
Citation: Gao, Z.; Wang, Q.; Pan, Z.;

Zhai, Z.; Long, H. PointPainting++:

3D Object Detection Aided by

Semantic Image Information. Sensors

2023, 23, 2868. https://doi.org/

10.3390/s23052868

Academic Editor: Stefano Berretti

Received: 31 January 2023

Revised: 27 February 2023

Accepted: 2 March 2023

Published: 6 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

PointPainting++: 3D Object Detection Aided by Semantic
Image Information
Zhentong Gao 1,2,3 , Qiantong Wang 1,2 , Zongxu Pan 1,2,3 , Zhenyu Zhai 1,2,3 and Hui Long 1,2,3,*

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
2 Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,

Chinese Academy of Sciences, Beijing 100190, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,

Beijing 101408, China
* Correspondence: longhui@aircas.ac.cn

Abstract: A multi-modal 3D object-detection method, based on data from cameras and LiDAR, has
become a subject of research interest. PointPainting proposes a method for improving point-cloud-
based 3D object detectors using semantic information from RGB images. However, this method
still needs to improve on the following two complications: first, there are faulty parts in the image
semantic segmentation results, leading to false detections. Second, the commonly used anchor
assigner only considers the intersection over union (IoU) between the anchors and ground truth
boxes, meaning that some anchors contain few target LiDAR points assigned as positive anchors.
In this paper, three improvements are suggested to address these complications. Specifically, a
novel weighting strategy is proposed for each anchor in the classification loss. This enables the
detector to pay more attention to anchors containing inaccurate semantic information. Then, SegIoU,
which incorporates semantic information, instead of IoU, is proposed for the anchor assignment.
SegIoU measures the similarity of the semantic information between each anchor and ground truth
box, avoiding the defective anchor assignments mentioned above. In addition, a dual-attention
module is introduced to enhance the voxelized point cloud. The experiments demonstrate that the
proposed modules obtained significant improvements in various methods, consisting of single-stage
PointPillars, two-stage SECOND-IoU, anchor-base SECOND, and an anchor-free CenterPoint on the
KITTI dataset.

Keywords: deep learning; 3D object detection; multi modal; data fusion; semantic segmentation

1. Introduction

In 3D object-detection scenarios, vehicles are generally equipped with LiDAR and
cameras to acquire point cloud and RGB images. However, the task of handling complex
scenarios is arduous using a single sensor. LiDAR-only methods find it arduous to detect
objects that are far from the sensor, since the reflection points are too sparse. In contrast,
image-only methods are vulnerable to occlusion and bad weather, such as fog and snow.
Therefore, multi-modal approaches that use both sensors have become a popular research
direction. Recently, many new multi-modal methods [1–4] have been proposed. However,
LiDAR-only methods, such as SE-SSD [5] and PV-RCNN [6], outperform these in the
KITTI [7] 3D object-detection benchmark. This anomaly indicates the importance of finding
an effective fusion strategy to improve the 3D object-detector performance.

PointPainting [8] proposes a fusion strategy that attaches the semantic scores of the
RGB image to the LiDAR points based on the transformation relationship between the
image and the point cloud. This can be applied to various existing LiDAR-only methods
and requires minimal changes to the network architecture. However, in some cases, the
detection accuracy of PointPainting [8] drops compared with the original methods. There-

Sensors 2023, 23, 2868. https://doi.org/10.3390/s23052868 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052868
https://doi.org/10.3390/s23052868
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2926-8620
https://orcid.org/0000-0003-1266-0324
https://orcid.org/0000-0002-5041-3300
https://orcid.org/0000-0003-2998-4333
https://doi.org/10.3390/s23052868
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052868?type=check_update&version=2

Sensors 2023, 23, 2868 2 of 21

fore, this paper proposes PointPainting++, including the following methods, to solve the
problems in PointPainting [8].

This paper first proposes a novel anchor weight-assignment strategy to reduce the
negative impact of inaccurate semantic information. Inaccurate semantic information is
generated due to the following three points. Firstly, the semantic result of the image is
imperfect due to the quality of the segmentation algorithm. In addition, there are errors in
the calibration of cameras and LiDARs. Finally, rounding operations are needed during the
transformation between the pixels and LiDAR points, which also introduces errors.

As shown in Figure 1, these inaccurate segmentations often correspond to many false
detections, contrary to the intention of introducing semantic information. In this paper, we
propose a strategy that uses the proportion of inaccurate points contained in the anchor to
generate their weights in the loss function. In this way, anchors with more inaccurate points
will play a more critical role, enhancing the detector’s ability to distinguish ambiguous objects.

Figure 1. Semantic segmentation and 3D object-detection results of painted PointPillars [8] on the
KITTI [7] dataset. The purple and yellow parts in the semantic segmentation results represent
motorcycle and pedestrian categories, respectively. The inaccurate parts of the semantic segmentation
results lead to false detections.

Furthermore, a dual-attention module based on the SEBlock [9] is introduced to the
detection network. This module measures the importance of the channels and points in
a voxelized point cloud and generates weights for each voxel in the channel and point
dimensions. This module can suppress channels with inaccurate semantic information for
each LiDAR point on the one hand, and suppress the features of LiDAR points carrying
inaccurate semantic information on the other.

In addition, a SegIoU-based anchor assigner is used for more efficient anchor assign-
ment. As shown in Figure 2a, the distribution of LiDAR points is often concentrated on the
surface, since they are obtained by collecting the reflected laser. This phenomenon is more
pronounced for objects of larger sizes, such as cars and trucks. Figure 2b shows that both
boxes are assigned positive anchor tags when using the max-IoU assigner [10]. However,
the blue box does not contain any target points, which makes classification difficult. This
shows that the max-IoU assigner will introduce many controversial positive anchors with
few points inside when processing “L”-shaped LiDAR points. We proposed a SegIoU-
based anchor assigner to only assign positive tags to anchors that have a high degree of
overlap and similar semantic information with ground-truth boxes. In this way, the inferior
positive anchors containing few target points will be screened out due to different semantic
information with ground-truth boxes.

These three improvements are evaluated on the KITTI [7] 3D and bird’s-eye view (BEV)
object-detection benchmarks. The results showed that PointPainting++ could better improve
the performance of cars, pedestrians, and cyclists compared with PointPainting [8]. Experi-
ments on the KITTI [7] valid set proved that our strategy is effective in multiple methods.

Contributions. PointPainting++ combines image and LiDAR point information more
effectively based on PointPainting [8] and reduces detector interference caused by inaccu-
rate semantic information. Our contributions are as follows:

• Anchor weight-assignment strategy. We propose a way to assign weights to anchors
based on semantic information. The detector becomes more discriminative by paying
more attention to the problematic anchors carrying more inaccurate semantic information.

• Dual-attention module. We adopt a dual-attention module to enhance the voxelized
point cloud. This module suppresses the inaccurate semantic information in a vox-
elized point cloud.

Sensors 2023, 23, 2868 3 of 21

• SegIoU-based anchor assigner. We use a SegIoU based anchor assigner to filter out
abnormal positive anchors, to avoid confusion and improve detector performance.

(a) (b)

Figure 2. Figure (a) is a annotation sample from the KITTI [7] dataset, and Figure (b) is a typical case
of anchor assignment. The red box in Figure (b) is the ground-truth box, and the green and blue
boxes are anchors. A positive anchor tag will be assigned to the blue box by the max-IoU assigner.
However, the blue box containing few target LiDAR points is not a high-quality positive anchor.

2. Related Works
2.1. Multi-Modal 3D Object-Detection Methods

According to the level of data fusion, current multi-modal 3D object-detection methods
using both point cloud and RGB images can be divided into three categories: raw data
fusion, feature-level fusion, and decision-level fusion. A chronological overview of the
multi-modal 3D object-detection approaches is shown in Figure 3.

2017 2018 2019 2020 2021 2022

Raw Data Fusion Method

Feature-Level Fusion Method

Decision-Level Fusion Method

MV3D F-PointNet PointFusion AVOD General-Fusion ContFuse RoarNet F-ConvNet

Complexer-YOLO

MVX-Net PointPainting

PI-RCNN

3D-CVF EPNet MMF CLOCs PointAugmenting F-PointPillars

Fusion Painting

Fast-CLOCs MVP TransFusion FUTR3D

DeepFusion VF-Fusion

BEVFusion

CAT-Det

Figure 3. Chronological overview of the multi-modal 3D object-detection methods.

2.1.1. Raw Data Fusion

The raw data fusion-based method fuses RGB images and LiDAR points before they
are fed into a detection pipeline. Such methods are generally built sequentially: 2D
detection or segmentation networks are first employed to extract information from the RGB
images, and then the extracted information is passed to the point cloud, and finally the
enhanced point cloud is fed to the point-cloud-based detectors. Based on the fusion types,
the raw data fusion-based methods can be divided into two categories: region-level fusion
and point-level fusion.

Region-level fusion. Region-level fusion methods aim to utilize information from
RGB images to constrain object candidate regions in the point cloud data. Specifically, an
image is first passed through a 2D object detector to generate a 2D bounding box. Then, the
bounding boxes are extruded into 3D viewing frustums. Finally, the LiDAR points within
the frustums are sent to the point-cloud-based detector. F-PointNet [11] first proposes this
fusion mechanism, and many new methods have been proposed to improve this fusion
framework. Representative methods of this category include F-ConvNet [12], RoarNet [13],
F-PointPillars [14], and General-Fusion [15].

Sensors 2023, 23, 2868 4 of 21

Point-level fusion. Point-level fusion methods aim to enhance point cloud data
with image information. The enhanced point cloud is then fed into a point-cloud-based
detector for better detection results. PointPainting [8] is the pioneer of such methods.
This fusion strategy has been followed by a lot of papers, including Fusion-Painting [16],
Complexer-YOLO [17], and MVP [18].

2.1.2. Feature-Level Fusion

The feature-level fusion-based method builds fused features using the features ex-
tracted from the point cloud and images. This method is currently the most popular
multi-modal method and many fusion methods fall into this category, since traditional
CNN is not available on raw point clouds. The feature fusion methods can be divided into
three categories based on the fusion stages [19].

Fusion in backbone. Such methods first correspond the LiDAR points to the pixels
through a transformation between the camera coordinate system and the LiDAR coordi-
nate system. After that, the features from a LiDAR backbone and the features from an
image backbone using various fusion operators are fused according to this pixel-to-point
correspondence. This fusion strategy can be performed in the middle layers of a voxel-
based detection backbone. Representative methods included MMF [20], MVX-Net [21],
DeepFusion [22], and CAT-Det [23]. In addition, this fusion strategy can also be conducted
only at the feature maps of the voxel-based detection backbone. Representative methods
include 3D-CVF [1], FUTR3D [24], BEVFusion [25], VF-Fusion [26], TransFusion [27], and
PointAugmenting [28]. In addition to the fusion in voxel-based backbones, there also exist
some papers incorporating image information into the point-based detection backbone,
including PointFusion [29], EPNet [3], and PI-RCNN [2].

Fusion in proposal generation and RoI head. In such methods, 3D object proposals
are first generated from a LiDAR detector, and then the 3D proposals are projected onto
the image view and bird’s-eye view to crop features from the image and LiDAR backbone,
respectively. Finally, the cropped image and LiDAR features are fused in an RoI head
to predict parameters for each 3D object. MV3D [30] and AVOD [31] are pioneers using
multi-view aggregation for multi-modal detection. FUTR3D [24] and TransFusion [27]
employ the transformer [32] decoder as the RoI head for multi-modal feature fusion.

2.1.3. Decision-Level Fusion

Decision-level fusion merges the results of a LiDAR-based network and an image-
based network at the decision level. It does not need to consider the interaction of the
point cloud and RGB image at the information level, resulting in low complexity. The
representative methods include CLOCs [4] and Fast-CLOCs [33].

2.2. PointPainting

PointPainting [8] is one of the raw data-fusion methods and is the basis of the method
proposed in this paper. As shown in Figure 4, the architecture of PointPainting [8] consists
of three main stages: (1) semantic segmentation: an image-based semantic segmentation
network that generates pixel-wise semantic scores; (2) point cloud painting: painting LiDAR
points with the semantic scores; (3) point-cloud-based detector: a point-cloud-based 3D
object-detection network with changed input channels. The three stages will be described
in detail in the following sections.

2.2.1. Semantic Segmentation

The image-based semantic segmentation network takes an RGB image as input and
outputs a matrix containing the predicted class scores that correspond to all pixels. These
scores contain rich semantic information which can complement the point cloud. Point-
Painting [8] can use the existing semantic segmentation module to complete this step.

Sensors 2023, 23, 2868 5 of 21

Point Cloud Based Detector
e.g. PointPillars, CenterPoint, SECOND

Semantic
Segmentation

Paint Points

Paint Points

Detection Results

Figure 4. Architecture of PointPainting [8]. This consists of three main stages: (1) image-based
semantic segmentation, (2) point cloud painting, and (3) point-cloud-based detector.

2.2.2. Point Cloud Painting

The data-fusion method of PointPainting [8] is shown in Algorithm 1. A LiDAR point
can be projected onto an RGB image by an affine transformation. PointPainting [8] finds the
corresponding pixel of the LiDAR point on the RGB image based on this transformation and
then attaches the semantic scores of the pixel to the LiDAR point, forming new channels.

Algorithm 1 Point Cloud Painting(L, S, T).

Inputs:
LiDAR point cloud L ∈ RN,D with N points, D features.
Segmentation scores S ∈ RW,H,C with C categories.
Homogeneous transformation matrix T ∈ R4,4.

Output:
Painted LiDAR points Lp ∈ RN,D+C.

1: for l ∈ L do
2: (ximg, yimg) = PROJECT(T , l) Blimg ∈ R1,2

3: s = S[ximg, yimg, :] Bs ∈ R1,C

4: p = Concatenate(l, s) Bp ∈ R1,D+C

5: end for

Take the KITTI [7] dataset as an example. The calibration file of the KITTI dataset gives
the intrinsic matrix Pi ∈ R4,4 of camera i, the correction matrix of camera 0 R0

rect ∈ R4,4,
and the projection matrix between the LiDAR and camera coordinate system Trcam

velo ∈ R4,4.
A LiDAR point n ∈ R4,1 (homogeneous coordinates) can be projected onto the camera i
image using the following formula:

m = Pi × R0
rect × Trcam

velo× n (1)

where m ∈ R4,1 (homogeneous coordinates) represents the coordinates of the projected
point in the camera coordinate system. The transformation in the above formula can be
represented by a homogeneous transformation matrix T ∈ R4,4. Thus, the above formula
can also be expressed as:

m = T × n (2)

Each LiDAR point in the KITTI [7] dataset is (x, y, z, r), where (x, y, z) is the spatial
location of each point and r is the reflectance of each point. The output of the semantic
segmentation network is C class scores (s0, s1, s2, · · · , sC−1), where C = 4 (car, pedestrian,
cyclist, background). Once the LiDAR points are projected to the image, the semantic scores
of the relevant pixel (ximg, yimg) are appended to the LiDAR point (x, y, z, r) to generate the
painted LiDAR point (x, y, z, r, s0, s1, s2, s3).

Sensors 2023, 23, 2868 6 of 21

2.2.3. Point-Cloud-Based Detector

The point-cloud-based detectors of different structures can be adapted to detect objects
with painted points, simply by changing their input dimension. Better detection results can
be achieved due to this additional semantic information.

3. PointPainting++

In this section, the details of PointPainting++ are introduced, followed by the efficient
acceleration algorithm that this process uses.

3.1. PointPainting++ Architecture

As shown in Figure 5, the main architecture of PointPainting++ consists of six steps.
In the first and second steps, we follow PointPainting [8] to attach semantic information to
the LiDAR points. In the third step, the weight of each anchor is generated by counting the
proportion of inaccurate points and the total points inside each anchor. Then, the voxelized
point cloud is weighted using the dual-attention module, followed by feature extraction
using the backbone of the point-cloud-based method. After that, a SegIoU-based assigner is
used to assign anchors. Finally, the classification loss is calculated by the anchor assignment
result and the weight of each anchor.

Semantic
Segmentation

Paint Points

Paint Points

Feature Extractor
Feature Map

Anchors Groundtruth Boxes

Weight of Anchors

Detection
Head

Cls Loss Reg Loss

Generate
Anchor Weights

Extract Features

Assign Anchors
with SegIoU

Calculate
Cls Loss

Calculate
Cls Loss

FC Layer

FC Layer

sigmoid
MLP

MLP
Dual Attention Module

Figure 5. Architecture of PointPainting++. It consists of six steps: (1) image-based semantic
segmentation, (2) point cloud painting, (3) generation of anchor weights, (4) feature extraction,
(5) SegIoU-based anchor assignment, (6) calculation of classification loss.

The following sections will detail our improvements to PointPainting [8].

3.1.1. Anchor Weight Assignment

In this paper, we propose a strategy for assigning weights to each anchor during the
calculation of classification loss. Points containing inaccurate semantic information need
to be labeled before weights are assigned. As shown in Algorithm 2, a LiDAR point will
be considered to be an outlier if its semantic information does not match the ground truth.
Different labels will be appended to the end of LiDAR points to distinguish them.

After labeling the inaccurate points, as shown in Figure 6, each anchor will be assigned
a weight according to the proportion of inaccurate points in it. The more inaccurate points
are contained within an anchor, the harder classification becomes. Therefore, the more
inaccurate points an anchor contains, the higher weight it is assigned. The specific formula
is as follows:

w = α + β× Ninaccurate
Ntotal + ξ

(3)

Sensors 2023, 23, 2868 7 of 21

Algorithm 2 Mark Points(L, G).

Inputs:
Painted LiDAR point L ∈ RN,D+C with N points, D features, C categories.
Ground-truth boxes G ∈ RM,F with M boxes, F encoding features; the last dimension
represents the category.

Output:
Augmented LiDAR points Lp ∈ RN,D+C+1.

1: for l ∈ L do
2: s = L[D + 1 :] Bs ∈ R1,C

3: ps = Argmax(s)
4: for gt ∈ G do
5: if l in gt and ps 6= gt[−1] then
6: p = Concatenate(l, 1) Bp ∈ R1,D+C+1

7: end if
8: end for
9: if ps 6= 0 then

10: p = Concatenate(l, 1) Bp ∈ R1,D+C+1

11: else
12: p = Concatenate(l, 0) Bp ∈ R1,D+C+1

13: end if
14: end for

Painted LiDAR Points

Inaccurate Points

Weight of Each Anchor

Normal Points

Anchors

Figure 6. Anchor weight-assignment strategy. The weight of each anchor is calculated according to
the proportion of inaccurate points it contains.

In the above formula, α is the base weight of each anchor, β is the additional weight
coefficient, ξ is a small number preventing the denominator from being zero, and Ninaccurate,
Ntotal represent the number of inaccurate points and the total number of points in the
anchor, respectively. The weight assigned to each anchor ranges from α to α + β and
linearly increases with the proportion of inaccurate points within the anchor. In this way,
the difficult anchors that contain more inaccurate semantic information will play a more
important role in the classification loss. The detector will also pay more attention to the
anchors that are difficult to classify and obtain the ability to distinguish controversial
samples, thereby showing better performance.

Such a weighting strategy is suitable for both anchor-based and center-based methods.
Take the PointPillars [34] and CenterPoint [35] as examples.

Sensors 2023, 23, 2868 8 of 21

The loss function of PointPillars [34] consists of the classification loss Lcls, the location
regression loss Lloc, and the direction loss Ldir:

L =
1

Npos
(βloc ×Lloc + βcls ×Lcls + βdir ×Ldir) (4)

where Npos is the number of positive anchors and βloc, βcls, βdir are the weight coefficients
of these three losses, respectively. The classification loss can be weighted according to the
strategy in this section:

Lcls = ∑
i

wi ×Li
cls (5)

where wi is the weight of each anchor, generated as mentioned above.
Similarly, the loss function of CenterPoint [35] consists of the heatmap loss Lhm and

the location regression loss Lreg:

L =
1

Npos
(βhm ×Lhm + βreg ×Lreg) (6)

where Npos is the number of positive anchors and βhm, βreg are the weight coefficients
of these two losses. The detection head of CenterPoint [35] outputs a heatmap, which
indicates the probability that there is a target center at this location. Each point on the
heatmap corresponds to an area in the original space, and this area can be regarded as a
pseudo-anchor when applying the weight-assignment strategy. Thus, the weights of this
region can be calculated in the same the way as the anchor weights. The weighted Lhm can
be expressed as follows:

Lhm = ∑
i

wi ×Li
hm (7)

where wi is the weight of each anchor, generated as mentioned above.

3.1.2. Dual-Attention Module

In addition to constraining inaccurate features from the perspective of the loss function,
we further considered improving the network structure to suppress the inaccurate features.
A structure based on SEBlock [9] is proposed to weigh the voxelized point cloud. This
combines the channel dimension and point dimension to generate the weights of the
voxelized point cloud. The structure of the SEBlock [9] is depicted in Figure 7. For any
feature map X ∈ RH,W,C, an SEBlock can be constructed to perform feature recalibration.
The features X are first put through a squeeze operation, which produces a channel descriptor
by aggregating feature maps across their spatial dimensions (H ×W). The aggregation is
followed by an excitation operation, which takes a simple self-gating mechanism that takes
the embedding as input and produces a collection of channel-wise weights. These weights
are applied to the feature map X to generate the output of the SEBlock [9], which can be
directly fed into subsequent layers of the network.

H

W
C

squeeze
(avg or max pool) 1 × 1 × ()

(FC+ReLU+FC+Sigmoid) 1 × 1 ×
C

W

H

Original Feature Map Enhanced Feature Map

Global Feature Channel-wise Weights

Figure 7. The structure of SEBlock [9]. It first uses the squeeze operation to generate global features, and
then uses the excitation operation to capture channel dependencies and generate channel-wise weights.

Sensors 2023, 23, 2868 9 of 21

As shown in Figure 8, this module consists of two SEBlocks [9]. For any voxelized
point cloud V ∈ RV,T,C (V voxels, T points in each voxel, C features of each point), we
use the fully connected layer to compress the channel dimension and point dimension,
respectively, to extract global features. The global features then undergo a simple gating
mechanism to generate weights for channel and point dimensions:

Wc = Fex(Zc, W) = W2(δ(W1(Zc)))

WT = Fex(ZT, W ′) = W ′2(δ(W
′
1(ZT)))

(8)

δ refers to the ReLU function, W1 ∈ R C
r ,C, W2 ∈ RC, C

r , W ′1 ∈ R T
r ,T and W ′2 ∈ RT, T

r . We
parameterize the gating mechanism to limit model complexity by forming a bottleneck
with two fully connected (FC) layers. Subsequently, the element-wise multiply operation is
used to comprehensively consider both channel and point dimensions and obtain the final
weight through a sigmoid activation:

W = σ(Wc ·WT) (9)

FC Layer

FC Layer

sigmoid

Element-wise multiply Element-wise add

× ×
× ×× ×

× ×× ×

× ×
× ×MLP

MLP

Figure 8. The architecture of the dual attention module. This module has a symmetrical structure, and
each part can be regarded as an SEBlock [9]. Fully connected layers are used to compress dimensions
to extract global features.

Finally, the original features V and weighted features W ·V are combined through
the element-wise add operation and fed into the subsequent network. The weight W
comprehensively considers the weight of each point in a voxel and the weight of each
channel in a point. On the one hand, the weight of each point suppresses the features of
points with inaccurate semantic information in the voxel. On the other hand, the weight of
each channel suppresses the features of channel with wrong semantic information in each
point. Therefore, the inaccurate semantic information is suppressed after the dual attention
module, and the subsequent part of the detector can obtain more accurate features, thus
showing performance improvement.

3.1.3. SegIoU-Based Anchor Assigner

As mentioned in Section 1, many anchors that contain few target points are assigned
positive tags. In order to remove those controversial positive anchors, we propose the
SegIoU-based anchor assigner.

We follow the anchor-assignment strategy of faster R-CNN [10] to assign a binary
class tag (of being an object or not) to each anchor. Two kinds of anchors are assigned a
positive tag: (1) the anchor/anchors with the highest IoU with a ground-truth box, (2) an
anchor with an IoU that is higher than the positive threshold with any ground-truth box.
Anchors with an IoU that is lower than the negative threshold to any ground-truth box are
assigned a negative tag. Anchors that are neither positive nor negative do not contribute to
classification loss.

Sensors 2023, 23, 2868 10 of 21

On this basis, SegIoU is proposed instead of IoU for anchor assignment, which considers
the degree of overlap between anchors and ground-truth boxes both in geometry and semantics:

SegIoU(P, Q) = IoU(P, Q)− γ× H(Sp, Sq) (10)

where γ is a hyperparameter used to control the numerical size of the H(p, q), Sp and Sq
represent the semantic scores of points inside anchor and ground-truth box, respectively,
and H(Sp, Sq) is the Hellinger distance used to quantify the similarity between the two
probability distributions. Sp and Sq are obtained by averaging the semantic scores of the
points within the anchor and ground-truth box. Most anchors do not contain any points
inside due to the spareness of the point cloud. The semantic scores of such anchors are set
to a uniform distribution.

After obtaining the probability distribution, the Hellinger distance H(Sp, Sq) can be
computed as:

H(Sp, Sq) =
1√
2

√√√√n−1

∑
i=0

(
√

sp
i −

√
sq

i)
2 (11)

The semantic information of the ground-truth boxes usually has certain categories.
Therefore, the probability distribution of the ground truth boxes will differ from those of
the controversial positive anchors, making the semantic loss of controversial anchors more
prominent. Thus, the SegIoU of the controversial anchors will be lower than that of the
normal positive anchors. The controversial anchors can be filtered from positive anchors
with a threshold that is set in advance.

The SegIoU-based anchor assigner has strict rules, which often result in a low number
of positive anchors. We adopted an insurance mechanism to avoid the over-screening
problem. Let nseg be the number of positive anchors selected by the SegIoU-based assigner
and niou be the number of positive anchors selected by the max-IoU assigner. We set the
minimum value of the number of positive anchors nmin to 0.7× niou. The anchors will be
sorted by SegIoU if nseg < nmin, and the top nmin ones will be selected as positive anchors.

3.2. An Efficient Acceleration Algorithm

Without exception, the methods mentioned in the previous section need to analyze the
points in each anchor. For example, the number of inaccurate points and total points inside
each anchor are needed when assigning weights to anchors. However, the anchors are
generated according to the feature map, and each location on the feature map corresponds
to anchors of different sizes, which means that the number of anchors is usually large. The
number of anchors can be calculated by the following formula:

N = W × H × C (12)

where W and H represent the size of the feature map, and C represents the number of
anchor categories corresponding to each point on the feature map. Given a 400× 400 feature
map, if there are three types of targets to be detected and each type has two orientations,
then the total number of anchors will be 400× 400× 3× 2 = 960,000. Using the traversal
and loop to handle such a massive number of anchors will consume a large amount of
computational resources and severely slow down the training speed.

We propose utilizing 2D convolution to speed up this process. The size of anchors
in the z-direction can be ignored because the anchor settings in the z-direction include
all the parts in which points exist. A feature map with the same size as the voxelized
point cloud can be constructed to record the information needed in each voxel after this
simplification. Finally, after a 2D convolution of this feature map using the convolution
kernel corresponding to the anchor, a tensor that records the information needed in each
anchor can be obtained.

Sensors 2023, 23, 2868 11 of 21

A case in point is the calculation of the number of points in each anchor. We illustrate
this calculation process in Figure 9. This process can be divided into three steps. The
first step is to voxelize the LiDAR points and obtain three tensors V ∈ RV,T,C, N ∈ RV,1,
C ∈ RV,2, which represent the features after voxelization, the number of points in non-
empty voxels, and the 2D coordinates of non-empty voxels. V represents the number of
non-empty voxels, T represents the number of points collected within each voxel, and C
represents the number of features of each point. The tensor that records the number of
points inside each voxel can be obtained by filling N according to C into a tensor of the
same size as the voxelized point cloud. The second step aims to determine the size of the
convolution kernel by calculating the quotient of the anchor size and the voxel size. Finally,
the convolution stride is determined by the scaling factor of the point cloud feature. The
number of points in each anchor can be calculated by performing 2D convolution using
the convolution kernel filled with 1.0 on the tensor that records the number of points in
each voxel. Such convolution operations can be quickly accelerated by GPU, significantly
improving the training speed compared with loop operations.

1.

1. 1. 1.

1. 1. 1.
1. 1. 1.
1. 1. 1.

Anchors of different size Kernels of different size

Number of inaccurate
points in each voxel 2D convolution Number of points in each anchor

Number of points in
non-empty voxels

1
V

Coordinates of
non-empty voxels

2
V

Figure 9. The 2D convolution calculation process for the number of points in each anchor. The size
of the convolution kernels is determined by the size of anchors. We generated a tensor that records
the number of points in each voxel first, and then used different convolution kernels to perform 2D
convolution on this tensor to obtain the number of points in each anchor.

4. Experimental Setup

In this section, we present the details of the dataset and the experimental setup for
PointPainting++.

4.1. Dataset and Evaluation Metrics

We evaluated PointPainting++ on the KITTI [7] dataset. The data acquisition platform
of the KITTI [7] dataset contained 2 grayscale cameras, 2 color cameras, 1 LiDAR, 4 optical
lenses, and 1 GPS navigation system. Synchronized point cloud and images from the left
and right color cameras in the KITTI [7] dataset were adopted. The dataset contained 7481
training samples and 7518 testing samples, with a total of 80,256 labeled objects. Three
types of objects were detected, as required by the KITTI [7] object-detection benchmark:
car, pedestrian, cyclist. We followed the guidance of [30,31] to further divide the training
data into two groups, 3712 data and 3769 validation data, according to the partition file
for experimental evaluation. We also followed the standard practice [30,36] to not use
points projected outside the image range for training, since the ground-truth boxes are only
annotated within the image range.

The results were evaluated using average precision (AP) as an indicator containing the
IoU thresholds for three classes. The evaluation was conducted at three levels of difficulty—
easy, moderate, and hard—according to the occlusion level, maximal truncation, and the
height of the 2D box in the corresponding image.

Sensors 2023, 23, 2868 12 of 21

4.2. Semantic Segmentation Network

We used DeepLabV3+ [37], implemented by mmsegmentation https://github.com/
open-mmlab/mmsegmentation (accessed on 20 May 2021), for semantic segmentation.
The module was trained on the CityScapes [38] dataset, which is similar to the KITTI [7]
image data scene. We kept the semantic scores of cars and pedestrians, and followed Point-
Painting [8] to generate cyclists’ semantic scores. The semantic scores of the background
category were obtained by adding the semantic scores of the other categories.

The image data collected by camera 2 and camera 3 were used for semantic segmenta-
tion. Any LiDAR point was discarded if its projection fell outside the perception range of
camera 2 or 3. The semantic information of each LiDAR point contained the average value
of the semantic scores of the images collected by the two cameras.

4.3. Point-Cloud-Based Network

We used the public code OpenPCDet https://github.com/open-mmlab/OpenPCDet
(accessed on 17 January 2023) for PointPillars [34], SECOND [39], CenterPoint [35] and
SECOND-IoU [39]. These existing methods cover the most common network structures:
one-stage and two-stage, anchor-base and center-base, and voxel-feature and pillar-feature.
Experiments show that PointPainting++ has good generality and improves the performance
of networks of various architectures. Based on the original code, we implemented a new
dataset—painted KITTI, instead of KITTI [7]—for experiments. The point cloud in painted
KITTI contains expanded information, including the semantic scores of the four categories
and accurate flag information. This changes the dimensions of point cloud from 4 to 9.
The expanded point cloud is easily accepted by many existing LiDAR backbones after
the input dimensions are changed. To compare this with PointPainting [8], the accurate
flag information was not used in the training process. The SegIoU-based anchor assigner
is only valid for anchor-based methods, including PointPillars [34], SECOND [39], and
SECOND-IoU [39].

5. Experimental Results

This section describes the experimental results of PointPainting++ on the KITTI [7]
dataset.

5.1. Quantitative Analysis

PointPainting++ was evaluated on various detection networks with different struc-
tures, including PointPillars [34], SECOND [39], CenterPoint [35] and SECOND-IoU [39].
We compared PointPainting++ with the original network and PointPainting methods in
both 3D and BEV object-detection tasks. For the easy, moderate, and difficult samples, the
IoU thresholds of the car category were 0.7, 0.5, and 0.5, respectively, and the IoU thresholds
of the other categories were all 0.5. The mean average precision (mAP) over three kinds
of different difficulty levels was used to represent the overall performance of the method.
The fusion versions of each network that use PointPainting [8] will be referred to as being
painted (e.g., Painted PointPillars), while the fusion versions that use PointPainting++ will
be referred to as being painted++ (e.g., Painted PointPillars++).

As shown in Table 1, PointPainting++ showed a significant performance improvement
for both 3D and BEV mAP compared to PointPainting [8] on detection networks with
different structures. PointPainting [8] showed a performance degradation on some net-
works (e.g., SECOND-IoU [39]) due to the interference of inaccurate semantic information.
Table 1 illustrates that the SECOND-IoU [39] after using PointPainting++ not only shows
a performance improvement on the basis of PointPainting [8], but also achieves a better
performance than the original network.

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/OpenPCDet

Sensors 2023, 23, 2868 13 of 21

Table 1. Comparison of experimental results on the KITTI [7] valid set.

PointPillars [34]
Painted

PointPillars [8]
Painted

PointPillars++ Delta

mAP3D 66.60 66.30 67.92 +1.62
mAPBEV 71.63 73.23 74.83 +1.60

SECOND [39] Painted
SECOND [8]

Painted
SECOND++

Delta

mAP3D 67.53 68.24 68.88 +0.64
mAPBEV 71.99 73.62 74.01 +0.39

CenterPoint [35] Painted
CenterPoint [8]

Painted
CenterPoint++

Delta

mAP3D 67.87 68.25 69.08 +0.83
mAPBEV 72.53 72.96 73.96 +1.00

SECOND-IoU [39] Painted
SECOND-IoU [8]

Painted
SECOND-IoU++

Delta

mAP3D 70.88 70.78 71.37 +0.59
mAPBEV 75.10 75.64 76.26 +0.62

As shown in Tables 2–5, PointPainting++ showed a significant performance improve-
ment in the detailed detection results for each category. As mentioned in PointPainting [8],
for narrow vertical objects such as pedestrians, which are indistinguishable when using
only LiDAR points, the introduction of semantic information leads to a more significant
performance improvement. A further analysis of the experimental results is as follows:

Table 2. Comparison of detailed experimental results for each category on the KITTI [7] valid set.

Method Category AP3D mAP3D Category APBEV mAPBEVEasy Moderate Hard Easy Moderate Hard

PointPillars [34]
Car 87.19 77.46 75.81 80.15 Car 89.84 87.46 85.32 87.54

Pedestrian 55.13 50.09 46.71 50.65 Pedestrian 59.56 55.29 51.74 55.53
Cyclist 82.66 63.91 60.47 69.01 Cyclist 84.84 67.68 62.90 71.81

Painted PointPillars [8]
Car 86.83 77.30 75.87 80.00 Car 89.61 87.73 86.05 87.80

Pedestrian 59.64 55.29 50.81 55.25 Pedestrian 66.75 60.77 57.31 61.61
Cyclist 78.52 57.87 54.57 63.65 Cyclist 82.59 66.25 62.06 70.30

Painted PointPillars++
Car 87.24 77.43 75.65 80.10 Car 89.69 87.62 85.77 87.70

Pedestrian 64.87 57.41 52.73 58.33 Pedestrian 70.56 63.53 60.04 64.71
Cyclist 80.49 59.29 56.18 65.32 Cyclist 84.75 67.47 64.06 72.09

Table 3. Comparison of detailed experimental results for each category on the KITTI [7] valid set.

Method Category AP3D mAP3D Category APBEV mAPBEVEasy Moderate Hard Easy Moderate Hard

SECOND [39]
Car 88.27 78.27 77.05 81.20 Car 89.77 87.62 86.21 87.87

Pedestrian 56.22 52.36 47.04 51.87 Pedestrian 59.74 55.02 51.19 55.32
Cyclist 80.27 66.43 61.89 69.53 Cyclist 83.54 69.30 65.50 78.78

Painted SECOND [8]
Car 87.87 77.91 76.63 80.80 Car 89.66 87.57 86.36 87.86

Pedestrian 58.68 53.88 50.67 54.41 Pedestrian 62.45 56.12 54.11 57.56
Cyclist 81.21 65.47 61.87 69.49 Cyclist 87.59 71.12 61.57 75.43

Painted SECOND++
Car 88.29 78.46 77.23 81.33 Car 89.64 87.92 86.74 88.10

Pedestrian 58.89 54.06 50.62 54.52 Pedestrian 62.57 56.47 54.73 57.92
Cyclist 83.42 66.62 62.30 70.78 Cyclist 90.05 70.69 67.28 76.01

Sensors 2023, 23, 2868 14 of 21

Table 4. Comparison of detailed experimental results for each category on the KITTI [7] valid set.

Method Category AP3D mAP3D Category APBEV mAPBEVEasy Moderate Hard Easy Moderate Hard

CenterPoint [35]
Car 87.16 79.16 76.95 81.09 Car 89.03 87.22 85.91 87.39

Pedestrian 55.75 52.84 50.48 53.02 Pedestrian 60.00 58.50 55.35 57.95
Cyclist 80.63 66.13 61.71 69.49 Cyclist 82.71 69.46 64.59 72.25

Painted CenterPoint [8]
Car 87.38 79.48 77.19 81.35 Car 89.17 87.57 86.56 87.76

Pedestrian 57.66 54.30 50.71 54.22 Pedestrian 61.59 58.60 55.83 58.67
Cyclist 81.99 64.80 60.73 69.17 Cyclist 85.86 67.66 63.81 72.44

Painted CenterPoint++
Car 87.58 79.75 77.34 81.56 Car 89.18 87.40 86.88 87.82

Pedestrian 59.98 55.92 52.81 56.24 Pedestrian 63.82 60.84 57.60 60.75
Cyclist 81.07 65.19 62.06 69.44 Cyclist 87.65 68.02 64.23 73.30

Table 5. Comparison of detailed experimental results for each category on the KITTI [7] valid set.

Method Category AP3D mAP3D Category APBEV mAPBEVEasy Moderate Hard Easy Moderate Hard

SECOND-IoU [39]
Car 89.10 79.11 78.17 82.13 Car 90.14 88.12 86.83 88.36

Pedestrian 61.45 55.31 50.26 55.67 Pedestrian 64.84 58.26 53.98 59.03
Cyclist 86.02 71.56 66.90 74.83 Cyclist 89.14 73.61 70.95 77.90

Painted SECOND-IoU [8]
Car 88.63 78.90 77.88 81.80 Car 90.13 87.91 86.91 88.32

Pedestrian 62.08 55.17 49.78 55.68 Pedestrian 66.03 58.33 55.32 59.89
Cyclist 85.81 71.19 67.53 74.85 Cyclist 93.74 72.75 69.67 78.72

Painted SECOND-IoU++
Car 88.82 78.90 77.85 81.86 Car 90.19 88.13 86.98 88.43

Pedestrian 63.83 56.43 50.64 56.97 Pedestrian 67.91 59.96 56.18 61.35
Cyclist 86.70 71.58 67.54 75.27 Cyclist 93.03 73.46 70.53 79.01

Compared to PointPainting [8], after larger weights were assigned to anchors con-
taining inaccurate semantic information, the network showed a significant performance
improvement in the pedestrian category. In addition, PointPainting++ can also improve the
performance degradation of certain categories mentioned in PointPainting [8]. Tables 2–5
shows that PointPainting++ achieved a better performance than PointPainting [8] on all
categories, and can achieve better results than the point-cloud-based network on certain
structured detectors. This shows that our method can make more effective use of semantic
information compared to PointPainting [8].

5.2. Ablation Study

We also incrementally added three improvements to the network. In the following dis-
cussion, we refer to the improved methods adopted by PointPainting++ as: I. anchor weight
assignment with semantic information; II. dual-attention module; III. anchor-assignment
strategy based on semantic information. PointPillars [34] was adopted as the benchmark
method for this experiment. As shown in Table 6, the performance of the PointPillars [34]
improved in the car and cyclist categories, a drop in performance was shown in the pedes-
trian category after I was applied. This is because the semantic results for pedestrians are
usually more accurate, while those of cyclists contain errors. The detector will pay more
attention to the cyclist category, which contains more inaccurate information under the
guidance of weights. In addition, the performance of the PointPillars [34] in the pedestrian
category was significantly improved after the addition of the dual-attention module, while
also maintaining the improvements in the car and cyclist categories that were achieved in
the previous step. Furthermore, the performance of the PointPillars [34] improved in all
three categories after the SegIoU-based anchor assigner was introduced. The improved
performance of the network demonstrates the effectiveness of PointPainting++.

Sensors 2023, 23, 2868 15 of 21

Table 6. Comparison of experimental results on different, improved methods of PointPainting++ on
the KITTI [7] valid set.

Method Category AP3D mAP3D Category APBEV mAPBEVEasy Moderate Hard Easy Moderate Hard

Painted PointPillars [8]
Car 86.83 77.30 75.87 80.00 Car 89.61 87.73 86.05 87.80

Pedestrian 59.64 55.29 50.81 55.25 Pedestrian 66.75 60.77 57.31 61.61
Cyclist 78.52 57.87 54.57 63.65 Cyclist 82.59 66.25 62.06 70.30

Painted PointPillars+I
Car 86.91 77.35 76.05 80.10 Car 89.63 87.72 86.08 87.81

Pedestrian 56.83 53.96 49.02 53.27 Pedestrian 65.24 60.20 57.07 60.84
Cyclist 79.19 57.98 54.26 63.81 Cyclist 84.28 67.46 64.07 71.93

Painted PointPillars+II
Car 86.97 77.35 75.85 80.06 Car 89.58 87.62 85.99 87.73

Pedestrian 60.73 55.86 51.60 56.06 Pedestrian 67.67 62.30 58.37 62.78
Cyclist 78.72 59.03 55.22 64.33 Cyclist 85.16 67.28 63.71 72.05

Painted PointPillars+III
Car 87.24 77.43 75.65 80.10 Car 89.69 87.62 85.77 87.70

Pedestrian 64.87 57.41 52.73 58.33 Pedestrian 70.56 63.53 60.04 64.71
Cyclist 80.49 59.29 56.18 65.32 Cyclist 84.75 67.47 64.06 72.09

5.3. Qualitative Analysis

Figure 10 shows the qualitative results of our PointPainting++, as applied to Painted
PointPillars [34], CenterPoint [35], SECOND [39] and SECOND-IoU [39]. In Figure 10a, the
original Painted PointPillars [8] wrongly detects cyclists in the bushes on the side of the road,
while Figure 10e shows that our PointPainting++ eliminates these false detection results. In
addition, as shown in Figure 10b, false detections remain, although PointPainting [8] helps
in the detection of vertical narrow objects on the ground. However, as shown in Figure 10f,
our PointPainting++ eliminated two such false detections. Figure 10c shows a scene with
many overlapping targets. There are often numerous false detections in such scenarios,
since many non-target points are projected to the target pixel positions. Figure 10g indicates
that our PointPainting++ effectively reduces these false detections. Finally, as shown in
Figure 10d, false detections may occur due to the inaccurate semantic results contained in
single-target scenarios. In contrast, Figure 10h shows the performance improvement in our
PointPainting++ in this scenario.

Figure 11 shows the qualitative results of our PointPainting++ when applied to Painted
PointPillars [34]. The false detections in the multi-objective scene continued to decrease
after improvement measures were applied to Painted PointPillars [34], which shows that
the three improvement measures adopted in our PointPainting++ have a positive effect,
reducing false detections and improving network performance.

In sum, the qualitative analysis results show that PointPainting++ improves per-
formance compared with existing methods in various network structures and various
scenarios. The improvement methods all have a positive effect on reducing false detections
and improving the performance of the object detector.

Sensors 2023, 23, 2868 16 of 21

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Qualitative results of our PointPainting++ of PointPillars [34], CenterPoint [35], SEC-
OND [39], and SECOND-IoU [39] on the KITTI [7] valid set. The upper part of each picture is the 3D
detection projected to the image, and the lower part is the 3D detection in the LiDAR point cloud.
The blue, green, and red boxes in the 2D detection results represent the car, cyclist, and pedestrian
categories, respectively. The red boxes in the 3D result are the ground-truth boxes, and the rest of the
boxes are the detection boxes. The results indicate that PointPainting++ improves the performance
of detectors of various structures in multiple scenarios. (a) Painted PointPillars [34], (b) Painted
CenterPoint [35], (c) Painted SECOND [39], (d) Painted SECOND-IoU [39], (e) Painted PointPillars++,
(f) Painted CenterPoint++, (g) Painted SECOND++, (h) Painted SECOND-IoU++.

Figure 11. Qualitative results of our three improvements in the Painted PointPillars++. The experimental
results of the Painted PointPillars [8] obtained with different improvement methods are shown from
left to right. The blue, green, and red boxes in the 2D detection results represent the car, cyclist, and
pedestrian categories, respectively. The red boxes in the 3D result are the ground-truth boxes, and the
rest of the boxes are the detection boxes. False detections were significantly reduced as the improvements
were introduced.

6. Discussions

Here, we performed ablation studies on the KITTI [7] valid dataset. All studies used
the Painted PointPillars architecture and all parameters were kept constant except for the
research objects.

Sensors 2023, 23, 2868 17 of 21

6.1. The Influence of Anchor Weight

PointPainting++ reduces the confusion caused by inaccurate semantic information by
assigning larger weights to anchors with more inaccurate LiDAR points. The effectiveness
of this method strongly depends on the correct weight settings. The main reasons for this
are as follows: most of the loss functions in the existing methods adopt the form of focal
loss [40], which can pay more attention to difficult anchors. The network may pay too much
attention to difficult anchors if the weights of difficult anchors are too large. In addition,
we do not offer special treatment for empty anchors, which also have a strong confounding
effect. Assigning too much weight to non-empty anchors may make it complex for the
network to classify such anchors correctly.

To explore the impact of the anchor weights on network performance, we conducted
ablation experiments with the following settings: α in Equation (3) was set to the constant
1.0. Thus, the relative size of the weights of anchors with inaccurate semantic information
can be adjusted by changing β.

Figure 12 shows the results of our ablation experiments. Figure 12 indicates that the
detection results of 3D and BEV show a similar trend; that is, with the increase in β, the
detector performance reaches a peak value, and then decreases with the increase in β. This
is because when β is small, assigning larger weights to difficult anchors with inaccurate
semantic information can cause the network to pay more attention to difficult anchors, but
when β is too large, this is counterproductive for the reasons mentioned above.

(a) (b)

Figure 12. The 3D and BEV detection results of our PointPainting++ with the relative weight
coefficient β. The detection performance first reaches the peak with the increase in β, and then shows
a downward trend. If weights are too large, the detector will focus too much on the difficult samples,
while weights that are too small will not emphasize the difficult samples. (a) 3D detection results
with β (b) BEV Detection results with β.

6.2. The Influence of Semantic Weight in SegIoU

Our PointPainting++ further measures the degree of overlap between anchors and
ground-truth boxes by adding semantic loss to the IoU and sifting out inferior positive
anchors that contain only a few target LiDAR points. Therefore, it is particularly important
to control the relative size of the loss of semantic information. On the one hand, it will be
unable to filter out the inferior positive anchors if the semantic loss term is too small. On
the other hand, if the semantic loss term is too large, there will be too few positive anchors,
reducing the performance of the network. We tuned the relative size of the semantic loss
term in SegIoU by changing the hyperparameter γ in Equation (10).

Figure 13 shows that the performance of the detector first shows an upward trend
with the increase in the semantic loss weight in SegIoU, and then shows a downward trend
after reaching the peak. This is consistent with the previously mentioned reasons, and also
shows that the choice of an appropriate semantic loss size in the actual training process
plays an important role in improving the detector performance.

Sensors 2023, 23, 2868 18 of 21

(a) (b)

Figure 13. The 3D and BEV detection results of our PointPainting++ with the semantic loss coefficient
γ. The detector performance shows a trend of increasing and then decreasing as the semantic loss
items increase. If the semantic loss terms are too large, there will be too few positive anchors,
while semantic loss terms that are too small will not filter inferior positive anchors using semantic
information. (a) 3D Detection results with γ (b) BEV detection results with γ.

6.3. The Influence of the Number of Positive Anchors

It is difficult to intuitively quantify the impact of the semantic loss term in the process
of using SegIoU to filter out positive anchors, which often results in over-screening and a
decrease in the detector performance. A moderate threshold is needed to limit the minimum
number of positive anchors. On the one hand, the over-screening problem cannot be solved
if the threshold is too small. On the other hand, the desired purpose of screening out
inferior positive anchors will not be achieved if the threshold is too large. We changed this
threshold and conducted ablation experiments to explore the effect of this threshold setting
on the detector performance.

Figure 14 shows the results of our ablation experiments. The detection results show
that the performance of the detector first shows an upward trend with the increase in
threshold, and starts to decline after reaching the peak. This is consistent with our previous
analysis, indicating that the selection of too large or small a threshold will affect the
effectiveness of SegIoU and lead to performance degradation.

(a) (b)

Figure 14. The 3D and BEV detection results of our PointPainting++ with the number of positive
anchors. The detection performance peaks after an appropriate number of positive anchors is selected.
The excessive retention of the max-IoU assigner-based results may fail to remove inferior positive
anchors, while having too few positive anchors will make it difficult for the detector to learn target
features. (a) 3D detection results with the number of positive anchors. (b) BEV detection with the
number of positive anchors.

7. Conclusions

In this paper, we propose a new 3D object-detection method based on PointPainting [8].
Three improvements were proposed to address the shortcomings of PointPainting [8].
Firstly, we proposed a weighting strategy for the loss function according to the accuracy
of the semantic information, aiming to solve the problem of the point cloud containing

Sensors 2023, 23, 2868 19 of 21

inaccurate semantic information. Secondly, a dual-attention module was used to weigh
the voxelized point cloud in the channel and point dimensions. Thirdly, we proposed a
SegIoU-based anchor-assigner to filter these anchors, which effectively removes inferior
positive anchors containing few target points. The experimental results show that our Point-
Painting++ shows significant performance improvements compared with PointPainting [8]
in different network structures and various scenarios. Compared with PointPainting [8],
our PointPainting++ does not introduce additional computation in the inference phase and
adds very few parameters in the training phase, which means that the training time of the
existing network is smaller.In summary, our PointPainting++ can improve the problems in
PointPainting [8], and has a certain practical value.

Author Contributions: Conceptualization, Z.G. and Q.W.; methodology, Z.G. and Q.W.; software,
Z.G.; validation, Z.G., Z.P. and Q.W.; formal analysis, Z.G. and H.L.; investigation, Z.G. and Q.W.;
resources, Z.P.; writing—original draft preparation, Z.G.; writing—review and editing, Q.W. and
Z.P.; visualization, Z.G. and Z.Z.; supervision, Z.P. and H.L.; project administration, Z.P.; funding
acquisition, Z.P. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Youth Innovation Promotion Association, CAS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. KITTI is a project of
Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago. It is available at
https://www.cvlibs.net/datasets/kitti/ (accessed on 25 February 2023) with the permission.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yoo, J.H.; Kim, Y.; Kim, J.; Choi, J.W. 3d-cvf: Generating joint camera and LiDAR features using cross-view spatial feature fusion

for 3d object detection. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 720–736.

2. Xie, L.; Xiang, C.; Yu, Z.; Xu, G.; Yang, Z.; Cai, D.; He, X. PI-RCNN: An efficient multi-sensor 3D object detector with point-based
attentive cont-conv fusion module. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12
February 2020; Volume 34, pp. 12460–12467.

3. Huang, T.; Liu, Z.; Chen, X.; Bai, X. Epnet: Enhancing point features with image semantics for 3d object detection. In Proceedings
of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 35–52.

4. Pang, S.; Morris, D.; Radha, H. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection. In Proceedings of the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24–29 October 2020;
pp. 10386–10393.

5. Zheng, W.; Tang, W.; Jiang, L.; Fu, C.W. SE-SSD: Self-ensembling single-stage object detector from point cloud. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14494–14503.

6. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10529–10538.

7. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

8. Vora, S.; Lang, A.H.; Helou, B.; Beijbom, O. Pointpainting: Sequential fusion for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4604–4612.

9. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

10. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28. [CrossRef] [PubMed]

11. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.

12. Wang, Z.; Jia, K. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 1742–1749.

https://www.cvlibs.net/datasets/kitti/
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Sensors 2023, 23, 2868 20 of 21

13. Shin, K.; Kwon, Y.P.; Tomizuka, M. Roarnet: A robust 3d object detection based on region approximation refinement. In
Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2510–2515.

14. Paigwar, A.; Sierra-Gonzalez, D.; Erkent, Ö.; Laugier, C. Frustum-pointpillars: A multi-stage approach for 3d object detection
using rgb camera and lidar. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC,
Canada, 10–17 October 2021; pp. 2926–2933.

15. Du, X.; Ang, M.H.; Karaman, S.; Rus, D. A general pipeline for 3d detection of vehicles. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3194–3200.

16. Xu, S.; Zhou, D.; Fang, J.; Yin, J.; Bin, Z.; Zhang, L. Fusionpainting: Multimodal fusion with adaptive attention for 3d object
detection. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN,
USA, 19–22 September 2021; pp. 3047–3054.

17. Simon, M.; Amende, K.; Kraus, A.; Honer, J.; Samann, T.; Kaulbersch, H.; Milz, S.; Michael Gross, H. Complexer-yolo: Real-time
3d object detection and tracking on semantic point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

18. Yin, T.; Zhou, X.; Krähenbühl, P. Multimodal virtual point 3d detection. Adv. Neural Inf. Process. Syst. 2021, 34, 16494–16507.
19. Mao, J.; Shi, S.; Wang, X.; Li, H. 3D object detection for autonomous driving: A review and new outlooks. arXiv 2022,

arXiv:2206.09474.
20. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7345–7353.
21. Sindagi, V.A.; Zhou, Y.; Tuzel, O. MVX-Net: Multimodal VoxelNet for 3D Object Detection. In Proceedings of the International

Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.
22. Li, Y.; Yu, A.W.; Meng, T.; Caine, B.; Ngiam, J.; Peng, D.; Shen, J.; Lu, Y.; Zhou, D.; Le, Q.V.; et al. Deepfusion: Lidar-camera

deep fusion for multi-modal 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 17182–17191.

23. Zhang, Y.; Chen, J.; Huang, D. Cat-det: Contrastively augmented transformer for multi-modal 3d object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022, pp. 908–917.

24. Chen, X.; Zhang, T.; Wang, Y.; Wang, Y.; Zhao, H. Futr3d: A unified sensor fusion framework for 3d detection. arXiv 2022,
arXiv:2203.10642.

25. Liu, Z.; Tang, H.; Amini, A.; Yang, X.; Mao, H.; Rus, D.; Han, S. BEVFusion: Multi-Task Multi-Sensor Fusion with Unified
Bird’s-Eye View Representation. arXiv 2022, arXiv:2205.13542.

26. Li, Y.; Qi, X.; Chen, Y.; Wang, L.; Li, Z.; Sun, J.; Jia, J. Voxel field fusion for 3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1120–1129.

27. Bai, X.; Hu, Z.; Zhu, X.; Huang, Q.; Chen, Y.; Fu, H.; Tai, C.L. Transfusion: Robust lidar-camera fusion for 3d object detection with
transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 1090–1099.

28. Wang, C.; Ma, C.; Zhu, M.; Yang, X. Pointaugmenting: Cross-modal augmentation for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11794–11803.

29. Xu, D.; Anguelov, D.; Jain, A. Pointfusion: Deep sensor fusion for 3d bounding box estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 244–253.

30. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

31. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–8.

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30 .

33. Pang, S.; Morris, D.; Radha, H. Fast-CLOCs: Fast camera-LiDAR object candidates fusion for 3D object detection. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 187–196.

34. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

35. Yin, T.; Zhou, X.; Krahenbuhl, P. Center-based 3d object detection and tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11784–11793.

36. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

37. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 17–24 May
2018; pp. 801–818.

Sensors 2023, 23, 2868 21 of 21

38. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

39. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
40. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196

	Introduction
	Related Works
	Multi-Modal 3D Object-Detection Methods
	Raw Data Fusion
	Feature-Level Fusion
	Decision-Level Fusion

	PointPainting
	Semantic Segmentation
	Point Cloud Painting
	Point-Cloud-Based Detector

	PointPainting++
	PointPainting++ Architecture
	Anchor Weight Assignment
	Dual-Attention Module
	SegIoU-Based Anchor Assigner

	An Efficient Acceleration Algorithm

	Experimental Setup
	Dataset and Evaluation Metrics
	Semantic Segmentation Network
	Point-Cloud-Based Network

	Experimental Results
	Quantitative Analysis
	Ablation Study
	Qualitative Analysis

	Discussions
	The Influence of Anchor Weight
	The Influence of Semantic Weight in SegIoU
	The Influence of the Number of Positive Anchors

	Conclusions
	References

