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Abstract: We propose a sensor technology for detecting dew condensation, which exploits a vari-
ation in the relative refractive index on the dew-friendly surface of an optical waveguide. The
dew-condensation sensor is composed of a laser, waveguide, medium (i.e., filling material for the
waveguide), and photodiode. The formation of dewdrops on the waveguide surface causes local
increases in the relative refractive index accompanied by the transmission of the incident light rays,
hence reducing the light intensity inside the waveguide. In particular, the dew-friendly surface of
the waveguide is obtained by filling the interior of the waveguide with liquid H2O, i.e., water. A
geometric design for the sensor was first carried out considering the curvature of the waveguide
and the incident angles of the light rays. Moreover, the optical suitability of waveguide media with
various absolute refractive indices, i.e., water, air, oil, and glass, were evaluated through simulation
tests. In actual experiments, the sensor with the water-filled waveguide displayed a wider gap
between the measured photocurrent levels under conditions with and without dew, than those with
the air- and glass-filled waveguides, as a result of the relatively high specific heat of the water. The
sensor with the water-filled waveguide exhibited excellent accuracy and repeatability as well.

Keywords: dew-condensation sensor; refractive index; dew-friendly surface; optical waveguide;
water; specific heat

1. Introduction

Precision agriculture with modern information technologies has recently attracted
significant attention as a countermeasure to resolving food insecurity [1–5]. Gathering
accurate information on the conditions of crops and the surrounding environment, such
as weight/size, infection, biomass, humidity, and temperature, is one of the prerequisites
for the implementation of precision agriculture [6–9]. Therefore, it is essential to develop
appropriate sensor components that enable the effective collection of such information.

Water, which plays a vital role in the growth of crop plants, is the main constituent of
the tissues of most creatures. However, water that fills the internal parts of the crops can be
a fundamental cause for dew condensation on the surfaces of crops. Water is known to have
a specific heat approximately four times higher than air at room conditions [10,11]. In a
greenhouse where the inner air temperature rises rapidly in the early morning, the surfaces
of water-containing crops maintain a relatively low temperature range. Consequently, dew
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condensation is facilitated by humid air when the surface temperature of crops is lower
than the dew-point temperature [12–16].

Dew condensation has detrimental influences on the quality of crops, promoting
fungal or bacterial diseases [14–17]; therefore, it is necessary to detect dew condensation in
order to take remedial action. Various sensors for detecting dew condensation, including
the resistive type, the time domain reflectometry (TDR) type, and the fiber optic type,
have been developed [18–28]. Resistive types are low-cost sensors, but corrosion of the
electrodes can negatively affect their repeatability. Although the TDR type can achieve a
relatively high accuracy, it is relatively expensive. Fiber optic types are considered advanta-
geous for implementing low-cost sensors and a good repeatability thereof. Moreover, it is
widely known that fiber optic types can be relatively advantageous in terms of immunity
to electromagnetic interference. However, without the help of certain precise thermometers
and dew prediction algorithms, there are limitations in developing a dew-condensation
sensor for specific surfaces, such as crops, through previous fiber-optic-type techniques.
The use of additional thermometers for measuring the surface temperature of crops or
ambient air is, in turn, likely to increase the entire cost of the sensor system. In addition,
plasmonic, evanescent, and stack types can be employed for measuring dew condensa-
tion [29]; however, these types have a potential limitation to elevating sensing performance
due to the difficulty of finding and modifying sensing layer materials suited to specific
target analytes, such as dew. Hence, it is necessary to develop a low-cost high-performance
dew-condensation sensor with high accuracy and excellent repeatability. Recently, a sensor
device for detecting soil moisture, which exploits a moisture-induced variation in the
relative refractive index on the outer surface of the air-filled waveguide, has been devised
and reported [30]. It is possible to implement a dew-friendly surface for the waveguide by
filling its interior with water, considering the high specific heat of the water. This implies
that a new application for detecting dew condensation can be developed by transforming
the soil-moisture sensor technology.

In this work, a sensor device, which detects dew condensation by exploiting a variation
in the relative refractive index on the surface of the water-filled waveguide was developed.
The waveguide geometry was designed to have the curvature for the total reflection of the
incident light at the waveguide surface under conditions without dew. Variations in the
internal optical paths of the waveguide were explored by inserting the absolute refractive
indices of various filling materials (water, oil, air, and glass) for the waveguide through
simulations. The dew-condensation sensors were fabricated with water, air, and glass as
internal media for the waveguide and their detection accuracy was examined. Finally,
the repeatability and uniformity of the dew-condensation sensor with the water-filled
waveguide were examined.

2. Materials and Methods

The dew-condensation sensor consists of a U-shaped glass waveguide for light prop-
agation, a light-emitting part at one end of the waveguide, and a light-receiving part at
the other end of the waveguide. The waveguide was filled with water, glass, or air as
its internal medium. The air-filled waveguide is a hollow pyrex-glass fiber without an
additional filling material, while the glass-filled waveguide is a solid pyrex-glass fiber that
has no internal empty space. The water-filled waveguide was obtained by filling a hollow
pyrex-glass fiber with deionized water. The waveguide core had a 7.0 mm diameter, the
thickness of the cladding was 1.5 mm, and the length of the waveguide was ≈209 mm
(inner) to ≈240 mm (outer) (Figure 1a). A laser (EPXFAVJH, AMYTA) with a wavelength
of 650 nm was used for emitting light. A photodiode (S1223, HAMAMATSU) was used
for receiving light. The sensor and a heater were installed in an acrylic box with a volume
of 1 m × 1 m × 0.6 m. The evaporation of moisture from the soil in a greenhouse, due
to solar radiation or ambient temperature rise, can increase the absolute humidity of the
greenhouse air in the early morning. In our experiments, such an increase in absolute
humidity was imitated by evaporating water from the heater in the acrylic box. Specifically,
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to induce dew condensation on the waveguide surface, water was evaporated from the
heater at 200 ◦C. Driving circuits for the light-emitting part and the light-receiving part
were connected to the microcontroller to construct the sensor system. In detail, the driving
circuits consisted of a part for the signal conversion/amplification of the photodiode and
one for the low-power operation of the laser. The laboratory conditions were 15% RH/17 ◦C.
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Figure 1. (a) Schematic diagram of the sensor, (b) key denotations for the constituent media and
surfaces of the sensor as well as those for the absolute refractive indices of the media, and (c) the path
difference between the incident light rays, with and without dew.

For optical simulation, a commercial finite element method program (LightTools 9.0,
Synopsys) was used. The light propagation through a waveguide was simulated with a
single wavelength of 650 nm for the light. The light intensity at the end of the waveg-
uide was calculated with and without simulated dew condensation on the waveguide
surface, respectively. Various refractive indices were inserted for the internal medium of
the waveguide.

3. Results and Discussion
3.1. The Basic Structure and Working Principle of the Dew-Condensation Sensor

As shown in Figure 1a, the waveguide of the sensor was designed to have the external
surface, i.e., Region A, where the first total reflection of the incident light occurs under
conditions without dew by designing a proper curvature for the waveguide and by filling
the waveguide with a material whose refractive index is larger than the external medium,
i.e., ambient air (Figure 1a). Figure 1b shows the key denotations for this study. Under
conditions with dew, the transmission of the light at Region A is induced by a local
variation (i.e., a local increase) in the relative refractive index at Region A (Figure 1c),
since the absolute refractive index of a dewdrop, i.e., water, is higher than that of air.
Consequently, the measured photocurrent at the light-receiving part decreases, hence
providing information on dew condensation.

3.2. The Key Geometric Design for the Dew-Condensation Sensor

It was necessary to design a proper curvature for the waveguide in order to prevent a
waste of incident light due to the transmission at Region A under conditions without dew.
If the curvature is excessively large, plenty of incident rays are transmitted at Region A
regardless of dew formation. In addition, an excessively small curvature for the waveguide
is undesirable in terms of device miniaturization and light weighting. Accordingly, the
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curvature was designed to make the incident ray satisfy θ2 > θc at x = b without excessively
reducing the curvature (Figure 2), where θ2 is the incident angle at the outer interface and
θc the critical angle yielding total reflection under conditions without dew. Snell’s law
for the external interface is written as nIM2 sin θ2 = nEM sin θ2′, where nIM2 is the absolute
refractive index of the internal medium 2, nEM is that of the external medium, and θ2’ the
refraction angle. By inserting θ2′ = 90 ◦, the θc can be written as:

θc = sin−1
(

nEM

nIM2

)
(1)

where nEM is ≈1 representing the absolute refractive index of air and nIM2 1.468 as that of
glass. Snell’s law for the internal surface is written as nIM1 sin θ1 = nIM2 sin θ1′, where θ1’
is ≈θ2 and nIM1 is the absolute refractive index of the internal medium 1. θ2 can then be
expressed as:

θ2 = sin−1
(

nIM1

nIM2
sin θ1

)
(2)
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Figure 2. The geometry of the waveguide with curvature and the design strategy in which the
condition of the total reflection at the external interface is considered.

Considering Equations (1) and (2), sin θ1 should be equal to nEM
nIM1

for θ2 = θc. In the

geometry of the waveguide, sin θ1 is equal to R−k−b
R−k (= 1− b

R−k ) where R is the radius of
curvature, k is the glass thickness of the waveguide (i.e., the thickness of the cladding), and
b is the inner width of the waveguide (i.e., the diameter of the core) (Figure 2). Therefore,
we can obtain the following condition for R, putting nEM

nIM1
= 1− b

R−k :

R =
b

1− nEM
nIM1

+ k (3)

Based on Equation (3), R values calculated for water (nIM1 = 1.330), oil (nIM1 = 1.405),
and glass (nIM1 = 1.468) were 29.7, 25.8, and 22.5 mm, respectively. For the actual design
and fabrication, R of 35 mm, which is larger than all these calculated R values, was carefully
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chosen to render the incident ray at x = b satisfy θ2 > θc for all the materials (water, oil,
and glass) under conditions without dew.

3.3. Optical Simulation with Different Filling Materials for the Waveguide

The optical simulation was performed to confirm a reduction in the amount of light
received due to the formation of dewdrops followed by light transmission at the external
interface. Water, oil, and glass, which are available at a low cost, were selected as internal
media, i.e., filling materials for the waveguide. Figure 3a–d show the optical paths inside the
simulated device, with and without dew, for various internal media, i.e., air (nIM1 = 1.000),
water (nIM1 = 1.330), oil (nIM1 = 1.405), and glass (nIM1 = 1.468). Under the conditions
with dew, as the absolute refractive index of the filling material decreased, the density of
simulated rays at the light-receiving part decreased (Figure 3a–d).
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various internal media for the waveguide, i.e., (a) glass, (b) oil, (c) water, and (d) air.

Figure 4a shows the specific intensity values at the light-receiving part, with and
without dew, for the various filling materials. In contrast to the non-air (i.e., water, oil,
and glass) samples, the air sample exhibited a relatively low intensity under conditions
without dew. The relatively low intensity in the air sample without dew was attributed to
the waste of incident rays due to the transmission at Region A. The intensity on/off ratio
was defined as Inon/off =

Inon
Inoff

, where Inoff and Inon are the intensities without dew and
with dew, respectively. The Inon/off values of the air, water, oil, and glass samples were 0.11,
0.261, 0.548, and 0.664, respectively. Although the air sample exhibited a smaller Inon/off
than the non-air samples in the simulation, the application of air is unlikely to realize a
sufficiently clear response to dew condensation because of the relatively low specific heat.
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dew condensation for the various internal media, and (b) the regions on the waveguide surface where
the incident light rays are transmitted under conditions with dew for the various internal media.

In the non-air samples, the water sample exhibited the smallest Inon/off, which was
due to the largest transmission area at Region A under conditions with dew (Figure 4b).
For a given curvature (i.e., fixed R), as the incident ray's position x increases along the
curved interface, the incident angle θ1 decreases due to the curvature. Considering the
aforementioned relationship: sin θ1 = nEM

nIM1
(i.e., θ1 = sin−1

(
nEM
nIM1

)
) where θ1 is a specific

value for θ2 = θc, as the filling material’s refractive index nIM1 increases, the specific θ1
for θ2 = θc decreases with a consequent reduction in the transmission area at Region A.
Hence, in contrast to the water sample, the glass sample with the largest nIM1 exhibited the
largest Inon/off due to the smallest transmission area at Region A under conditions with
dew (Figure 4b).

3.4. The Demonstration of Dew-Condensation Detection with the Actual Sensor

Figure 5 shows variations in the photocurrent through the photodiode over time. Ac-
tual dew-condensation sensors were fabricated using air, water, and glass as internal media
for the waveguide. The responses of the sensors with various media to dew condensation
were compared and evaluated. The sensor with the air-filled waveguide failed to detect
dew condensation as no recognizable variation in the photocurrent occurred. A sufficient
number of dewdrops were not formed on the surface of the air-filled waveguide, which
was attributed to the relatively low specific heat of air. Moreover, the photocurrent of the
air-filled waveguide without dew was excessively low, which possibly contributed to the
poor response as well. By contrast, the sensor with the water-filled waveguide successfully
detected dew condensation with a clear gap between the photocurrent levels, without dew
and with dew. The maximum photocurrent on/off ratio was defined as PCon/off =

PCon
PCoff

,
where PCoff is the average photocurrent under conditions without dew and PCon is the
average minimum photocurrent under conditions with dew. The PCon/off values of the
water and glass samples were 0.09 and 0.74, respectively. The PCon/off of the sensor with
the water-filled waveguide was smaller than the other. The measured photocurrent at the
light-receiving part decreased with dew formation; therefore, a smaller PCon/off indicated
a clearer difference between the internal light intensities, with and without dew. Since
the specific heat of water is larger than the glass, a higher amount of dew was produced
on the surface of the water-filled waveguide than on that of the glass-filled waveguide.
That is, the surface of the water-filled waveguide was more dew-friendly than that of the
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glass-filled waveguide; hence, resulting in the larger gap between the photocurrent levels
both with and without dew. In addition, the sensor with the water-filled waveguide clearly
exhibited a high accuracy of detection for the formation and evaporation of dew. As result
of the specific heat of water being four times higher than the air, the surface temperature
of the water-filled waveguide was able to be effectively maintained at a relatively low
level despite the ambient temperature rise. That is, the humid air in the box, formed by
evaporating water from the heater, was warmer than the water-filled waveguide surface,
which in other words was colder than the humid air. After ventilating the area, the formed
dewdrops began to evaporate, which increased the measured photocurrent to its initial
level. This indicates that the evaporation of dewdrops was not excessively hindered by the
physical adsorption of H2O molecules on the waveguide surface.
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condensation (the laser light wavelength: 650 nm).

To confirm the dew-friendly surface of the water-filled waveguide, we took pho-
tos of the different waveguides including the water-filled waveguide before the dew
formation (i.e., without dew), with dew, and without dew in sequence (Figure 6). The
known specific heat values for air, pyrex glass, and water are ≈1.0, ≈0.8, and ≈4.2 J/gK,
respectively [10,11,31]. The specific heat of water is distinctively higher than the others.
The specific heat of the pyrex glass is comparable with that of the air. As we experience
in daily life, when dewdrops are formed on a glass surface, the opaqueness of the surface
increases, making it possible to recognize the presence of dew. Between the different waveg-
uides, the water-filled waveguide exhibited the most significant variation in opaqueness
under conditions with dew, which is because its surface had the highest amount of dew
accumulation. The air-filled waveguide exhibited the smallest variation in opaqueness
under conditions with dew. Although the specific heat of air is slightly larger than that of
pyrex glass, the heat capacity of the air-filled waveguide, considering the mass as well, was
obviously smaller than that of the glass-filled waveguide. Hence, the air-filled waveguide
exhibited a smaller variation in opaqueness under conditions with dew than the glass-filled
waveguide. After the dew evaporated, the opaqueness of all the surfaces decreased to
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their initial level Note that the dew condensation trends on the surfaces of the different
waveguides coincided with the trends of the photocurrent variations for the actual sensors
with the different waveguides.
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Figure 6. The photos of the (a) air-filled waveguide, (b) glass-filled waveguide, and (c) water-filled
waveguide before the dew formation (‘initial’), after the dew formation (‘with dew’), and after the
dew evaporation (‘without dew’) in sequence.

3.5. A Repeatability Test of the Actual Sensor with the Water-Filled Waveguide

Repeatability tests with ten consecutive measurements were performed using five
fabricated sensors with water-filled waveguides. These water-filled waveguides were
individual waveguides. Figure 7 shows the corresponding variations in the measured
photocurrent over time. The sensor exhibited excellent repeatability characteristics, main-
taining nearly constant PCon and PCoff, respectively, under the repeated formation and
evaporation of the dew. In addition, the five fabricated sensors showed high uniformity
as indicated by their comparable PCon/off and repeatability characteristics. The excellent
repeatability of the sensor was attributed to the chemically inert surface of the glass waveg-
uide. The mean PCoff for the sample of five sensors was 507.9 µA with a standard deviation
of 2.4 µA. The mean PCon for the five sensors was 54.9 µA with a standard deviation of
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13.1 µA. Future work needs to investigate the interactions between the waveguide surface
and the dewdrops for a more thorough emulation of the trends of dew condensation on the
surfaces of various crops. The surface roughness, surface treatment, and various chemical
properties of waveguides will be important considerations. Polymeric plastic waveguides
are a promising candidate in terms of cost reduction. In addition, if the sensor is used in
different environments for different purposes, data denoising can also be considered to
improve the performance of the sensor [32].
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Figure 7. Responses of the five actual sensors with the water-filled waveguides to dew condensation.

4. Conclusions

In summary, a low-cost dew-condensation sensor, which consists of a laser, curved
water-filled waveguide, and photodiode, was developed. Dew formation and evaporation
on the dew-friendly surface of the waveguide led to variations in the relative refractive
index, thereby varying the measured photocurrent. In the simulations, the application
of water as an internal medium for the waveguide showed a relatively small Inon/off,
compared to the oil and glass samples. In the actual experiments, the sensor with the
water-filled waveguide exhibited a lower PCon/off than those with the glass- and air-filled
waveguides; however, PCon/off could not be defined for the air-filled waveguides as no
detection accuracy was obtained. The lower PCon/off of the water-filled waveguide was
attributed to the relatively high specific heat of water compared to that of air and glass.
Lastly, the excellent repeatability and high uniformity of the sensor with the water-filled
waveguide was demonstrated. These results will contribute to increasing the applicability
of refractive index-based optical sensors and improving crop yield.

Author Contributions: Conceptualization, S.H., I.-H.J., J.-H.K. and M.-H.K.; methodology, S.H.,
E.-S.S. and M.-H.K.; validation, S.H., E.-S.S. and J.-H.N.; formal analysis, S.H., J.-H.N., I.-H.J., J.-H.K.
and M.-H.K.; investigation, S.H., E.-S.S.; writing—original draft preparation, S.H., J.-H.K. and
M.-H.K.; writing—review and editing, J.-H.K. and M.-H.K. All authors have read and agreed to the
published version of the manuscript.
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