.1. In a similar previous report by Zamora-Mendoza et al. [45] involving
breath analysis of COVID, PCS, and control samples analyzed with the C-320 e-nose, a
sensitivity of 97.4% was obtained in the classification, confirming the successfully use of
this instrument for point-of-care applications in diagnosing PCS. The additional benefits
and advantages mentioned for this technique over other usual clinical procedures included
non-invasive testing, cost-effective application, need of less expertise to operate, and fast
diagnosis (results in <10 min). The C-320 e-nose has several advantages over other portable
types including its light weight, high sensor number (n = 32) for effective discriminations,
and its tested performance for many human disease-detection applications. The CBPC
sensor array can detect VOCs in air samples with high levels of moisture content because
the sensor array is not affected as significantly by high relative humidity. Thus, the C-320
e-nose is ideally suitable for breath air samples, although it is best to precondition the
sensor array for the moisture content of the samples being analyzed to improve data quality
for discriminations. This instrument has a limited number of sample types that may be
stored in its memory simultaneously, but this problem could be solved with improvements
in software and instrument redesigns to accommodate larger numbers of sample types
encountered for diagnostic applications.

5. Electronic-Nose Sensor Array and Smellprint Signatures

Electronic-nose devices generally consist of a multisensor array, composed of variable
numbers of sensors with differential sensitivities to different classes of VOCs, which
produces a sensor response (smellprint) pattern when collectively assembled into a graphic
digital output format such as a radar plot or bar graph. The combined sensor–response
pattern is a visual representation of the collective sensor array responses to the entire
complex of VOC components present in the sample analyte that the sensors are capable of
detecting. Some VOC components may not be detected by any of the sensors in the sensor
array and therefore these VOCs are not represented by the smellprint signature. This is the
reason why e-nose sensor arrays should contain sensors that have specific sensitivities to the
full range of VOC chemical classes represented by target compounds expected to be present
in the specific sample types being investigated. Thus, e-nose devices designed specifically
to detect COVID-19 disease biomarkers must contain a sensor array with sensors capable
of detecting all or most of the possible VOC biomarkers present in exhaled human breath,
particularly those VOCs that are most represented and present in infected individuals [163].
Consequently, a considerable amount of metabolomic research has been required to identify
the VOC biomarkers most associated with COVID-19 before sensor selection in the design
phase of an effective COVID-19 e-nose instrument. For example, the development of an
e-nose capable of strongly detecting and differentiating various types of aldehydes as
key VOC components, consistently present in breath samples from COVID-19-positive
patients, would facilitate better discriminations from COVID-19-negative patients. Most
e-nose devices tested for COVID-19 detection were not specifically designed and developed
based on sensor array-selective sensitivities to COVID-19 identified VOCs but were e-noses
developed for other applications or general uses with broad applications. This probably
resulted from the need to test e-nose devices before research had been done to identify
COVID-19-specific quantitative VOC biomarkers. Nevertheless, the development of a
novel COVID-19 e-nose device based on specific VOC biomarkers would likely perform
with much greater discrimination and accuracy than general-use e-nose devices developed
to detect other diseases. Such a COVID-19-specific e-nose could potentially utilize a
smaller number of highly selective sensors to specifically detect primarily COVID-19
VOC biomarkers.
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The discrimination power of an e-nose device increases as the number of sensors
sensitive to known target VOCs (being detected) increases. Thus, an e-nose device with
30 sensors provides greater discrimination power to distinguish sample types than one with
only 10 sensors, providing that all sensors in the sensor array were specifically selected for
their sensitivities to VOC metabolites targeted as known disease biomarkers for COVID-19
detection. However, the cost of e-nose devices generally increases as the number of sensors
included in the sensor array increases. Consequently, as optimum e-nose configuration
must be determined to balance sensor costs with desired level of discrimination power. This
process can benefit from knowing which sensors provide the best discrimination power for
detection of known targeted VOCs.

Most research using e-nose devices for diagnostic detection does not fully utilize
smellprint patterns to their full potential as effective means of discriminating between
sample types, particularly when the sample types have similar VOC composition. In
these cases, discriminations of sample types require the use of various statistical analysis
models and algorithms such as principal component analysis (PCA), linear discriminant
analysis (LDA), and quadratic discriminant analysis (QDA), often in combination with
receiver operating characteristic (ROC) curves, to evaluate the effectiveness of sample
discriminations. Aroma plot PCA maps derived from e-nose output data may be used to
visualize relationships between sample types through cluster analysis and distributions of
data points. These plots show differences in VOC composition and chemical relatedness
between different sample sources. However, comparing smellprint signatures themselves
between sample types can be quite useful if the sensor array is adequate to indicate
differences in the types and concentrations of VOCs between sample types. Proper sensor
selection to target known VOCs and increasing the number of sensors improves sample
discriminations using smellprint signatures. Smellprint signatures indicative of unique
VOC profiles may be stored in known database libraries for comparisons against unknown
samples for diagnostic analyses.

One of the big advantages of e-nose devices is that these instruments effectively
measure differences in the molar ratios (or relative quantities) of VOCs present within
air samples even when the same identical components are present in the air sample ana-
lyte [164]. This advantage is particularly useful for the detection of metabolomic (quantita-
tive) biomarkers in which the SARS-CoV-2 virus causes an upregulation or downregulation
of a specific metabolite, derived from a certain metabolic pathway, resulting in an increase
or decrease in concentration of that specific metabolite within the breath specimen of
COVID-19 patients compared with healthy or COVID-19-negative individuals. Of course,
an e-nose, if properly designed, can detect volatile qualitative biomarkers that may be
present in the breath specimen. Including sensors in the array that are preferentially
sensitive to qualitative VOC biomarkers would markedly improve the sensitivity and
discrimination power of the instrument to detect COVID-19 based on breath samples.

6. Metabolomic Research of Nonvolatile Biomarkers

Most nonvolatile COVID-19 disease biomarkers are divided into categories based on
the specific organ systems where they are produced. Samprathi et al. [45] discussed different
types of primarily nonvolatile COVID-19 biomarkers in terms of their pathophysiological
basis and categorized them into hematological, inflammatory, coagulation, cardiac, hepatic,
muscular, renal, electrolytes, biochemical, and miscellaneous, based on the specific organ
systems involved. Nonvolatile COVID-19 biomarkers, such as volatile biomarkers, also
may be categorized based on the particular and specific metabolic pathways or chemical
processes affected by COVID-19 pathogenesis. Nonvolatile biomarkers are of sufficiently
high molecular weight such that they do not dissolve as well as gases in the blood and
therefore cannot be volatilize out of blood capillaries in the lungs as VOC gases that may
be carried within expelled human breath. Consequently, nonvolatile biomarkers must be
collected as biological fluids derived from other sources such as from the blood (serum and
plasma), urine, lymph nodes, and saliva.
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Considerable active research is ongoing to identify nonvolatile COVID-19 biomarkers
that may be used to help improve early detection of the disease from biological samples
other than from exhaled breath, particularly using blood serum and plasma specimens.
Several metabolic pathways related to energy production, amino acid, and lipid metabolism
have been found in several independent studies to be affected in severe COVID-19 disease
cases, particularly tryptophan metabolism via the kynurenine pathway that was persistently
dysregulated, suggesting the roles of several metabolites including tryptophan, kynurenine,
and 3-hydroxykynurenine as potential prognostic biomarkers of the disease [22].

The most frequent and common effect of COVID-19 on human metabolic pathways is
on certain types of amino acid metabolism. COVID-19’s effects on tryptophan metabolism
via the Kynurenine pathway (KP) have been consistently observed in several recent stud-
ies [22]. In mammalian cells, the Kynurenine pathway controls the catabolism of tryptophan
not used in protein synthesis and KP is connected to the immune system, neurological dis-
orders, and in the diversion of tryptophan from the serotonin/melatonin pathway towards
biosynthesis of the high-energy carrier, nicotinamide adenine dinucleotide (NAD) [165].
The KP enzyme, indoleamine 2,3-dioxygenase (IDO), is activated by cytokines via immune
responses to SARS-CoV-2 infections that exert anti-inflammatory effects, linking KP with
the immune system [166,167]. This is consistent with new findings associating KP with
COVID-19 disease severity. The activity of IDO was inversely related to IL-6 levels in
COVID-19 patients, but the acylcarnitines, kynurenine, and methionine sulfoxide metabo-
lites were positively correlated with IL-6 levels [168]. Xiao et al. [169] also found increases
in IL-6 and IL-10 levels associated with the nicotinate and nicotinamide metabolism in
COVID-19 patients. Altered levels of kynurenine and tryptophan metabolites from trypto-
phan and ceramide metabolic pathways were associated with COVID-19 severity in several
independent studies [165]. Increases in levels of KP metabolites, including anthranillic
acid and 3-hydroxykynurenine associated with high IL-10/8 and immunosuppression
in COVID-19 patients, further support the possible role of KP metabolites as potential
prognostic biomarkers of COVID-19 [170]. Furthermore, Blasco et al. [171] indicated that
specific metabolome profiling of COVID-19 patients supports the key role of the tryptophan
and nicotinamide pathways as well as cytosine metabolism in which cytosine, described as
a coordinator of cell metabolism in infections, could be useful as a highly reliable predictor
for early diagnosis and a main discriminant metabolite distinguishing the metabolome
profiles of COVID-19-positive vs. COVID-19-negative individuals.

Effects of SARS-CoV-2 infections on other metabolic pathways were also correlated
with COVID-19 disease severity by the appearance or increase in specific associated metabo-
lites. Shi et al. [172] investigated fatty acid metabolism and found that the levels of five fatty
acids, including 2-hydroxy-3-methylbutyric acid, 3-hydroxybutyric acid, succinic acid, oleic
acid, and palmitelaidic acid increased proportionally to disease severity from mild to severe
cases. Barberis et al. [173] reported similar results with the appearance or proportional in-
creases in arachidonic acid and oleic acid levels in gluconeogenesis and porphyrin metabolic
pathways as disease severity increased. Levels of certain low-, high-, and very-high-density
lipids (including LDLs-1, 4, 5; HDLs-1, 4; VLDL-5; and triglycerides) within the lipoprotein
metabolic pathway also increased with disease severity in SARS-CoV-2-infected individu-
als [174]. Finally, Chen et al. [175] examined metabolites in nucleic acid and amino acid
metabolism and found that the appearance or increase of certain metabolites, such as
taurochenodeoxycholic acid 3-sulfate, glucoronate, and N,N,N-trimethyl–alanylproline
betaine TMAP, was also correlated with COVID-19 disease severity.

Further research should help to explain why COVID-19-induced upregulation and
downregulation of certain metabolic pathways causes specific nonvolatile metabolites to be
significantly affected by COVID-19 pathogenesis over time following SARS-CoV-2 initial
infections. Standardization of potential metabolomics-based prognostic testing methods
and large-scale clinical validation are needed before these serum- and plasma-based tests
can be applied in clinical settings with varying degrees of disease severity; however,
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metabolomics will likely play an important future role in predicting the outcome of the
disease with greater certainty [22].

7. E-Nose COVID-19 Disease Monitoring and Recovery

The rapid physiological and health state information available from e-nose devices
could help provide the potential for daily monitoring of a patient’s current condition,
disease progress, response to treatments, treatment effectiveness, and rate of recovery
from COVID-19. This additional e-nose information adds to the arsenal of data derived
from exhaled breath VOC emissions that provide a clearer picture of physiological and
metabolic activities occurring in real time and help identify which metabolic pathways
and organ systems are being most impacted and affected by the disease. The science of
improving metabolomic information in terms of the correlating effects of viral pathogenesis
on specific metabolic pathways and the corresponding resulting changes in breath VOC
composition that specifically indicate these metabolic effects will allow continuous e-nose-
based disease monitoring to be developed to a higher state of utility and effectiveness.
These advancements will require the acceptance and standardization of e-nose devices
and procedures being used in clinical practice, the development and availability of e-
nose reference databases, or libraries for specific e-nose devices that provide smellprint
signatures and VOC profiles diagnostic for specific physiological conditions and disease
states. These developed databases must necessarily include data for different stages of
a disease on time scales that could be mathematically modeled to provide continuous
data for each specific disease. Of course, many variables must be included to account
for differences in host metabolic and preexisting factors. This information would add
to data necessary for accurate disease detection and diagnoses by providing additional
information about affected organ and metabolic systems to improve the success of targeted
treatments. Thus, e-nose devices could be used not merely for disease diagnostics, but
also to acquire more comprehensive information about a patient’s overall health and
physiological states (throughout the body), as has been demonstrated previously for White-
nose Syndrome [162].

The process of diurnal and periodic e-nose monitoring of patients’ physiological
and disease states in the long-term is useful to assess progress in recovery, response to
treatments, and changes in specific metabolic activities associated with specific organs to
determine levels of organ dysfunctions and long COVID-19 effects. Repeated measures
of physiological states require quality control procedures to assure that e-nose instrument
monitoring is accurate and consistent over diverse time scales. One of the biggest problems
encountered in long-term e-nose monitoring of VOC profiles is sensor drift and instability.
Sensor drift has been dealt with using various strategies. Bosch et al. [176] determined
that sensor drift of the C-320 e-nose could be effectively controlled by using regression
models to improve accuracy in differentiating between IBD patients and controls based
on corrections of six sensors in the 32-sensor array. The residuals of the regression models
were applied to original patient data to produce date-corrected measurements used for
subsequent data analyses. Differences in sensor outcomes between sample groups were
then calculated and logistic regression analyses were performed on the sensors, which
differed significantly between treatment groups. Miller et al. [3] found that using univariate
and multivariate analysis on sensor response values increased the quality of sensor output
responses to compensate for sensor drift. Univariate analysis allowed the capabilities of
applying correction to one variable factor that caused baseline variations to avoid adverse
sensor drift effects. Kwiatkowski et al. [152] recommended that periodic cleaning of gas
sensor and/or treatments with UV-irradiation, pulse heating, or doping sensor sensing-
layer components with metal nanoparticles (tungsten, platinum, gold, nickel, or iron) could
help correct and prevent diurnal sensor drift in e-nose devices containing MOS sensor
arrays [177,178].
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8. Nonclinical Applications for COVID-19 Detections

The development of prescreening methodologies to facilitate the suppression of
COVID-19 through targeted epidemiological approaches involving pre-detection prior
to POCT and clinical testing is necessary to identify sources of infected individuals at
ports of entry into the country, particularly travels from other highly hazardous countries
considered to be major locations with active disease centers with a high risk for possibly
introducing new strains of the virus. A variety of prescreening methods are possible to
help facilitate detection and identification of SARS-CoV-2-infected individuals in public,
POCT, and preclinical settings.

8.1. Canine-Assisted Disease Detection

The versatile and effective uses of canine surveillance teams for regulatory drug
enforcement, law enforcement (e.g., tracking of suspects and perpetrators in crime investi-
gations), various forensic applications, bomb detection, and for human recovery in rubble
following natural disasters is well documented [163]. These live-animal, bio-detection
applications of canine olfactory systems (of certain dog breeds) take advantage of the keen
olfactory sensitivity and strong discriminatory capabilities of well-trained dogs. The strong
potential uses of canine surveillance capabilities for coronavirus (COVID-19) early disease
detection could be an effective extension of already existing, well-proven canine surveil-
lance federal programs already developed for drug and bomb detection in airports and
other international transportation depots worldwide. Additionally, considerable research
has demonstrated the capabilities of canines to detect COVID-19 and a variety of other hu-
man diseases. Disease surveillance using canines in public locations would be considerably
more feasible and appropriate than applications within clean medical facilities and clinical
settings where sanitation is essential to minimize the occurrence of secondary infections
and to prevent nosocomial (hospital-acquired) infections in potentially susceptible patients
that are often in a weakened state and may be recovering from other diseases [42,43].

Studies to investigate the potential for COVID-19 canine early surveillance have been
conducted by several researchers at the University of Florida [179]. Significant recent
evidence suggests that canines with their highly sensitive and discriminating noses can
detect COVID-19 to help confirm diagnoses. Trained dogs were competent in reproducibly
recognizing SARS-CoV-2 viral infections from volatiles derived from saliva/tracheal, sweat,
and urine samples [180–182]. Canines for the detection of COVID-19 are probably most
useful in outdoor settings and in transportation depots to facilitate detections where large
numbers of individuals are gathered, rather than in clinical settings where sanitation is
an issue.

An official epidemiological government program for disease prevention, utilizing
canine early disease surveillance of COVID-19 by federal officials at the CDC or other
government agencies, could become an effective first-tier, early detection component in a
more comprehensive program to detect the disease in presymptomatic humans to facilitate
more effective discovery and notification of early infected, symptomless individuals that
would benefit most from early treatments to help prevent the occurrence of multiple
subsequent cycles of asymptomatic transmission to others before symptoms first appear.
Canine surveillance could be employed in numerous public locations to help improve
early disease detection, resulting in more effective COVID-19 disease management. Some
locations targeted for early surveillance (with different levels of priority) could be nursing
homes, entrances to medical facilities, sporting events, local and international airports,
other transportation depots (buses, trains, subways, taxi, and shuttle stations), cruise lines,
auditoriums, universities, and schools. The limited manpower and funding available for
canine early surveillance programs would likely require implementation priorities based on
the identification of locations where early disease detections would have the largest impact
in mitigating epidemiological and transmission parameters considered most important in
disease management.
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8.2. User COVID-19 Self-Test Kits and Wearable E-Nose Disease Monitors

The ready availability of COVID-19 self-test kits from various sources has made it
easy for individuals to obtain preliminarily results or be tentatively tested without having
to visit less convenient testing facilities. Most individuals usually do not choose to utilize
COVID-19 self-test kits unless they feel they have been exposed to infected individuals,
have predisposing factors, or they are beginning to have virus-like symptoms and want to
determine if these symptoms are likely due to a cold, flu, or COVID-19. These convenient
self-test kits are quite useful to help subjects to determine if they should consult a doctor
or receive early treatment, particularly if they are at higher risk due to age, race, or other
predisposing factors that warrant quick action in confirming accurate diagnosis.

Much smaller specialized wearable devices such as wristwatches and smartphones
with miniature e-nose devices are likely to become available in the future, providing the
wearer with early warnings of possible disease. Prototypes of these devices are currently
under development. Lorwongtragool et al. [183] constructed a carbon nanotube (CNTs)
polymer sensor array based on inkjet printing technology. With this technology, a composite
and film of CNTs/polymers were prepared as sensing layers for a chemical sensor array.
Wearable e-nose devices may be used to detect VOCs and odors released from the human
body to obtain physiological data and for real-time tracking of biophysical characteristics
such as behavior, emotional state, and health status.

Li et al. [184] developed a smartphone-based colorimetric sensor array-type e-nose
that reacts to different VOCs by a color change to create a color output pattern of different
intensities. This handheld device integrates a disposable colorimetric 10-sensor array
consisting of plasmonic nanocolorants and chemo-responsive organic dyes to detect key
volatiles for diagnosis of diseases at the ppm level within 1 min of reaction to different
chemical classes of VOCs. The camera takes a photograph of the colorimetric sensor array
after the reaction to VOCs has occurred to create a permanent record of the sensor response
pattern and intensity. The sensor array is then replaced for the next sample to be analyzed.

8.3. Standardization of COVID-19 Breath VOC Biomarker Databases

Human breathomics has emerged as an important new branch of metabolomics pri-
marily because of greater understanding of the VOC composition in exhaled breath of
healthy subjects compared with those with various disease states. Exhaled air samples are
considered among the most convenient and useful specimens for the diagnosis of respi-
ratory diseases, including viral infections, because of the ease of non-invasive collection
without significant discomfort to patients [185]. A reference database, containing compre-
hensive human breathomics data on 913 VOCs from 2766 published reference sources, has
been developed in association with several respiratory diseases such as asthma, chronic
obstructive pulmonary disease (COPD), and cystic fibrosis [186]. The development of a
COVID-19-specific database of VOC biomarkers should be readily possible once sufficient
breath analysis data have been confirmed and replicated from many independent labora-
tories using identical or very similar metabolomic analytical equipment. The analytical
instruments primarily used for determinations of quantitative (metabolomic) COVID-19
VOC breath biomarkers include mass spectrometry (MS) coupled to various types of pre-
analysis chromatographic-type technological methods such as Proton-transfer reaction
(PTR), Time-of-Flight (TOF), Thermal Desorption (TD), and Instrumental Mass Fraction-
ation (IMF) to separate individual VOC gas analytes temporally for sequential detection
and analysis. In addition, nuclear magnetic resonance (NMR) [187] and infrared (IR) spec-
troscopy [188] are sometimes added to help determine the molecular structure and identity
of individual VOCs, particularly when multiple isomers are possible due to chiral centers.

8.4. Electronic-Nose Prescreening via Random Prophylactic Tests and Targeted Surveillance

Some electronic-nose devices, currently under development, will eventually become
accepted and standardized for clinical practice as effective, inexpensive and easy to use
breath-analysis diagnostic instruments and methods for routine uses in prophylactic screen-
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ings for COVID-19 and many other diseases. E-nose prescreening for disease may even-
tually become one of the first procedures performed when a patient comes into a clinic
for routine checkups and for prophylactic tests such as mammograms for breast cancer,
colonoscopy for colon cancer, PAP test for certain types of human papillomavirus (HPV),
prostate-specific antigen (PSA) test, and other routine prophylactic tests. Simple single-
sensor e-nose-like devices capable of detecting nitric oxide (NO) in a patient’s breath are
already routinely used for the diagnosis of asthma in many medical clinics [137]. The
versatility of breath analysis in detecting numerous diseases throughout the body make
e-nose devices a simple way to obtain cheap and accurate first-diagnostic results to help
prescreen and determine the need for further confirmation of diagnosis using other tests.
Such electronic nose-based methods would require sufficient disease-specific reference
databases on VOC smellprint libraries for all known diseases included to be screened
on a routine basis. The development of e-nose databases for specific diseases could be
made readily available universally to medical clinics worldwide, based on standardized
methods and specific e-nose instruments used, which would greatly facilitate this reality
on a global scale.

9. Approved Electronic Devices for COVID-19 Diagnostics in Clinical Practice

There is currently only one electronic device that has been officially approved to
diagnose COVID-19 in the United States. The U.S. Food and Drug Administration (FDA)
issued an emergency use authorization (EUA) on 14 April 2022 for the first COVID-19
diagnostic test that detects VOCs in human breath samples from patients with SARS-CoV-2
infections [189,190]. This FDA approval is significant because it validated the use of breath
VOC analysis as an alternative test for COVID-19 detection. The test may be performed
where the patient’s breath specimen is both collected and analyzed, such as in mobile
testing sites, hospitals, health clinics, and doctor’s offices. Qualified and trained operators
of the electronic device may conduct the test under the supervision of a licensed health care
provider authorized by state law to prescribe tests. The test provides results in less than
three minutes.

The instrument used to conduct this FDA-approved test, known as the InspectIR
COVID-19 Breathalyzer, is about the size of a single piece of carry-on airplane luggage, and
consists of a portable gas chromatography–mass spectrometry (GC-MS) device that rapidly
detects the presence of the five main VOCs in exhaled breath that are known chemical
biomarkers of SARS-CoV-2 infections. The identity of the five COVID-19 biomarker VOCs,
targeted for detection by the instrument, was not disclosed to protect the proprietary rights
of the inventor. Presumptive or unconfirmed positive test results must be confirmed with a
molecular test. Negative results are evaluated in the context of a patient’s recent exposures,
history, and presence of COVID-19 clinical signs and symptoms. This test should not be
used as the sole basis for treatment or patient management decisions, including infection
control decisions.

The performance of the InspectIR COVID-19 Breathalyzer instrument was validated
in a study of 2409 individuals, including those with and without COVID-19 symptoms.
The test results showed 91.2% sensitivity (the percent of positive samples the test correctly
identified) and 99.3% specificity (the percent of negative samples the test correctly identi-
fied). In areas of low COVID-19 disease prevalence such as in areas where only 4.2% of
individuals have proven positive for the virus, the study test had a negative predictive
value of 99.6%, indicating that people who receive a negative test result are likely to be truly
negative. The instrument tests performed with similar sensitivity in a follow-up clinical
study focused on the Omicron variant.

The developer of the instrument, InspectIR Systems, located in Frisco, Texas, expects
to produce about 100 instruments per week, each of which may evaluate up to 160 breath
samples per day according to the FDA. At this level of instrument production, the COVID-
19 testing capacity, using the InspectIR COVID-19 Breathalyzer alone, is expected to increase
by approximately 64,000 samples per month.
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There are only a few other known examples of official government-approved electronic
instruments used to analyze exhaled breath for detection of COVID-19 infections in other
countries of the world. The Dutch-made SpiroNose became the first breathalyzer in the
world to be approved to test for COVID-19 in February 2021. This instrument is an
electronic nose consisting of seven MOS sensors which measures all complex exhaled
breath air specimens containing VOC components that are subsequently combined into
a composite biomarker with a ROC-AUC accuracy of 0.947. Dutch health authorities
determined that the SpiroNose is reliable for negative test results, but positive tests must
be followed by regular PCR tests to confirm SARS-CoV-2 infections, which is the case for
most positive breathalyzer test results. A mass spectrometry device known as Breathonix,
like such as the InspectIR COVID-19 Breathalyzer in the U.S., was developed by a spin-off
company from the National University of Singapore (NUS). It is the first instrument that
has secured provisional authorization for in COVID-19 detection in Singapore. The 60 s
breath test developed for this system achieved more than 90% accuracy in a Singapore-
based pilot clinical trial. This mass-spec machine has a high price tag and is too big to be
used in many POCT settings, but the cost was justified by the very high volume of people
being COVID-19 tested as they pass to and from the adjacent country, Malaysia, through
the Singapore Tuas Checkpoint Facility border crossing. An analysis of the SpiroNose
performance was subsequently reported in a series of studies by deVries et al. [191].

Many other unofficial COVID-19 exhaled breath-based detection devices are under
development as well, including various breathalyzer-type devices. A coronavirus breatha-
lyzer has been defined as a diagnostic medical device enabling a user to detect the presence
of SARS-CoV-2 in exhaled breath with 90% or greater accuracy [192]. The concomitant
development of coronavirus breathalyzer-type devices has been ongoing since early 2020
by unrelated research groups in many countries [193,194].

10. Conclusions

Significant drawbacks of rRT-qPCR, the current laboratory gold standard for COVID-
19 diagnosis, limit its usage and utility to application settings providing slower or delayed
results. Despite its relatively high reliability, this real-time quantitative PCR method may
occasionally have a false detection rate up to 25% and a false positive rate of 2.3–6.9% [195].
These limitations include its semi-invasive approach and requirements for expensive
special equipment and well-trained staff as well as delayed delivery of results. The need
for diagnostic methods providing quicker results has demanded the development of
cheaper, more versatile, and simpler noninvasive detection tests providing high accuracy
in real time for high-throughput screening (HTS). The recent GC-MS InspectIR COVID-19
Breathalyzer technology approved by the FDA for COVID-19 detection provides rapid
results, but it is very expensive, effectively limiting the number of units that may be
purchased and deployed. The InspectIR system does provide quicker results than PCR but
does not yield more accurate results than PCR. Recent testing of artificial e-nose and animal-
based olfactory methods for early detection of COVID-19 infections in humans have been
investigated as possible alternatives to fill part of this technological need. Studies [196–199]
evaluating applications of trained dogs have been initiated to examine canine prescreening
surveillance and monitoring of COVID-19 infections of humans in public places such as in
airport terminals, shopping malls, people waiting in lines assembled to receive services
(including COVID-19 testing stations), at sporting events, and other outdoor situations
where individuals may be approached and quickly sniffed by trained canines (similar to
drug surveillance) as a prescreening first line of defense. In these cases, dogs may be trained
to detect differences in the smells of healthy vs. virus-infected individuals. Such individuals
testing positive for SARS-CoV-2 infections may be given notifications on the spot by trained
professionals (handling surveillance dogs) of their likely infection status and be requested
to report to healthcare medical services or labs for infection confirmation. Alternatively,
individuals could make use of available self-test kits. In a similar way, portable e-nose units
potentially may be used directly in POCT situations by COVID-19 healthcare surveillance
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patrol personnel to detect infections in presymptomatic individuals. This would provide
a means for early detections of the disease to help mitigate transmission of the virus,
particularly in asymptomatic individuals, through timely notification of infection status of
individuals in public places.

Critical evaluations of COVID-19-specific epidemiological findings have suggested
that the ability of the SARS-CoV-2 virus to rapidly spread from individuals who are
presymptomatic or asymptomatic and indicate that effective diagnoses and isolation of in-
dividuals based on symptoms alone are ineffective in preventing ongoing spread [200,201].
Consequently, the use of more frequent population screening tests to identify infectious
presymptomatic or asymptomatic individuals is a more effective strategy to break viral
transmission chains to suppress the growth dynamics of the COVID-19 pandemic. Lar-
remore et al. [202] modeled the effectiveness of repeated population COVID-19 screenings
in relation to patterns of viral load kinetics by considering test sensitivities, frequency,
and sample-to-answer reporting time. They demonstrated that the effectiveness of pa-
tient screening depends more on the frequency of testing and speed of reporting and
that screening effectiveness is only marginally improved by high test sensitivity. They
concluded that population screenings should prioritize accessibility, frequency, and rapid
reporting time with only secondary emphasis on the analytical limits of COVID-19 detec-
tion. The use of simpler and cheaper e-nose devices to achieve more frequent real-time
population screenings could be quite useful in supporting this improved COVID-19 disease
suppression strategy.

Other types of hybrid e-nose devices, not yet investigated for COVID-19 detection, also
have the potential for providing effective VOC detection at lower temperatures than con-
ventional MOS based e-noses. Conti et al. [203] developed TiO2 nanostructure sensors com-
bined with different polymers including poly(3,4-ethylenedioxythiophene), polystyrene
sulfonate, polypyrrole, and polystyrene sulfonate to produce nanocomposites casted with
gold interdigitated electrodes. Shooshtari and Salehi [204] developed carbon nanotube–
titanium dioxide hybrid nanowire sensors with improved sensitivity to identify VOC gases
at room temperature.

We herein summarized documented evidence and efficacy data to support a strong
theoretical basis and logistical pathway by which electronic-nose and closely related VOC-
detection technologies could be used for early, noninvasive detection of COVID-19 in
pre-symptomatic human patients and in symptomless carriers of the disease who do
not show any physical manifestations of the illness following viral infection. The many
benefits of early COVID-19 detections to improve the efficiency of precision medicine,
particularly using noninvasive methods, include reductions in transmission episodes, more
effective regional epidemiological controls, increased options for more effective treatments,
improved prognoses, and possibly reduced COVID-19-related mortality rates in all age
classes, races, and ethnic groups [205]. Applications of e-nose devices for COVID-19 early
detections are already possible with high accuracy and the additional use of VOC breath
biomarkers to help further confirm and improve the confidence in e-nose based diagnoses.

Researchers involved in COVID-19 diagnostics continue to examine and search for
VOC target metabolites in exhaled air which are characteristic of the disease to improve the
development of more effective electronic sensors and chemical detectors. Metabolomics is
an evolving area of science that continues to change and improve as new technologies, ana-
lytical instruments, and associated methods are developed. Application of metabolomics
in investigations of infectious disease diagnostics has been promoted by the urgency of the
COVID-19 pandemic. Metabolomics approaches that rely on analysis of exhaled breath
VOCs from COVID-19 patients hold promise for use in large-scale screening of human
populations in point-of-care (POC) settings [22]. Additional future metabolomic research
will hopefully provide more mechanistic details to explain why COVID-19-induced dys-
regulation of certain metabolites occurs within specific metabolic pathways. Determining
which VOCs are ultimately most reliable as consistent chemical biomarkers of COVID-19
infections for patients with variable personal histories, health conditions, immune systems,
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and nutritional states would be most useful for improving COVID-19 diagnoses using
e-nose devices.
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Abbreviations
List of Acronyms and Abbreviations: (alphabetical).

ARDS Acute respiratory distress syndrome
AUC Area under the curve
CBPC Carbon black polymer composite
ECMO Extracorporeal membrane oxygenation
FTIR Fourier Transform Infra-Red Spectrometry
GC-IMS Gas chromatography-Ion mobility spectrometry
GC-MS Gas chromatography mass spectrometry
GCxGC-MS Comprehensive 2-dimensional gas chromatography–mass spectrometry
GC-TOF-MS Gas chromatography–Time-of-Flight–mass spectrometry
GNP Gold nanoparticle
HTS High throughput screening
IR Infrared spectroscopy
LC-MS Liquid chromatography–mass spectrometry
LC-MS/MS Liquid chromatography–tandem mass spectrometry
MEMS Microelectromechanical systems
MOS Metal oxide semiconductor
NMR Nuclear magnetic resonance spectroscopy
PTR-MS Proton-transfer-reaction–Mass spectrometry
ROC Receiver operating characteristic
rRT-qPCR Real time reverse-transcription quantitative polymerase chain reaction
TD-GC-MS Thermal Desorption–Gas chromatography–Mass spectrometry
UHPLC-MS Ultra-high-performance liquid chromatography–mass spectrometry
UHPLC-MS/MS Ultra-high performance liquid chromatography–tandem mass spectrometry
UPLC-MS/MS Ultra-performance liquid chromatography–tandem mass spectrometer
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