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Abstract: Recent technological advancements facilitate the autonomous navigation of maritime
surface ships. The accurate data given by a range of various sensors serve as the primary assurance of
a voyage’s safety. Nevertheless, as sensors have various sample rates, they cannot obtain information
at the same time. Fusion decreases the accuracy and reliability of perceptual data if different sensor
sample rates are not taken into account. Hence, it is helpful to increase the quality of the fusion
information to precisely anticipate the motion status of ships at the sampling time of each sensor.
This paper proposes a non-equal time interval incremental prediction method. In this method, the
high dimensionality of the estimated state and nonlinearity of the kinematic equation are taken into
consideration. First, the cubature Kalman filter is employed to estimate a ship’s motion at equal
intervals based on the ship’s kinematic equation. Next, a ship motion state predictor based on a
long short-term memory network structure is created, using the increment and time interval of the
historical estimation sequence as the network input and the increment of the motion state at the
projected time as the network output. The suggested technique can lessen the effect of the speed
difference between the test set and the training set on the prediction accuracy compared with the
traditional long short-term memory prediction method. Finally, comparison experiments are carried
out to validate the precision and effectiveness of the proposed approach. The experimental results
show that the root-mean-square error coefficient of the prediction error is decreased on average by
roughly 78% for various modes and speeds when compared with the conventional non-incremental
long short-term memory prediction approach. Additionally, the proposed prediction technology
and the traditional approach have virtually the same algorithm times, which may fulfill the real
engineering requirements.

Keywords: maritime autonomous surface ship; cubature Kalman filter; incremental motion
prediction; long short-term memory

1. Introduction

In the global economy, marine transportation is becoming increasingly significant.
More than two thirds of all freights in international trade are transported by sea. Therefore,
the ability of marine transportation to link the globe and support technical advancement
in maritime equipment is extremely important. In recent years, progressive intelligence
based on digitalization and aiming for autonomy has emerged as a new trend and hot spot
in the development of the shipbuilding industry, driven by the development of cutting-
edge theories and technologies such as the Internet of Things, big data, and artificial
intelligence (AI). The world’s major shipbuilding and shipping nations have expanded their
investments in the creation and use of autonomous ships. Autonomous ships, also known
as maritime autonomous surface ships (MASS), have been developed and are increasingly
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being used [1]. The desire to avoid human error—which contributes significantly to the
bulk of maritime catastrophes—led to the creation of MASSs. Additionally, crewed ships
have also been linked to high operating costs. Therefore, the requirement to avoid the
financial expenditures and human mistakes linked to crewed ships serves as the main
driving force behind developments in autonomous shipping [2].

The autonomous degree of MASS has been divided into L1–L4 in the 100th Maritime
Safety Committee (MSC) by the International Maritime Organization (IMO) [3]. The mode
of the perception module in a ship’s autonomous navigation system changes from a shared
view of mariners and machines into a total machine perception as the degree of autonomy
develops, which results in an increase in the number and variety of sensors carried by
MASS. Therefore, research into multi-sensor fusion technology in autonomous navigation
systems is crucial to raising the level of ship autonomy.

The perception data of a ship’s autonomous navigation system are mostly composed
of information about the ship’s motion state (such as its position, heading, speed, attitude,
etc.), as well as information about the surrounding environment (such as the status of other
ships, pontoons, and other obstacles that may threaten the navigation safety of the ships).
Nevertheless, the accuracy of the former’s perception serves as the primary guarantee of the
latter’s perception correctness. For instance, if the perception of a ship’s own motion status
is erroneous, even though the relative azimuth information of an obstruction perceived by
the shipborne sensor has adequate precision, the absolute coordinates of the obstacle will
be guessed incorrectly.

The perception of a ship’s own motion status is mostly based on the fusion information
provided by shipboard positioning systems and inertial navigation systems (INSs), such
as the global positioning system (GPS), global navigation satellite system (GLONASS),
Galileo positioning system, BeiDou, a compass, and a gyroscope. In the past decade,
researchers have carried out various research works on developing efficient multi-sensor
fusion algorithms to estimate the motion status of ships. For instance, a fusion technique
based on the Kalman filter (KF) and particle filter (PF) was developed [4]. This method
accurately estimated the status of a ship by fusing its position and attitude data. To
further improve the accuracy of ship motion attitude estimates, Ref. [5] proposed a novel
transfer alignment method for a gimbaled inertial navigation system (GINS) and strap-
down inertial navigation system (SINS) based on an iterative computation approach.
By using this technique, the alignment complexity is reduced. Additionally, a dynamic
positioning ship state estimation technique combining the unscented Kalman filter (UKF)
and PF was also presented in [6]. In this approach, the UKF optimizes each particle
state update while the PF serves as the general framework. Then, using the particles’
importance distribution, the low-frequency condition of a ship’s motion was determined.
Ref. [7] focused on the least-squares linear fusion filter design for discrete-time stochastic
signals from a multi-sensor. A covariance-based approach was used to derive easily
implementable recursive filtering algorithms under centralized, distributed, and sequential
fusion architectures. The year after, using the linear minimum variance optimality criterion,
the local least-squares linear filter obtained with each sensor was improved as a distributed
fusion filter with a matrix-weighted linear combination while taking into account the
autocorrelation and cross-correlation of multi-sensor measurements [8]. Furthermore,
considering the random packet loss in the transmission process of sensor measurement
signals, a recursive filtering algorithm was designed by using a method based on covariance
and two compensation strategies based on measurement prediction [9]. In this algorithm,
an alternative method based on direct estimation measurement noise and innovative
technology was used to compensate for the packet loss system. To make the navigation
system more reliable, Ref. [10] proposed an improved RISS-GPS ship navigation approach.
Modern magnetometer and azimuth calibration technology served as the foundation for
this technique.

The research on the fusion technology of a ship’s own motion state has gradually
matured and is widely used. The following are its main steps: The mathematical model of
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a ship’s motion is first discretized, and then the measurements from each sensor are used
as the input to perform the fusion estimation of the step with an equal time interval based
on the framework of the Kalman filter and its enhanced method. Nevertheless, sampling
frequency varies widely since there are so many different types of sensors on board. The
sampling rate of ambient sensors, such as cameras and lidar, is typically between 10 and
30 Hz, whereas the sampling rate of GPS is typically between 1 and 5 Hz. As a result, the
latest estimate of a ship’s state of motion at the time ambient sensors take samples is often
tens or even hundreds of milliseconds prior to the sampling time. The higher the speed
of a ship, the more significant the difference in motion state will be. As a consequence,
matching the sample from an external environment detecting sensor with the outcomes of a
ship motion state estimate in the time dimension is the key technology in fusion technology.

Currently, ship motion status prediction makes considerable use of the long short-
term memory (LSTM) model. It may learn the features of ship motion through historical
observations, and then predict the motion state at a specific future time. However, this
method is often used to predict a ship’s trajectory with strong regularity and is rarely used
to predict a ship’s irregular motion directly, such as roll and pitch motion. The method,
however, does not account for the modification of the motion law brought on by varying
speeds. This paper proposes a non-equal time interval incremental prediction (NETIIP)
method. First, a collection of cruise data is trained offline using the LSTM architecture. The
time deviation and state increment are used as inputs, and the increment of actual state at
the moment to be estimated is taken as the output of the network. Then, using the cubature
Kalman filter (CKF) estimator, the position, attitude, speed, and other characteristics of the
ships are projected at regular intervals. The estimation result of the ship motion state at
this moment is finally derived based on the network estimation from offline training after
receiving the time stamp of the environmental measurement sensor. The advantages of this
approach are as follows:

(a) NETIIP uses the CKF estimates as the input for the LSTM prediction network rather
than the sensor’s original data. On the one hand, it can effectively avoid the problem of
reduced prediction accuracy caused by sensor measurement error signals as the object
of network learning. On the other hand, the amplification of sensor measurement
noise caused by first-order state difference can be suppressed.

(b) NETIIP adopts a semi-supervised learning mode, which not only learns the changes
in a ship’s position and attitude but also incorporates the changes in the ship’s speed
into the learning features of the network, which can minimize the impact of the poor
learning performance caused by ship speed differences. It merely needs to learn
annotated datasets of changes in ship movement at any speed. It is feasible to foresee
the ship’s motion status at various speeds.

(c) NETIIP employs the technique of learning the properties of state increments rather
than directly learning the features of motion states. As opposed to the non-incremental
LSTM prediction (NI-LSTM) method, it avoids the shortage of the poor network
learning rate caused by the difference between the state characteristics of various
speeds or sailing modes and the state characteristics of the training set.

The rest of this paper is organized as follows. The related works on the key technologies
for matching the information in an asynchronous system are introduced in Section 2. In
Section 3, the NETIIP process and algorithm modules are provided. Section 4 contrasts
the NETIIP approach and the NI-LSTM method using contrast model experiments, and the
NETTIP method is proved to be effective and feasible. Some conclusions are given in Section 5.

2. Related Works
2.1. Establishing Fusion Model

Establishing an asynchronous fusion model is one of the key technologies for solving
the problem of information matching in asynchronous systems. Some scholars have
conducted related research on such techniques. A cubature Kalman interactive multi-
modal fusion algorithm was one of these methods [11]. After initially generating the
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models under different frequencies based on the observed values of different sampling
frequencies, this algorithm used the higher frequency fusion period, and the interactive
multiple model (IMM) approach was used to weight the predicted values of each model.
Furthermore, Ref. [12] proposed two distributed asynchronous fusion algorithms, batch
generalization covariance intersection (B-GCI) and sequential generalization covariance
intersection (S-GCI), for the asynchronous sensor fusion problem for an arbitrary number
of sensors with different sampling rates within the framework of the random finite set (RFS)
theory. S-GCI was utilized to lessen the B-heavy GCI’s computational load, while B-GCI was
used to avoid the challenging computations of cross-covariance among the local posteriors
of sensors. To provide an asynchronous track fusion technique with information feedback,
an asynchronous track fusion model with an irregular time interval of the observation data
and in conjunction with the track quality with multiple model (TQMM) was developed
in [13]. The asynchronous multi-sensor fusion system’s performance was improved by
the method’s weight allocation, which made use of the TQMM. The unique issue of each
sub-navigation sensor in the multi-sensor integrated navigation system with data sampling
rates that were different and several times the rational rate was addressed by reconstructing
the state equation and measurement equation of the system and basing it on the matrix
operator with scale and wavelet properties [14]. Moreover, Ref. [15] studied the multi-target
tracking problem based on an asynchronous network of sensors with different sampling
rates. This method carried out an arithmetic averaging approach, recursively, in a timely
manner according to the network-wide sampling time sequence in order to fuse the filter
estimates obtained at different sensors conditioned on asynchronous measurements.

2.2. Time Alignment

Time alignment is another strategy for overcoming asynchronous fusion. Local esti-
mation results for varied period sizes are brought into agreement with the uniform time by
employing timestamp alignment. To ensure that the time alignment parameters converged
well, a convex combination of the instantaneous cost and the squared difference between
current and past estimates was proposed, and arithmetic average fusion was used to merge
the intensities from various nodes [16]. Additionally, Ref. [17] proposed batch time-aligned
asynchronous fusion using unbiased converted measurements. The connection between
measurement error covariance and the actual measurement was used to demonstrate that
this approach is theoretically suboptimal. Ref. [18] believed that applying the time align-
ment would result in additional estimation error. In order to address this issue, a technique
for asynchronous track-to-track association without time alignment was presented. In this
algorithm, the deviation in the time sequence was considered as the deviation in each local
estimated track.

As can be seen from the research mentioned above, three categories can be made
for asynchronous multi-sensor fusion techniques. The first is creating an asynchronous
fusion model and feeding it inputs that are sensor measurements at varied sampling
rates. Theoretically, this method is the most accurate, but creating a workable model for
asynchronous fusion is difficult. Inaccurate or imprecise models will result in a reduction
in fusion accuracy. The second method is distributed timing alignment. The time stamp
alignment method is used to align the results of each local estimation after sensors with
various sampling frequencies are estimated locally. This method is simpler to implement
than the first, but the key to ensuring the correctness of the fusion using this method is to
figure out how to eliminate the excess mistake. The final approach disregards the timing
problem and considers it as a measurement error for direct fusion. This method performs
better with measuring systems that change slowly, but it has the lowest accuracy and the
least amount of theoretical support when the thing being measured changes fast and often.

The research shows that it is difficult to create an asynchronous sampling model based
on the self-positioning sensor group and the ambient sensing sensor group, which are
not independent of one another, for the navigation systems of MASS. In other words, the
information gathered through environmental sensing is reliant on a ship’s own attitude
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and position. Therefore, the timing alignment method is more suitable for this paper. Using
the method of prediction to achieve time alignment can not only consider the change law
of the system with time but also has no need to establish an accurate model, which is easy
to realize in a practical engineering application.

3. Materials and Methods
3.1. Problem Statement

The sample frequency of each sensor is not exactly the same in a heterogeneous
multi-sensor system. For instance, the positioning sensor’s sample frequency in a MASS
intelligent navigation system is typically 1 to 5 Hz (such as GPS), whereas a visible light
camera and other sensors that are frequently used to collect data from the environment have
a sampling frequency that is typically greater than 20 Hz. Figure 1 depicts the sampling
diagram for a kind of heterogeneous multi-sensor.
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In Figure 1, ∆ta and ∆tb represent the length of the time difference between the
continuous sampling times for camera.

Because the estimating technique often requires much less time than a positioning
sensor’s sampling period, the equal time interval estimation strategy is frequently employed to
estimate a ship’s own motion state. Nevertheless, the complexity of the external environment
for a sensor of the external environment is positively connected to the time of the recognition
and localization algorithm of the external target. The length of time required for detection
and localization algorithms varies depending on how complicated the environment is (as
illustrated in Figure 1, ∆ta 6= ∆tb). In other words, the sample interval used by an external
environment sensing sensor can be thought of as not being equal.

In a ship’s autonomous navigation system, the sensing module must simultaneously
superimpose the information gathered by the external environment sensing sensor and the
state vector of the sensor’s measurement coordinates origin in order to determine the type
of the external target obstacle and its absolute position coordinates in real-time. The origin
state of sensor measurement coordinates is related to the position and attitude of the ship,
etc. If the offset and rotation of the sensor installation position are not taken into account,
and the measurement coordinate system of the sensor coincides with the coordinate system
of ship movement, the relationship can be described as follows:

ηabsolute = ηship + ηrelative (1)

where ηabsolute refers to the motion state of the external target obstacle in the geodetic
coordinate system (absolute state), ηship is the present motion state of the ship, and ηrelative
is the motion state of the target measured with the sensor (relative state). However, because
of the difference in frequency, Formula (1) is described as (taking the estimation at time t2
as an example):

ηabsolute(t2) = ηship(t2) + ηrelative(t2) 6= ηship(t1) + ηrelative(t2) (2)

where η·(t) means the motion state at time t.



Sensors 2023, 23, 2852 6 of 23

Therefore, one need for guaranteeing the sensing accuracy of a ship’s autonomous
navigation sensing module is to anticipate the ship’s motion state at uneven time intervals
according to the value ηship(t1) at equal time intervals.

3.2. Design of the Prediction Process

To ensure the real-time performance of the heterogeneous multi-sensor system and re-
duce the computation required for the prediction process, a marginal computing framework
is employed, as shown in the flowchart in Figure 2.
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In Figure 2, η· represents the measurement value of the sensor, while η̂· represents the
estimated value of the state.

The NETIIP algorithm is mostly composed of two components. The first section is the
equal time interval estimation of a ship’s own motion state, in which the CKF estimator is
used to carry out a real-time estimation of the ship’s 6-DOF motion state in accordance with
the position and navigation sensor data sampled at the same period. The results η̂ship(t1)
are stored in the memory register.

The second component is a state predictor built using the LSTM framework. First,
according to the time stamp sampled at irregular intervals, the most recent historical
moment dataset is taken from the memory register. The ship motion state at time t2 is
then predicted using the LSTM network based on offline training, and the network is
simultaneously updated. In contrast to the conventional NI-LSTM network, the network
will additionally use the timestamp of non-equal interval sampling as an input variable to
realize non-equal interval state prediction. In the subsections that follow, we go into further
detail on the designs of the two pieces.

3.3. Ship Motion Mathematical Model

The kinematic model and dynamic model are two categories for the mathematical
representation of ship motion [19]. The dynamic model is primarily used to examine the
link between a ship’s propulsion and external environmental factors on the ship’s motion,
whereas the kinematic model treats the ship as a particle and is primarily used to study the
change in the ship’s position and heading over time. In contrast to the kinematic model,
the dynamic model is built using the ship’s precise hydrodynamic characteristics, thrust
force, and environmental force. Accurately obtaining these variables for the application
is very challenging. As a result, we estimate the ship’s 6-DOF motion state using the ship
kinematic model.

Firstly, as shown in Figure 3, the geodetic and shipboard coordinate systems
are constructed.
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All coordinate systems in Figure 3 follow the right-handed criterion, where O− NED
is the geodetic coordinate system, also known as the navigation coordinate system, while
OB − XBYBZB is the shipboard coordinate system, with the center of gravity of the ship as
the origin, and the positive direction of XBYBZB points to the bow, starboard, and bottom
of the ship, respectively. The ship moves in three axes of surge, sway, and heave as well as
in three axes of roll, pitch, and yaw.

As a result, the 6-DOF motion status of the ship can be expressed as follows:

ηship =
[
x y z θ ϕ ψ

]T (3)

νship =
[
u v w p q r

]T (4)

where Ω =
[
x y z

]
indicates the coordinate of OB in the O− NED and Θ =

[
θ ϕ ψ

]
represents the ship’s roll angle, pitch angle, and heading at the current moment, respectively,
and νship represents the speed of the ship’s 6-DOF motion in OB − XBYBZB.

In Figure 3, according to the spatial coordinate transformation relation, the first
derivative

.
ηship of the ηship has the following relation to νship:

.
ηship =

[
RΘ 03×3

03×3 I3×3

]
νship = JΘνship (5)

where I3×3 is a third-order identity matrix, 03×3 is a third-order zero matrix, and RΘ is the
rotation matrix, which can be expressed as

RΘ = RZB RYB RXB =

cψ −sψ 0
sψ cψ 0
0 0 1

 cϕ 0 sϕ
0 1 0
−sϕ 0 cϕ

1 0 0
0 cθ −sθ
0 sθ cθ

 (6)

with c and s standing for cos() and sin() trigonometric operators, respectively.
When the discrete time is short enough, the 6-DOF velocity of the ship can be regarded

as constant. Therefore, the ship’s motion can be described discretely as:

ηship(tk) = I6×6 × ηship(tk−1) + T× .
ηship(tk−1) (7)

where T = diag6×6(∆tGPS) represents the discrete time matrix.
Considering that the increment ηship is related to νship, it is necessary to estimate the

state of ηship and νship at equal time intervals. Therefore, the state X̂ship to be estimated is

X̂ship =
[
ηship

T νship
T]T (8)
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According to Equations (5)–(8), ship motion can be described as the following state–
space equation:

X̂ship(tk) =

[
I6×6 JΘ(tk−1)
03×3 I6×6

]−1[I6×6 T
03×3 I6×6

][
I6×6 JΘ(tk−1)
03×3 I6×6

]
X̂ship(tk−1) (9)

where JΘ(tk−1) and X̂ship(tk−1) are all related to Θ(tk−1). Therefore, the ship motion is
nonlinear.

However, considering that the common shipborne sensors cannot observe all the states
in the X̂ship, we only use the sensor group (e.g., GPS and INS) to observe ηship(tk):

Z1
ship(tk) =

[
xGPS(tk) yGPS(tk) zGPS(tk) θINS(tk) ϕINS(tk) ψINS (tk)

]T (10)

where ·GPS and ·INS indicate that the state is observed using GPS and INS, respectively.
Due to the limited accuracy of GPS for the ship’s current elevation measurement, which

may reduce the accuracy of estimation, zGPS are set to 0. Moreover, the time difference
method is used to observe the velocity state νship(tk):

Z2
ship(tk) = JΘ(tk)

−1

(
Z1

ship(tk)− Z1
ship(tk−1)

∆tGPS

)
(11)

The observation corresponding to Equation (9) of state can be expressed as:

Zship(tk) =
[
Z1

ship(tk)
T Z2

ship(tk)
T
]T

(12)

Equations (9)–(12) demonstrate that the equations for state and observation are both
nonlinear; hence, the nonlinear estimating method must be used to estimate the motion
state of the ships over equal time intervals.

3.4. Equal Time Interval Estimation Method for Discrete Nonlinear Systems

Conventional linear system estimating methods such as the Kalman filter cannot be
used to estimate ship motion in nonlinear systems in real-time. As a result, nonlinear
estimation techniques, such as the extended Kalman filter (EKF) [20], the UKF [21], and the
CKF [22], are frequently utilized for the estimation of ship motion. As nonlinear filtering
techniques, both the EKF and UKF can accomplish real-time state estimation in nonlinear
ship motion systems. Meanwhile, the UKF offers the advantages of quicker convergence,
higher filtering precision, and easier implementation [23]. However, when estimating in
nonlinear systems with high dimensions (dimensions greater than three), the CKF performs
more accurately than the UKF [24]. Next, we will introduce the calculation flow of the two
popular nonlinear system point estimate methods, the CKF and UKF, and the flow charts
are shown in Figure 4.

3.4.1. CKF Estimation Method

The CKF is based on the third-order spherical–radial cubature criterion and uses a set
of cubature points to approximate the mean and covariance of states for nonlinear systems
with additional Gaussian noise, which is theoretically the closest approximation algorithm
to Bayesian filtering. The CKF mainly consists of two parts—time update and measurement
update—and the algorithm flow is as follows.

(I) Time Update

Step 1: Perform Cholesky decomposition for the error covariance Ptk−1 at time tk−1:

Ptk−1 = Stk−1Stk−1
T (13)
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Step 2: Select cubature point (i = 1, 2 . . . , 2n):

χi,tk−1
= Stk−1 ξ i + X̂ship(tk−1) (14)

ξ i =
√

n[In − In]i (15)

where n = 12 represents the dimension of X̂ship(tk−1),In is the identity matrix of order n,
and [In − In]i is the ith column vector of the matrix [In − In].

Step 3: Propagate the cubature point through Equation (9):

χ?
i,tk−1

= f (χi,tk−1
) (16)

Step 4: Estimate the predicted value of state at time tk:

X?
ship(tk) =

1
2n∑2n

i=1 χ?
i,tk−1

(17)

Step 5: Estimate the predicted value of the error covariance at time tk:

P?
tk
=

1
2n∑2n

i=1 χ?
i,tk−1

χ?
i,tk−1

T −X?
ship(tk)X

?
ship(tk)

T + Q (18)

where Q represents the process noise matrix of the system, which is an adjustable parameter.

(II) Measurement Update

Step 1: Perform Cholesky decomposition for the predicted value of the error covariance P?
tk

at time tk:

P?
tk
= S?

tk
S?

tk

T (19)

Step 2: Select cubature point:

∼
χi,tk

= S?
tk

ξ i + χ?
i,tk−1

(20)

Step 3: Propagate the cubature point through Equations (10)–(12):



Sensors 2023, 23, 2852 10 of 23

Z?
i,tk

= h(
∼
χi,tk

) (21)

Step 4: Estimate the predicted value of measurement at time tk:

Z?
ship(tk) =

1
2n∑2n

i=1 Z?
i,tk

(22)

Step 5: Estimate the autocorrelation covariance matrix:

Pzz|tk
=

1
2n∑2n

i=1 Z?
i,tk

Z?
i,tk

T − Z?
ship(tk)Z

?
ship(tk)

T + R (23)

where R represents the measurement noise matrix of the system, which is also an adjustable
parameter.

Step 6: Estimate the cross-correlation covariance matrix:

Pxz|tk
=

1
2n∑2n

i=1
∼
χi,tk

Z?
i,tk

T −X?
ship(tk)Z

?
ship(tk)

T (24)

Step 7: Estimate the Kalman gain:

Wtk = Pxz|tk
P−1

zz|tk
(25)

Step 8: Estimate the state at time tk:

X̂ship(tk) = X?
ship(tk) + Wtk (Zship(tk)− Z?

ship(tk)) (26)

Step 9: Update the error covariance matrix at time tk:

Ptk = P?
tk
−Wtk Pzz|tk

WT
tk

(27)

3.4.2. UKF Estimation Method

In contrast to the CKF estimation, the UKF estimation method depicts the Gaussian
distribution of a nonlinear function via unscented transformation (UT). The algorithm flow
is as follows : P(tk−1).

Step 1: The UT is used to compute 2n + 1 Sigma points ζ(tk−1), the state weight matrix
ωX(tk−1), and variance weight matrix ωP(tk−1):

ζ(1)(tk−1)= X̂ship(tk−1) (28)

ζ(i)(tk−1)= X̂ship(tk−1) +

√
(n + λ)P(i−1)(tk−1) (i = 2, 3, . . . , n + 1) (29)

ζ(i)(tk−1)= X̂ship(tk−1)−
√
(n + λ)P(i−n−1)(tk−1) (i = n + 2, n + 3, . . . , 2n + 1) (30)

ωX
(1)(tk−1) =

λ

n + λ
(31)

ωP
(1)(tk−1) =

λ

n + λ
+ (1− α2 + β) (32)

ωX
(i)(tk−1) = ωP

(i)(tk−1) =
λ

2(n + λ)
(i = 2, 3, . . . , 2n + 1) (33)

where ·(i) represents the ith column of the matrix. n = 12 represents the dimension of X̂ship.
λ = α2(n + κ)− n is the proportional parameter. α, β, and κ are adjustable parameters, and
the values set in this paper are as follows: α = 0.99999, β = 0.3, and κ = 3.
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Step 2: One step predicts the state of Sigma points through Equation (9):

ζ(i)
(

tk|t k−1
)
= f (ζ(i)(tk−1)) (i = 1, 2, 3, . . . , 2n + 1) (34)

Step 3: The Sigma points are weighted to obtain a one-step prediction of the state X
(

tk|t k−1
)

and variance matrix P
(

tk|t k−1
)
:

X
(

tk|t k−1
)
= ∑2n+1

i=1 [ωX
(i)(tk−1)ζ

(i)( tk|t k−1
)
] (35)

P(tk|tk−1) =
2n+1

∑
i=1
{ωP

(i)(tk−1)[X(tk|tk−1)

−ζ(i)(tk|tk−1)][X
(

tk|t k−1
)
− ζ(i)

(
tk|t k−1

)
]
T}+ Q

(36)

Step 4: The first step is repeated to obtain a new set of Sigma points ς
(

tk|t k−1
)

by perform-
ing UT on the one-step prediction of the state X

(
tk|t k−1

)
and variance matrix P

(
tk|t k−1

)
.

Step 5: The observed value $
(

tk|t k−1
)

of the Sigma point is obtained through
Equations (10)–(12):

$(i)( tk|t k−1
)
= h(ς(i)

(
tk|t k−1

)
)(i = 1, 2, 3, . . . , 2n + 1) (37)

Step 6: By weighting the observed values of the new Sigma point set, the mean value of the
observation results, the auto-covariance matrix, and the cross-covariance matrix are obtained:

Z
(

tk|t k−1
)
= ∑2n+1

i=1 [ωX
(i)(tk−1)$

(i)( tk|t k−1
)
] (38)

P$,$
(

tk|t k−1
)
= ∑2n+1

i=1 {ωP
(i)(tk−1)[Z

(
tk|t k−1

)
− $(i)( tk|t k−1

)
][Z
(

tk|t k−1
)
− $(i)( tk|t k−1

)
]
T
}+ R (39)

Pς,$
(

tk|t k−1
)
= ∑2n+1

i=1 {ωP
(i)(tk−1)[Z

(
tk|t k−1

)
− ς(i)

(
tk|t k−1

)
][Z
(

tk|t k−1
)
− $(i)( tk|t k−1

)
]
T
} (40)

Step 7: The Kalman gain is estimated:

K(tk) = Pς,$
(

tk|t k−1
)
P$,$

(
tk|t k−1

)T (41)

Step 8: The ship motion state X̂ship(tk) and covariance P(tk) are updated:

X̂ship(tk) = X
(

tk|t k−1
)
+ K(tk)[Zship(tk)− Z

(
tk|t k−1

)
] (42)

P(tk) = P
(

tk|t k−1
)
−K(tk)P$,$

(
tk|t k−1

)
K(tk)

T (43)

3.5. Incremental LSTM Prediction Method

The LSTM neural network is a unique type of recurrent neural network (RNN), which
may successfully combat the issue of gradient disappearance or explosion that typical RNN
networks experience as training time and network layer rise. Therefore, the LSTM network
is often used for timing prediction.

The LSTM network is often only used to forecast a ship’s track information in a
ship track prediction application, and the projected step size is typically the equal time
interval [25]. Its mapping connection may be expressed as follows:

Ω(t + 1) = f ({Ω(t− κ + 1), . . . , Ω(t− 1), Ω(t)}) (44)

where κ represents the length of the historical sequence in the LSTM network.
Figure 5 depicts the network structure of the LSTM. Three gate structures make up the

LSTM network. They are as follows:
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(1) Forget gate: This is used to decide whether to keep or discard information. The informa-
tion from the previous hidden state ht−1 and the input information εt are simultaneously
processed via a sigmoid function to calculate the output value. The closer the result ft is
to 0, the more it should be discarded. The forgetting factor can be calculated using the
following formula:

ft = σ(W f ·[ht−1, εt] + b f ) (45)

where W f is the weight matrix of the forgetting gate, b f is the offset term of the forgetting
gate, and σ is the sigmoid function, which is specifically expressed as:

σ(net) =
1

1 + e−net (46)

(2) Input gate: This is used to update cell status. The information of the hidden state of the
previous layer and the information of the current input are calculated via the sigmoid function
to determine the type of updated information. Meanwhile, the information of the hidden
state of the previous layer and the information of the current input are calculated via the tanh
function to create a new candidate value vector. Finally, the output of the sigmoid function is
multiplied by the output of the tanh function. The calculation formula is

it = σ(Wi·[ht−1, εt] + bi) (47)

−
Ct = tanh(Wc·[ht−1, εt] + bc) (48)

where Wi and Wc are the weight matrices of the input gate, bi and bc are the offset terms,
and tanh represents the tanh function, which is specifically expressed as:

tanh(net) =
enet − e−net

enet + e−net (49)

After passing through the forget gate and the input gate, the old cell state can be updated as

Ct = ft·Ct−1 + it·
−
Ct (50)

(3) Output gate: This is used to determine the output value according to the cell state. First,
the sigmoid function is used to determine the part of the cell state that needs to be output,
then the cell state is calculated via the tanh function, and, finally, the output of network is
multiplied. The calculation formula is
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ot = σ(Wo·[ht−1, εt] + bo) (51)

ht = ot·tanh(Ct) (52)

where Wo is the weight matrix of the output gate, and bo is the offset term of the output
gate. In Equations (47)–(52), parameters W f , Wi, Wc, and Wo and b f , bi, bc, and bo are all
parameters that can be adjusted.

Compared with the ship trajectory prediction method, the traditional NI-LSTM pre-
diction relationship of the ship’s six degrees of freedom motion can be expressed as

ηship(t + 1) = f ({ηship(t− τ + 1), . . . , ηship(t− 1), ηship(t)}) (53)

Some researchers utilize LSTM to predict ship motion attitude in addition to ship track
prediction. Since ship attitude changes more irregularly and with a narrower change range
than ship track, it is challenging to guarantee the accuracy of attitude prediction using solely
LSTM. Researchers have made improvements to the LSTM network, including the addition
of a self-attention mechanism for multi-scale prediction [26] and the decomposition of ship
attitude data by superimposing the LSTM network with other prediction networks [27].

Although the aforementioned method can somewhat raise the LSTM network’s pre-
diction accuracy, it requires many more calculations than a single LSTM network, which
is not fast enough for the application in this study. On the other hand, the prediction
accuracy of timing sequences with non-equal time intervals will be lower because LSTM
is typically utilized for timing sequence prediction with equal time intervals. The time
difference and the increment of the ship’s motion state is input into the network in this
article using a single LSTM network structure. Considering that the speed of the ship also
affects the change in motion state, the network also uses the ship’s speed νship as an input.
The mapping relationship can be expressed as follows:

Γ(t + 1)− Γ(t) = f (δ) (54)

δ =
τ⋃

i=1

{
∆Ti, ∆Γi, νship(t− i + 1)

}
(55)

∆Γi = Γ(t)− Γ(t− i + 1) (56)

∆Ti = Tpredict − T(t− i + 1) (57)

where Γ =
[
x̂ ŷ θ̂ ϕ̂ ψ̂

]
is the latest estimate result X̂ship of the CKF estimator for all

elements except ẑ. Tpredict represents the moment to be predicted, and T(t− i + 1) (i = 1, 2,
3, . . . ,τ) represents the sequence of the latest τ estimated moments with the CKF estimator.

Since the observation of zGPS is set to zero in the observation Equation (10), its estima-
tion with the CKF estimator is inaccurate. In order to avoid the problem of the prediction
accuracy being reduced due to the inaccurate quantity, we did not take it as the input for
the prediction network.

4. Results and Discussion

The experimental verification work is based on the ship model of the unmanned ship
platform “CHCNAV APACHE 6”, which is equipped with a dual antenna GPS (installed at
the fore and aft of the ship) for real-time measurement of the ship’s position information
and an attitude instrument (installed close to the center of gravity of the ship) for real-
time measurement of the ship’s attitude information. The experimental verification work
was carried out in the Yanxi Lake experimental site, which is open water in a natural
environment with an unknown random environment. Figure 6 displays the ship’s model
and experimental site.
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Figure 6. Experimental ship models and sensors: (a) experimental model, (b) attitude instrument,
and (c) experimental site.

The navigation of an intelligent ship can be divided into two modes in the applica-
tion: manual remote control and autonomous navigation. Different modes have different
changing rules for the ship motion state. Furthermore, the characteristics of a ship’s motion
state that change with speed vary. To verify the effectiveness and reliability of the NETIIP
method, six sets of experiments were carried out at low speed, medium speed, and high
speed, respectively, under the manual remote mode (MRM) and autonomous navigation
mode (ANM).

Figure 7 shows the results of the real-time estimation of the ship’s position information
(taking the north coordinates as an example) in the six trials by using the CKF estimator
and UKF estimator. Herein, the longitude and latitude measured with the dual-antenna
GPS are converted using the Universal Transverse Mercator (UTM) projection method.
Meanwhile, the initial values of the error covariance P in Formulas (13), (29) and (30), the
process noise matrix Q in Formulas (18) and (36), and the measurement noise matrix R
in Formulas (23) and (39) are all set to the same value in order to compare the estimation
accuracy of the two estimation techniques.
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Figure 7. Comparison of ship position estimations: (a) slow speed of MRM, (b) medium speed of
MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high
speed of ANM.

The CKF and UKF both have their own benefits and drawbacks for estimating ship
positioning data in real-time. The initial convergence rate of the CKF is marginally quicker
than the UKF’s for the same set of algorithm parameters (a in Figure 7a–e). Nevertheless,
the tracking effect of the CKF is worse than the UKF when a ship is turning with a high
speed (b in Figure 7c and a in Figure 7f).

Figure 8 shows the results of the real-time estimation of the ship’s attitude information
(taking the pitch angle of ships as an example) in the six experiments by using the UKF
estimator. Meanwhile, Figure 9 shows the CKF estimation results.



Sensors 2023, 23, 2852 15 of 23

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24 
 

 

Figure 7. Comparison of ship position estimations: (a) slow speed of MRM, (b) medium speed of 

MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high 

speed of ANM. 

The CKF and UKF both have their own benefits and drawbacks for estimating ship 

positioning data in real-time. The initial convergence rate of the CKF is marginally 

quicker than the UKF’s for the same set of algorithm parameters (a in Figure 7a–e). Nev-

ertheless, the tracking effect of the CKF is worse than the UKF when a ship is turning 

with a high speed (b in Figure 7c and a in Figure 7f). 

Figure 8 shows the results of the real-time estimation of the ship’s attitude infor-

mation (taking the pitch angle of ships as an example) in the six experiments by using 

the UKF estimator. Meanwhile, Figure 9 shows the CKF estimation results. 

 

Figure 8. UKF estimation results for the ship’s attitude: (a) slow speed of MRM, (b) medium speed 

of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high 

speed of ANM. 

 

Figure 9. CKF estimation results for the ship’s attitude: (a) slow speed of MRM, (b) medium speed 

of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high 

speed of ANM. 

Figure 8. UKF estimation results for the ship’s attitude: (a) slow speed of MRM, (b) medium speed
of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high
speed of ANM.
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Figure 9. CKF estimation results for the ship’s attitude: (a) slow speed of MRM, (b) medium speed
of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high
speed of ANM.

It can be seen that the UKF estimations have a low accuracy when the attitude angle
is close to zero and fluctuates often (see Figure 8a). However, the estimated results can
fundamentally converge towards the original data when the attitude angle is far from zero
and changes relatively regularly. Comparatively, the CKF produces more accurate results
than the UKF for the parameters given, and the CKF estimation method’s assessment of
the ship’s attitude angle generally converges around the observed value. We are unable to
determine which approach performs better in terms of estimation as the parameter settings
may not be optimal for them. However, it is clear from a comparison of Figures 8 and 9 that
the UKF is more susceptible to changes in the features of the item to be estimated, making
it more challenging to perform tasks such as parameter modification.

The results of the two approaches’ real-time estimations of the ship forward speed u are
shown in Figure 10. The figure shows that while the UKF estimation results are nearly non-
convergent, the CKF estimation results are smoother. Meanwhile, Equations (58) and (59)
are used to calculate the resultant velocities and original observations to accurately evaluate
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the estimation accuracy for ship velocity with the two approaches, which is depicted in
Figure 11.

νestimation(tk) =

√
u(tk)

2 + v(tk)
2 (58)

νobservation(tk) =

√(
xGPS(tk+1)− xGPS(tk)

tk+1 − tk

)2

+

(
yGPS(tk+1)− yGPS(tk)

tk+1 − tk

)2

(59)
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Figure 10. Comparison of ship forward speed estimations: (a) slow speed of MRM, (b) medium
speed of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and
(f) high speed of ANM.
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Figure 11. Comparison of ship resultant velocity estimations: (a) slow speed of MRM, (b) medium
speed of MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and
(f) high speed of ANM.

Equation (58) is the method for calculating the ship’s resultant velocity in the ship-
board coordinate system, which is used for the vector addition of the estimated velocity.
Meanwhile, Equation (59) is the method for calculating the resultant velocity in the geodetic
coordinate system, which is appropriate for calculating the ship’s resultant velocity under
the sensor’s original observation.
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In contrast, Figures 10 and 11 show that the results of the CKF estimator for the first-
order state (ship speed) essentially converge towards the observations, while the results of
the UKF estimator practically diverge.

The root-mean-square error (RMSE) coefficient (Equation (60)) is used to calculate the
estimation results of each variable for assessment in order to more effectively evaluate the
estimation accuracy of the estimated state variables using the UKF and CK.

RMSE =

√
1
m∑m

i=1(χ̂i − χi)
2 (60)

where m represents the number of estimated cycles, χ̂i represents the variable estimated
for the ith period, and χi represents the truth value. However, because the true value of
the quantity to be estimated cannot be acquired in the experiment, we accept the sensor’s
observed value as the genuine value. The RMSE coefficient reflects the convergence and
credibility of the estimated result. The smaller the value, the more the estimated result
converges towards the observed value, and the higher its credibility. The RMSE coefficient
of the estimated results is shown in Table 1.

Table 1. RMSE coefficients of different models and different estimators.

Estimator North East Pitch (Rad) Roll (Rad) Head (Rad)

CKF

MRM_Slow 0.2081 0.1614 0.0013 0.0021 0.1911
MRM_Medium 0.4058 0.4747 0.0053 0.0059 0.4508

MRM_Fast 0.5097 0.7541 0.0110 0.0093 0.3328
ANM_Slow 0.2378 0.2105 0.0031 0.0097 0.3885

ANM_Medium 0.4869 0.4133 0.0035 0.0104 0.5389
ANM_Fast 0.8318 0.5225 0.0059 0.0087 0.4275

UKF

MRM_Slow 0.2278 0.0883 4.0196 2.6769 0.6209
MRM_Medium 0.1466 0.1160 2.3857 2.7318 1.1448

MRM_Fast 0.1690 0.1322 1.8902 3.2087 0.9575
ANM_Slow 0.1005 0.2516 4.1937 3.3752 1.5118

ANM_Medium 0.2384 0.2239 3.8999 3.5797 1.4721
ANM _Fast 0.1494 0.1753 2.9908 3.0315 1.0680

Combined with Figures 7–11 and the data in Table 1, under the same set of parameters,
the UKF has a higher estimation accuracy than the CKF for ship position estimation. On the
other hand, the UKF has better parameter robustness than the CKF. With the increase in ship
speed, the estimation accuracy of the CKF decreases gradually; thus, for different ship speeds,
the CKF must change various parameters to provide appropriate accuracy. However, the
accuracy of the UKF estimation will not decrease with the increase in ship speed, that is, a set
of parameters can adapt to the estimation of ship position at different speeds.

However, the CKF’s accuracy is substantially greater than the UKF’s for ship attitude.
Even worse, the attitude estimated using the UKF does not steadily converge towards the
observation (see Figure 8). Moreover, since attitude and ship velocity have a strong coupling
connection, the UKF’s estimation for ship velocity virtually exhibits a diverging trend (see
Figure 11). Thus, the UKF is not appropriate for the estimation of the multidimensional
autocorrelation state.

Ship speed is one of the inputs for the prediction network in this study (Formula (55)),
which has high requirements for the speed-related estimate accuracy of the pre-state
estimation module. Therefore, the CKF is chosen as the pre-state estimate module rather
than the UKF.

In order to verify the prediction accuracy of the NETIIP, the CKF estimations of the
ship in automatic tracking mode with a six-knots set speed are first collected as the training
set. The above six groups of data are used as the test set for prediction and compared with
the prediction results of the NI-LSTM algorithm. The ship position prediction results are
shown in Figure 12, and the attitude prediction results are shown in Figure 13. Therein, the
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prediction time is set to a random number with an upper limit of the estimation period of
the CKF.
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Figure 12. Comparison of ship position predictions: (a) slow speed of MRM, (b) medium speed of
MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high
speed of ANM.
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Figure 13. Comparison of ship attitude predictions: (a) slow speed of MRM, (b) medium speed of
MRM, (c) high speed of MRM, (d) slow speed of ANM, (e) medium speed of ANM, and (f) high
speed of ANM.

Comparing the prediction results of the two methods, it can be seen that the prediction
result of NETIIP is closer to the truth data than NI-LSTM. On the other hand, with the
change in ship speed, the accuracy of the NI-LSTM prediction also changes greatly. The
prediction of the position (a in Figure 12d) and attitude (Figure 13a,d) of the low-speed
sailing mode almost diverges. In contrast, the NETIIP technique nearly converges towards
the truth data and is less impacted by speed.

To better explore the degree of influence of the ship speed, the absolute value of the
prediction error–velocity distribution is plotted, as shown in Figures 14 and 15.
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Figure 15. Prediction error–velocity distribution of ship attitude: (a) MRM and (b) ANM.

The prediction error of NI-LSTM tends to grow with the increase in ship speed in both
the manual mode and automatic tracking mode, as can be seen from the distribution charts
in Figures 14 and 15, while the error of the NETIIP prediction method scarcely changes
with ship speed. Since the training set chooses data from the automatic tracking mode, the
prediction errors of the two approaches for predicting ship attitude are comparable for the
test set in MRM, generally speaking, the NETIIIP algorithm is slightly superior to the NI-
LSTM algorithm. In ANM, NETIIP maintains a high prediction accuracy, and its prediction
error is essentially kept within 1◦ for the ship attitude. However, the prediction accuracy
of NI-LSTM is poor, and its prediction error varies with the change in ship speed. The
prediction results of the NI-LSTM algorithm almost exhibit a divergent trend throughout
the range of 1–3 m/s, as observed when combined with Figures 13d and 14b.

The RMSE coefficients under each mode are calculated in Table 2.
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Table 2. RMSE coefficients of different models and different predictions.

North East Pitch (Rad) Roll (Rad) Head (Rad)

NETIIP

MRM_Slow 0.0823 0.0489 0.0039 0.0030 0.2336
MRM_Medium 0.1079 0.0973 0.0055 0.0054 0.2599

MRM_Fast 0.1333 0.1349 0.0104 0.0063 0.1927
ANM_Slow 0.0835 0.0552 0.0050 0.0070 0.1741

ANM_Medium 0.0994 0.0938 0.0046 0.0070 0.2214
ANM_Fast 0.1197 0.1132 0.0060 0.0056 0.1753

NI-
LSTM

MRM_Slow 0.4396 0.3611 0.0167 0.0193 0.8163
MRM_Medium 0.7770 0.7772 0.0130 0.0190 1.0182

MRM_Fast 1.0562 2.4098 0.0187 0.0257 1.6340
ANM_Slow 0.8328 1.4724 0.0440 0.0218 1.3956

ANM_Medium 0.3952 0.7633 0.0162 0.0138 0.5420
ANM_Fast 1.0255 0.9913 0.0253 0.0177 0.7663

According to Equation (61) and the data in Table 2, the decrease ratios of the RMSE
coefficient of the two prediction methods were calculated. The improving effect of the
suggested prediction method on prediction accuracy is more noticeable the higher the value.

RMSEreduction =
RMSENI−LSTM − RMSENETIIP

RMSENETIIP
× 100% (61)

The decrease ratios of the RMSE coefficients of all the prediction state variables of each
mode at the three speeds in Table 3 were averaged, as shown in Table 4, which represents
the degree of improvement of the proposed prediction methods at different speeds.

Table 3. Decrease ratio of RMSE coefficient of each mode (%).

North East Pitch Roll Head

MRM_Slow 81.28 86.50 76.65 84.45 71.38
MRM_Medium 86.10 87.48 57.70 71.58 74.47

MRM_Fast 87.38 94.40 44.38 75.50 88.21
ANM_Slow 89.97 96.25 88.63 67.89 87.53

ANM_Medium 74.80 87.71 71.60 49.28 59.15
ANM_Fast 88.33 88.60 76.30 68.36 77.12

Table 4. Average decrease ratio of RMSE coefficient (%).

Speed Mode Slow Medium Fast Average

Ratio (%) 83.25 71.99 78.858 78.03

The maximum ship velocities in the CKF estimator under each mode and those in the
training set were obtained in accordance with Figure 11 in order to more accurately reflect
the relationship between the degree of prediction accuracy improvement of NETIIP in
order to more accurately reflect the relationship between the degree of prediction accuracy
improvement and the change in ship speed, as shown in Table 5.

Table 5. Maximum velocities for each mode (m/s).

MRM ANM Training Set

Slow Medium Fast Slow Medium Fast ——
1.9383 3.9522 4.3282 1.7456 3.4997 4.8914 3.2647

The accuracy of the prediction results of NETIIP is not significantly higher than the
traditional NI-LSTM prediction method when the ship speed in the test set approaches
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that in the training set, as can be seen by comparing Tables 4 and 5 and combining with
the results of the prediction error distribution in Figures 14 and 15. This is because the
prediction accuracy of the traditional method is sufficient. However, the conventional
NI-LSTM prediction technique has a low learning rate for the state change rule, and even
fails to learn the proper rule, when the test set’s ship speed significantly differs from the
training set’s. Therefore, the prediction error increases with the increase in the speed
difference. Compared with the traditional NI-LSTM method, the prediction accuracy of
the NETIIP prediction method is less affected by the speed. Therefore, compared with the
traditional NI-LSTM prediction method, the improvement rate of the prediction accuracy
increases with the increase in the speed difference.

It is vital to determine whether the time consumption of this technique is less than the
need in order to confirm that the real-time performance of the suggested method satisfies
the actual engineering requirements. According to Figure 1, the time of each cycle of the
algorithm should not be longer than the sampling period of the sensor GPS, which is set
to 0.1 s in this experiment. The NETIIP and NI-LSTM prediction methods are performed
using software named MATLAB on a Windows 10 system with an Intel® Core(TM) i5-3210m
2.50 Ghz processor. The average time consumption of the methods is calculated as shown in
Table 4.

Because NETIIP uses a single LSTM network structure, which is the same as that of
the NI-LSTM prediction technique, the algorithm time is comparable to that of NI-LSTM,
and the average time is considerably less than the upper limit of the forecast time 0.1 s (see
Table 6). Therefore, the real-time performance of the proposed prediction method meets
the engineering needs.

Table 6. Average time consumption.

Predictor MRM ANM

Slow Medium Fast Slow Medium Fast
NETIIP 0.02297 0.02318 0.0218 0.0244 0.0215 0.0234

NI-LSTM 0.0223 0.0225 0.0229 0.02338 0.0227 0.0227

5. Conclusions

This paper studied a non-equal time interval incremental prediction method for ship
motion state to solve the problem of ship state estimation at different rates and sensor
sampling times in intelligent ship navigation. First, as the method’s time state estimation
modules, the estimation results of the CKF and UKF were first compared and studied, and
the justifications for selecting the CKF estimator were given. Then, the prediction results
of the NETIIP method and the traditional NI-LSTM prediction method were compared,
and the impact of a change in ship velocity on the two prediction methods’ accuracy was
examined. The comparative findings demonstrate that the suggested approach has good
prediction accuracy for ship condition prediction under various modes and speeds when
compared with the conventional NI-LSTM prediction methods. Meanwhile, the algorithm
time is almost the same as that of the traditional prediction methods, and both can satisfy
the requirements of actual engineering.

Nevertheless, the following are some drawbacks of the suggested approach in this
paper: (a) In order to guarantee the algorithm’s prediction accuracy, the CKF estimation
algorithm’s state estimation accuracy must first be verified. The CKF algorithm needs
to adjust various sets of parameters for different speeds of the ships, which restricts
how simple the prediction algorithm can be. (b) Different from the traditional NI-LSTM
prediction method, the NETIIP algorithm needs to use time intervals as inputs for training
and prediction, necessitating high-precision time stamps in the training set and test set.
Inaccurate time stamps will lower the algorithm’s forecast accuracy.

As a result, future studies should take into account a more straightforward and efficient
state estimation method as the prediction method’s equal time interval state estimation
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module. Furthermore, in order to lessen the effects of inadequate timestamp accuracy, a
novel predictive compensating approach must be created.
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