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Abstract: The core task of any autonomous driving system is to transform sensory inputs into driving
commands. In end-to-end driving, this is achieved via a neural network, with one or multiple
cameras as the most commonly used input and low-level driving commands, e.g., steering angle,
as output. However, simulation studies have shown that depth-sensing can make the end-to-end
driving task easier. On a real car, combining depth and visual information can be challenging due to
the difficulty of obtaining good spatial and temporal alignment of the sensors. To alleviate alignment
problems, Ouster LiDARs can output surround-view LiDAR images with depth, intensity, and
ambient radiation channels. These measurements originate from the same sensor, rendering them
perfectly aligned in time and space. The main goal of our study is to investigate how useful such
images are as inputs to a self-driving neural network. We demonstrate that such LiDAR images are
sufficient for the real-car road-following task. Models using these images as input perform at least as
well as camera-based models in the tested conditions. Moreover, LiDAR images are less sensitive to
weather conditions and lead to better generalization. In a secondary research direction, we reveal
that the temporal smoothness of off-policy prediction sequences correlates with the actual on-policy
driving ability equally well as the commonly used mean absolute error.

Keywords: autonomous driving; end-to-end driving; LiDAR in autonomous driving; evaluation;
generalization

1. Introduction

Fully end-to-end autonomous driving systems rely on a neural network to transform
sensory inputs into raw driving commands without clearly defined sub-modules [1–3].
This contrasts with the modular approach, which divides driving into many separately
solved and evaluated tasks, such as object detection, localization, path planning, and path-
tracking control [4]. End-to-mid approaches are a compromise between the end-to-end and
modular approaches. The raw inputs are transformed into either a desired trajectory [5,6]
or a set of occupancy or cost maps [7–9], based on which a safe trajectory can be computed.
Essentially, in end-to-mid approaches, the neural network takes care of the perception,
scene understanding, and planning, while the job of following the planned trajectory is
outsourced to a control algorithm. There is a variety of path-tracking control algorithms for
autonomous driving to choose from [10,11]. In this work, we follow the fully end-to-end
paradigm, and our network transforms the inputs directly into the desired steering angles.

End-to-end and end-to-mid autonomous driving is often achieved based solely on
camera images [5,12–14] or with additional information about the desired route provided
via one-hot encoded navigation commands or via route planner screen images [15–17]. This
input combination is cheap and seems sufficient for human drivers to complete routes safely,
making it an interesting subject of study. However, in simulation, a precise depth image
can readily be generated and has been shown to be useful for driving models [18]. Even an
approximate depth image predicted from an RGB image may improve results [18,19].

In the real world, one can also attempt to predict depth images based on monocular
camera images [20–22]. Alternatively, stereo cameras can be used, but they suffer from
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a limited range. A more reliable depth image can be obtained by projecting the LiDAR
point cloud to an RGB camera image. However, merging this depth image with a camera
image is not trivial [23]. The two sensors are not located in the same place and may see the
world from different angles, leading to different blind spots. Furthermore, it is difficult to
guarantee temporal synchronization of the camera and the LiDAR. Except for the blind
spots, extrinsic calibration of the sensors allows a decent matching of the depth and color
values (either RGB-D images or colors attached to point cloud points). However, calibration
is a time-consuming procedure that may need to be repeated regularly. Finally, even if
good calibration is achieved for the training data, unexpected synchronization failures or
calibration drifts may occur during deployment [24].

To remove the need to align multiple sensors, Ouster LiDARs allow the generation of a
surround-view image containing perfectly aligned depth, intensity, and ambient radiation
channels [25]. The intensity and ambient radiation channels can be seen as providing visual
information but from the infrared wavelength range. This three-channel input, therefore,
contains temporally and spatially perfectly aligned visual (infrared) and depth information.

This input is in image form and can be analyzed using any of the very successful
approaches developed in computer vision and camera-based self-driving. Network ar-
chitectures for extracting information from images are more mature than those for point
clouds. We hence have a sensor providing seemingly rich information in a form that we
know well how to analyze. What intuitively seems informative, however, may be too
unreliable for basing a self-driving solution on it. The main goal of the present work is to
evaluate the usefulness of these LiDAR images as model inputs for end-to-end self-driving.

Our main contributions are the following:

1. We demonstrate that LiDAR images, as produced by Ouster OS1-128 LiDAR firmware,
contain sufficient information for road-following on complex and narrow rural roads,
hence validating their usefulness for self-driving.

2. We compare LiDAR-image-based driving with camera-based driving and show it
adds robustness to light and weather conditions in this task.

3. We study the correlation between off-policy and on-policy performance metrics, which
has not been studied before in a real car context.

4. We collect and publish a real-world dataset of more than 500 km of driving data
on challenging rural roads, with LiDAR and camera sensors and centimeter-level
accurate GNSS trajectory. The dataset covers a diverse set of weather conditions,
including snowy winter conditions.

This is the first experiment in our effort to validate the usefulness of these LiDAR
images for increasingly complicated driving tasks, such as highway driving and urban
driving. Here, we restrict ourselves to the simpler task of road following, albeit in the
complex setting of narrow rural roads, which are also used as World Rally Championship
tracks, meaning they are also challenging for humans.

2. Methods

In this section, we will introduce the experimental design applied to evaluate the
usefulness of the novel LiDAR image inputs for end-to-end self-driving. In particular,
after giving a definition of the behavioral cloning paradigm commonly used in end-to-end
driving, we describe the dataset and the neural network models used. The key idea is to
train LiDAR image-based models exactly the same way as if the inputs were visible light
RGB images and to compare how such models perform when deployed. We introduce the
deployment procedure and the performance metrics we use.

2.1. Behavioral Cloning

Behavioral cloning takes a supervised learning approach to self-driving [26]. Based
on information from a chosen set of sensors, the model is optimized to produce the same
driving behavior as a human would. This behavior is usually described by the sequence
of low-level commands given, or the trajectory taken [1–3]. For model training, a dataset
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is collected consisting of sensor recordings during human driving, accompanied by the
driving commands, or the trajectory produced by the driver.

Such an imitation approach has worked well for simpler tasks such as lane follow-
ing [12,26], which seem to not require restrictive amounts of training data. However, dense
traffic scenarios remain challenging for behavioral cloning [27]. In addition to Tesla and
comma.ai, multiple companies report promising performance in real-world urban driving
with neural network-based solutions [17,28,29], but it is unclear to what extent these can be
considered end-to-end. Though end-to-end models in other fields, e.g., speech recognition,
have shown good generalization, replicating this success in self-driving is costly due to
the massive amounts of data the cars produce. As further limitations, safety guarantees
against rare situations and adversarial attacks are lacking [30,31], and interpreting model
decisions remains challenging [1,32].

2.2. Data Collection

In the period of May 2021 to October 2021, training recordings of human driving
were collected from all non-urban WRC Rally Estonia tracks and a few similar routes.
Driving was performed with Lexus RX 450h fitted with a PACMod v3 drive-by-wire system
provided by AutonomouStuff. The following sensors were recorded: NovAtel PwrPak7D-
E2 GNSS device, Ouster OS1-128 LiDAR, three Sekonix SF3324 120-degree FOV cameras,
and one Sekonix SF3325 60-degree FOV camera (Figure 1). All tracks were recorded in both
directions at least once, amounting to more than 500 km of driving. The road type was
mostly very low-traffic gravel roads. There were shorter sections of two-lane paved roads.
In January–February 2022 and in May 2022, further data collection was performed in snowy
and early spring conditions. These data were only used for off-policy metric computation,
not for training. The list of recordings used in this work is detailed in Appendix D.

Figure 1. The location of sensors used in this work. There are other sensors on the vehicle not
illustrated here.

The driving recordings from spring, summer, autumn, and winter differ strongly
in vegetation levels and light conditions. All driving was completed in daylight but in
differing weather conditions, including heavy rain. The dataset, including recordings from
sensors not used in this work, will be made fully available with this publication.

2.3. Data Preparation

For neural network training, only recordings from the Ouster OS1-128 mid-range
LiDAR and Sekonix SF3324 RGB camera placed front center of the car were used. The list
of recordings from May to October 2021 was divided into training (460 km of driving)
and validation sets (80 km of driving). Recordings from the evaluation track, where the
on-policy evaluation was later performed, were not part of the training set unless stated
otherwise but were part of the validation set that was used for early stopping. The lists of
recordings used for model training and validations are given in Appendix D.
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The surround-view LiDAR image output of Ouster OS1-128 LiDAR contains the
channels of depth, intensity, and ambient radiation (Figure 2). In this work, the depth
channel is further pre-processed in a way that distances in the range from 0 to 50 m are
mapped linearly to the values 255 to 0, i.e., 20 cm depth resolution. All distances beyond
50 m are marked as 0. For both RGB and LiDAR image inputs, the image was cropped
horizontally to remove the hood of the car and all rows above the horizon. For both input
types, the image was cropped vertically to keep 90 degrees of view in the center front.
The camera image was also downscaled to make it match the LiDAR image size. No further
processing was performed. This resulted in a 264 × 68 × 3 image as neural network input
for both input types. The target labels correspond to the steering wheel angles as produced
by the human driver collecting the data.

Figure 2. Input modalities. The red box marks the area used as model input. Top: surround view
LiDAR image, with red: intensity, blue: depth, and green: ambient. Bottom: 120-degree FOV camera.

No data diversification methods were employed because, firstly, we assume our
data set is large enough to learn the task without augmentations, and secondly, useful
augmentation is not easy to perform—recent works have described that models often learn
to detect the fact of augmentation itself instead of learning a generalized policy [33,34].

The dataset was not balanced in any way. The rally tracks are curvy and are not
dominated by stereotypical drive-straight behavior. We do not think there is any type
of situation in our data that should be undersampled. Crossroads and interactions with
other cars on the road are not excluded from the dataset, despite using the data only for
learning road-following.

2.4. Architecture and Training Details

Our intent is to use a relatively simple network architecture because the goal is to
compare two input modalities rather than to achieve the best possible model. With limited
data amount or variability, powerful models could overfit, masking the effect of chosen
inputs. Recent works have reported success on as low as 30 h of training data [17,27]. Our
500 km of data corresponds to only 15 h of driving, placing us in danger of overfitting
our models.
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We use a slightly modified version of the classical PilotNet architecture from [12]. We
add batch normalization after each layer except the last two fully-connected layers. This
gives us more training stability and faster convergence, similar to what is discussed in [35].
For similar reasons, we use LeakyReLU [36] as the activation function instead of ReLU.
The architecture is summarized in Table 1. The model outputs the steering angle as the
lateral control command. The driving speed is not controlled by the network.

Table 1. Details of the architecture. Batch normalization always precedes activation function. All
convolutions are applied with no padding. The resulting output dimensions can be seen in Figure 3.

Layer Hyperparameters BatchNorm Activation

Input (264, 68, 3)

Conv2d filters = 24, size = 5,
stride = 2 BatchNorm2d LeakyReLU

filters = 24, size = 5,
stride = 2 BatchNorm2d LeakyReLU

filters = 36, size = 5,
stride = 2 BatchNorm2d LeakyReLU

filters = 48, size = 3,
stride = 1 BatchNorm2d LeakyReLU

filters = 64, size = 3,
stride = 1 BatchNorm2d LeakyReLU

Flatten - - -
Linear nodes = 100 BatchNorm1d LeakyReLU

nodes = 50 BatchNorm1d LeakyReLU
nodes = 10 none LeakyReLU
nodes = 1 none none

Figure 3. The modified PilotNet architecture. Each box represents the output from a layer, with the
first box corresponding to the input of size (264, 68, 3). The model consists of 5 convolutional layers
and 4 fully connected layers. The flattening operation is not made visible here. See the filter sizes,
usage of batch normalization, and activation functions in Table 1.

We used mean absolute error (MAE) as the loss function, as this metric has been shown
to correlate better than mean squared error with on-policy driving ability [37]. We used
an Adam optimizer with weight decay [38] with default parameters in PyTorch [39]. We
used early stopping if no improvement in the validation set was achieved in 10 consecutive
epochs, with the maximum epoch count fixed to 100. The code with model definitions and
training procedure will be made available on GitHub with the publication.

It has been reported that multiple training runs can result in clearly differing on-
policy behaviors [27]. To minimize the potential effect of training instability, we train three
versions of our main models and report the metrics for each.

2.5. Evaluation Metrics

The models were evaluated on-policy and off-policy. It is widely reported that off-
policy metrics correlate poorly with actual driving ability [37]. However, they are cheap
to compute before deploying the solution. If a better off-policy metric could be found,
development could be accelerated by selecting only the best models for real-life evaluation.
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Off-policy metrics are computed using human-driven validation recordings originat-
ing from the same season as when the on-policy evaluation happened. We limit the set
of recordings to the same season because we assume that off-policy metrics computed on
summer data would have no information about driving ability in the winter and vice versa.

We report the mean absolute error (MAE) between human commands and model
predictions as this metric has been reported as having a favorable correlation with the
driving ability [37]. In addition, following [40,41], we also compute the whiteness of the
predicted command sequence:

W =

√√√√ 1
D

D

∑
i=1

(
δPi
δt

)2, (1)

where δPi is the change in predicted steering angle, D is the size of the dataset, and δt is the
temporal difference between decisions. δt = 0.1 for LiDAR and δt = 0.033 for camera.

Whiteness measures the mean smoothness of the sequence of commands generated
and can be computed on-policy and off-policy. Here, Wo f f−policy refers to the whiteness of
the sequence of commands generated by a model on human-driving recordings from the
evaluation track in the same season as when the on-policy testing took place. In contrast,
Won−policy refers to the whiteness of the commands generated during model-controlled
driving during evaluation.

We consider the smoothness of commands a promising metric because during on-
policy testing, we observed that jerkiness of driving, i.e., temporally uncorrelated com-
mands, seems to predict an imminent intervention. The model not responding to very
similar consecutive frames in a consistent manner might reveal its inability to deal with
the situation.

The number of interventions during a test route was counted, and distance per in-
tervention (DpI) was computed as the main quality metric. The models were trained to
perform route following and not to handle intersections. All interventions at intersections
were removed from the count. For safety reasons, in the case of an oncoming car, the safety
driver always took over the driving. Interventions due to traffic were also excluded from
the intervention count.

As additional on-policy metrics, we measure the deviation of the model driving
compared to a human trajectory on the same route. Locations were measured using the
NovAtel PwrPak7 GNSS receiver combining the inertial navigation system (INS) data
with real-time kinematic positioning (RTK), achieving centimeter-level precision. For each
position in the model-driven trajectory, the offset is defined as the average distance to the
two closest human trajectory points. The mean of this lateral difference along the route
is reported as MAEtrajectory. We define failure rate as the proportion of time this lateral
difference was above 1 meter.

2.6. On-Policy Evaluation Procedure

The on-policy evaluation was performed on a 4.3 km section of SS20/23 Elva track
in both driving directions (cf. Results, Figure 4 for a map of the route). The speed along
the route was set to 80% of the speed a human used in the same location on the route,
as extracted from a prior recording of human driving. Driving at 100% human speed
was attempted but was too dangerous to use with weaker models. For covering different
weather conditions, it was intended to be completed in two parts: autumn and winter,
but due to technical reasons, a third session in spring was needed.
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Figure 4. Safety-driver interventions in the experiments where the test track was not included in the
training set. Interventions from 3 test runs with different versions of the same model and from both
driving directions are overlaid on one map. Interventions due to traffic are not filtered out from these
maps, unlike in Table 2. Left: camera models v1–v3 (first 3 rows of Table 2). Middle: LiDAR models
v1–v3 (rows 4–6 of Table 2). Right: an example of a situation where the safety driver has to take over
due to traffic. Such situations are not counted as interventions in Table 2.

Table 2. Results of on-policy evaluations. Evaluations interrupted due to a high frequency of interven-
tions are marked with *. Horizontal lines separate values illustrating the different results subsections.

Experiment Model (Session) Distance Interventions DpI MAEtrajectory
Failure

Rate Won−policy

Generalization Camera v1 (May) 8464.33 m 2 4232.17 m 0.2309 m 0.96% 24.63 ◦/s
Camera v2 ( may) 8363.17 m 4 2090.79 m 0.2382 m 0.69% 33.46 ◦/s
Camera v3 ( may) 8389.88 m 7 1198.55 m 0.2403 m 0.66% 29.70 ◦/s
LiDAR v1 (Nov) 8442.5 m 2 4221.3 m 0.22 m 0.42% 23.0 ◦/s
LiDAR v2 (Nov) 8465.9 m 2 4233.0 m 0.24 m 0.98% 17.7 ◦/s
LiDAR v3 (Nov) 8432.3 m 3 2810.8 m 0.25 m 2.18% 18.8 ◦/s

Overfitting Camera overfit (May) 8489.14 m 3 2829.71 m 0.2453 m 1.39% 23.07 ◦/s
LiDAR overfit (Nov) 8436.9 m 0 >8436.9 m 0.26 m 4.38% 19.2 ◦/s

Night LiDAR v2 (Nov) 8216.3 m 8 1027.0 m 0.24 m 1.27% 25.6 ◦/s
LiDAR v2 #2 (Nov) 8376.6 m 3 2792.2 m 0.23 m 1.55% 20.3 ◦/s
LiDAR overfit (Nov) 8521.5 m 1 8521.5 m 0.25 m 1.52% 21.5 ◦/s

Winter LiDAR v1 (Jan) 8080.5 m 19 425.3 m 0.24 m 0.94% 38.4 ◦/s
LiDAR v2 (Jan) 8001.4 m 22 363.7 m 0.28 m 3.10% 38.7 ◦/s
LiDAR v3 (Jan) 7698.9 m 34 226.4 m 0.26 m 1.64% 42.2 ◦/s

LiDAR LiDAR v2 (Nov) 8491.6 m 0 >8491.6 m 0.22 m 1.97% 19.2 ◦/s
channels LiDAR intensity (Nov) 8446.2 m 2 4223.1 m 0.33 m 7.02% 24.0 ◦/s

(next day) LiDAR depth (Nov) 1679.0 m * 22 * 76.3 m * 0.61 m * 19.95% * 29.9 ◦/s *
LiDAR ambience
(Nov) 329.5 m * 19 * 17.3 m * 0.73 m * 17.49% * 168.2 ◦/s *

• In the last week of November 2021: the weather conditions and vegetation levels
were very similar to the most recent training data recorded at the end of October.
Due to a missing parameter in the inference code, the RGB models were run on BGR
input, and the results had to be discarded. Hence, only LiDAR-based models were
adequately tested in this session. Night driving was performed with dipped-beam
headlights on. Results from these tests are marked with (Nov) in Table 2.

• In the first week of February 2022: with snow coverage on the road. This constitutes a
clearly out-of-distribution scenery for the camera models. Moreover, also for LiDAR
models, the surface shapes and reflectivity of snow piles differ from vegetation and
constitute out-of-distribution conditions. LiDAR and camera images from summer,
autumn, and winter are given in Appendix A. From this trial, marked with (Jan), we
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report only the driving performance with LiDAR, as the camera still operated in the
BGR mode.

• In the first week of May 2022: early spring, which constitutes a close-to-training-
distribution condition. Camera models were evaluated with the correct inference
code. The location of LiDAR on the car had changed before this trial compared to
the training data. LiDAR-based models underperformed during this test, despite our
efforts to adjust the inputs.

In short, camera models were tested with adequate inputs only in spring 2022. LiDAR
models were tested in autumn 2021 and winter 2022. The weather conditions were different
during these tests, so a direct comparison of values should not be made.

The rally tracks are narrow and bordered by objects harmful to the car; hence, the
safety driver was at liberty to take over whenever they perceived danger. An intervention
is hence defined as a situation where the safety driver perceived an excessive threat to the
car or the passengers. An intervention was triggered by the safety driver applying force
to turn the steering wheel. If the model turned the steering wheel at the same moment
and in the same direction as the safety driver, no force was applied, and no intervention
was counted.

3. Results

In this section, we present the driving ability of our models as measured by on-policy
metrics. We also compute off-policy metrics but only with the purpose of evaluating their
correlations with on-policy performance. Observations on model sensitivity to inputs are
given in Appendix F.

3.1. Driving on an Unseen Track

The ultimate goal of end-to-end self-driving is to create models that can generalize to
new roads without the use of high-definition maps. Hence, we first summarize the models’
ability to generalize to the evaluation track from other similar roads. Three instances of Li-
DAR models were tested in autumn, and three camera models were tested in spring. Using
multiple models allows the reader to grasp the stability of the results. A larger number of
repetitions was not used due to the complexity of real-world evaluation. The metrics for
these six evaluations are given in the first section of Table 2. The interventions during these
six trial runs are also visualized on the map of the route in Figure 4.

The results indicate that in in-distribution weather, but on a novel route, the perfor-
mance of LiDAR-based models is similar to or better than camera models. The evaluations
took place half a year apart, but conditions were suitable in both cases. Spring testing was
performed on a largely cloudy day, with only short periods of direct sunlight. The autumn
test took place in cloudy and dim daylight with short periods of very light rain. These
conditions should be sufficiently close to ideal for camera and LiDAR models, respectively.

3.2. Overfitting Setting

We next asked to what extent the task was more difficult due to needing to generalize
to a new route. We trained camera and LiDAR models that included, in their training set,
one human driving recording in each direction from the evaluation track. As these models
will be exposed to the objects and types of turns on the evaluation track, we call this the
“overfitting” (to the evaluation track) setting. The second section of Table 2 indicates that
while the LiDAR model clearly benefited from test-track recordings, the effect is weaker for
the camera-based model. The overfitted LiDAR model drove without interventions, while
the RGB model yielded similar performance to the non-overfit models.

We conclude that approximately 500 km of road-following data in the original training
set did not suffice for good generalization to similar but unseen roads. Data augmentation
techniques could be applied or more data collected to increase generalization over this
source of data variability.
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3.3. Night Driving and Winter Driving

The third set of on-policy tests evaluates the models’ ability to generalize to weather
conditions very different from the training distribution. We have no a priori expectation of
camera-based driving models generalizing to these conditions. The camera images during
the night differ drastically from daylight driving, despite using headlights. Similarly,
the color distribution and brightness of camera images in the winter with snow coverage
are clearly out-of-distribution. These differences are easy to detect with the human eye.

In contrast, the extent that these two novel conditions are out-of-distribution for
LiDAR-based models is difficult to estimate with the naked eye. A priori, we can assume
that depth and intensity channels should be affected only minimally by the lack of sunlight
in night driving, with ambient radiation somewhat affected. Snow coverage adds more
smooth surfaces to the landscape, but the resulting depth image may remain in proximity
to the diversity of scenes contained in the training data. Ambient radiation and intensity
images are likely out-of-distribution due to the different reflective properties of snow and
vegetation, but the extent of its effect on LiDAR-based driving models was unknown before
being tested.

The results from these trials are marked with night and winter in Table 2. Remarkably,
LiDAR models trained with day-time data sets see only a minimal drop in performance
when deployed at night. The camera models, however, immediately steered the car off
the road, so there is no performance to report. While these experiments were performed
with the flawed BGR input to the RGB models, judging from the performances in other
experiments, we do not expect the performance with correct input to be much different (cf.
all experiments in Appendix E).

When deploying models trained on data from spring, summer, and autumn to snow-
covered roads, LiDAR-based models also see a clear drop in performance. LiDAR models
manage to maintain some of their driving ability but drop from ≈4000 to 226–425 m per
intervention. Qualitatively, we report that LiDAR models drove reasonably well in the
forest where depth information was abundant but failed to stay on the road on sections
between open fields (cf. Appendix C). As expected, RGB-based models failed to generalize
to snowy roads and steered off the road immediately.

3.4. Informativeness of Individual LiDAR Channels

We also performed on-policy testing of models trained on individual LiDAR image
channels. This was conducted to obtain a better understanding of the usefulness of each
of these channels. This evaluation was performed in in-distribution weather in Novem-
ber 2021. As these experiments were performed on another day compared to the tables
above, a three-channel model was also re-evaluated to confirm the conditions were simi-
lar. The tested models were trained with no recordings from the evaluation track in the
training set.

The examples of the images from these three channels in summer, autumn, and winter
are given in Appendix B. At visual inspection, the intensity channel seems approximately
as sharp and as informative as a gray-scale camera image, albeit capturing a different wave-
length. The depth image is less spatially dense but clearly informative about sufficiently
large obstacles. However, ambient radiation images depend strongly on sunlight being
present and seem an unreliable source of information.

In Table 2, we observe that the model trained based on the intensity channel can
perform surprisingly well. However, neither depth nor ambient radiation channels contain
sufficient information for safe driving. The depth-based model also struggled to drive safely
in the forest, where trees could have provided depth cues of where to steer towards. These
channels may nevertheless still contribute useful information to the three-channel model.

3.5. Correlation Study between On- and Off-Policy Metrics

In this work, we trained a total of 11 models (3+1 LiDAR, 3+1 camera, and individual
LiDAR channels). We deployed these models in more and less suitable conditions, including
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accidentally deploying RGB-image models using a BGR video stream and deploying LiDAR
models after the sensor location had been changed. Here, we wished to study if the on-
policy performance of these test drives could have been predicted before deployment via
off-policy metrics or at least during the drive via non-discrete on-policy metrics.

In the following, we used metrics from 17 model deployments. The list of trials
included and the associated metrics are given in Appendix E. This list includes using
RGB-based models with a BGR camera stream and using LiDAR in a changed location
because the models were capable of driving despite the disadvantageous conditions. Each
deployment was matched with an off-policy evaluation using recordings from the same
track, similar seasons, and similar sensor configuration (e.g., using BGR images). We
computed the Pearson correlation [42] between DpI and the various other on- and off-policy
metrics. The DpI for trials with no interventions was set to 10 km for the computations.
The resulting correlation values are given in Table 3.

Table 3. Pearson correlations of the main driving quality metric distance per intervention (DpI) with
other on- and off-policy metrics. The highest-correlating metrics of both types are highlighted in bold.

On-Policy Measures Off-Policy Measures
Measure MAETrajectory Failure Rate Won−Policy We f f ective Wof f−Policy MAEsteer

Pearson R −0.56 −0.06 −0.56 −0.67 −0.72 −0.76

Matching the perception of passengers, the whiteness of effective wheel angles during
the drive shows a correlation with DpI (r = −0.67). The whiteness of the model outputs
Won−policy and the mean distance from a human trajectory show somewhat weaker correla-
tions with DpI. The measures used here are averages over multiple kilometers, but actual
danger prediction should happen on a more precise scale. Evaluating whiteness as an
online predictor of end-to-end model reliability is outside the scope of this work.

Among the off-policy metrics, Wo f f−policy correlates to a similar degree with interven-
tion frequency as the MAE of steering angles. The difference between the two Pearson
correlation coefficients is not significant as per a permutation test. Notice that these two
metrics are very different in nature—one measuring the quality and the other temporal
stability of predictions. When combining these two metrics via summation after standard-
ization, an even higher correlation with DpI can be obtained (r = −0.82). The improvement
over MAE-only correlation is, however, not statistically significant (permutation test, mean
effect size −0.05, pval = 0.16).

To our knowledge, mean absolute error is a very commonly used off-policy metric
for estimating model quality before deployment and for early stopping during model
training. MAE has been shown to correlate with driving ability better than multiple other
metrics [37]. Our result suggests that the whiteness of the command sequence generated
on an appropriate validation set might serve as a complementary model-selection metric
(cf. Section 4).

4. Discussion

In the present work, we collected a high-quality dataset for the end-to-end road
following task in challenging rural roads used for World Rally Championship. This dataset
contains driving in narrow and complicated routes during the four seasons of the temperate
climate. The measurements of all sensors, including those not used here, across more than
500 km of driving are made publicly available. The driving task contained in these data
differs clearly from the usual lane-following tasks on larger roads and is complex in its own
way—due to narrow roads, small radius blind turns, and uneven road surface. For example,
the comma.ai driver assistance system, which excels in lane keeping on inter-city roads,
fails completely to drive on our evaluation route.
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On two separate sensory inputs of this dataset, LiDAR image and frontal camera, we
trained models to control the steering of the car. The models were evaluated off-policy
and on-policy with speed fixed to 80% of human speed. We show that LiDAR image
input, as produced by Ouster OS1-128 LiDAR firmware, contains sufficient information for
road-following also in the complex and narrow rally tracks designed to be challenging for
humans. The task is not trivial, as evidenced by the similarly-trained RGB-image-based
models achieving similar performance. Curiously, models using only the intensity channel
of the LiDAR image, information often discarded in point cloud analysis, also performed
competitively. If this information is sufficient or useful in more complex driving tasks such
as highway driving, it may merit further study.

The benefits of LiDAR-based driving become apparent when needing to generalize to
new conditions. LiDAR images are more similar across weather conditions (cf. Appendix A).
We hypothesize that this allows the entirety of the training data to be useful for driving
in all conditions, including those not in the training data. Driving demonstrations from
sunny summer days benefit LiDAR-based driving on a dark autumn night, as evidenced
by our LiDAR models being able to drive in the night and, to some extent, even in the
winter. In contrast, RGB-based models can not generalize to night driving. It seems that
for a simple RGB-based behavioral cloning approach, demonstrations of various traffic
situations need to exist in a variety of visually different conditions, increasing the data
need. A higher data efficiency of LiDAR-based models would be an interesting property,
at least for research institutions that cannot boast fleets of cars collecting massive amounts
of data daily.

During night driving, LiDAR models can rely on intensity and depth channels, which
are active sensing and independent of external light sources. The depth channel is also
independent of the reflectivity of the surfaces and yields in-distribution values also with
snow coverage. While depth alone was proven insufficient for safe end-to-end driving
even in training conditions, it may still contribute reliable information to the three-channel
models. Furthermore, we assume that the importance of depth information becomes more
apparent in highway and urban driving tasks, where distance with other traffic participants
must be maintained.

LiDAR information is often used in its point cloud representation. Here, using image
representation allowed us to perform a fair comparison of LiDAR and RGB camera input
modalities, as identical methods could be applied. We believe processing LiDAR data in
image form can be useful in general because computer vision is one of the most studied
topics in deep learning, and many established architectures exist for image processing.
Certain architectures are empirically validated to perform various tasks in a reliable manner,
and methods exist for sensitivity analysis.

Evaluating autonomous driving systems is complicated because the ability to drive
safely can only be measured by deploying the model. When exploring architectures to use,
data sampling techniques, or other aspects of the training procedure, one would need to
deploy the models to know which techniques work best. This is extremely costly in the
real world. If a combination of off-policy metrics could be found that correlates reliably
with actual driving ability when deployed, only the more promising models could be
selected for testing and evident failures discarded. Here we showed that among sufficiently
capable models, the whiteness, i.e., smoothness of generated commands on an appropriate
validation set, predicted driving ability equally well as the magnitude of errors. We
hypothesize that non-smoothness reveals the models’ uncertainty about the situation—the
model reacts differently to very similar inputs. In future work, we propose to evaluate the
correlations of other measures of epistemic uncertainty with on-policy performance. Using
a more general uncertainty measure carries the benefit of being applicable to a wider range
of output modalities, e.g., trajectories and cost maps. However, these metrics capture only
variance and not bias, and a trivial constant model would show perfect stability. Hence,
such stability measures should be used in combination with other metrics (e.g., MAE).
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5. Conclusions

We conclude that the LiDAR images produced by Ouster LiDARs contain sufficient
information for completing at least the simplest sub-tasks of self-driving. Moreover, this
input showed high stability across environmental conditions, which allowed the driving
models to perform during the night and in the winter without any training data collection
conducted in those conditions. This input stability, in addition to the useful depth informa-
tion, is a clear advantage over visible-light cameras. We do not envision LiDAR images
replacing RGB images as the dominant input to self-driving solutions, but this input type
may prove useful as a fallback system or can be used in combination with RGB images.
The combined usage is facilitated by both inputs being in the image form, potentially
allowing early fusion.

Additionally, we conclude that we are still in search of off-policy metrics that would
reliably predict the performance when the solution will be deployed. We reveal that the
stability of commands over time is almost as good a predictor of deployment success as the
mean magnitude of prediction errors. Hence, when picking models to deploy, one should
pay attention to multiple quality metrics or seek to develop a combined metric.
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Appendix A. LiDAR and Camera Image Stability Across Seasons

Figure A1. LiDAR and camera images in summer, autumn, and winter (from top to down for LiDAR,
left to right for the camera). The area used for model inputs is marked with a red rectangle. In LiDAR
images, the red channel corresponds to intensity, green to depth, and blue to ambient radiation.

Appendix B. Visualization of Individual LiDAR Channels

(a) Intensity:

(b) Depth:

Figure A2. Cont.
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(c) Ambient radiation:

Figure A2. LiDAR channels at the same location across the three seasons, in order from top down:
summer, autumn, winter. (a) In the intensity channel, we see a significant difference in how the
road itself looks, while vegetation is surprisingly similar despite deciduous plants having no leaves
in autumn and winter. (b) Depth image looks stable across seasons, but rather uninformative,
as road and low vegetation areas are hard to discern. (c) Ambient radiation images vary strongly in
brightness across the seasons, while also displaying strong noise. The noise looks akin to white noise
or salt-and-pepper noise and authors do not know its cause.

Appendix C. Intervention Locations in the Winter

Figure A3. Interventions of a LiDAR v1 model in the winter. The interventions are far more frequent
in open fields, whereas the model can handle driving in the forest much better. Furthermore,
the middle section of the route which contains bushes by the roadside is driven well.
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Appendix D. Dataset Details

Table A1. Training dataset. The recording names start with dates in yyyy-mm-dd format, followed
by the hour. Certain recordings failed to record GNSS locations but captured camera and LiDAR
feeds and steering, so we can still use them for model training.

Recording Name Rally Estonia 2021 Stage Name Complete Length (km)

1 2021-05-20-12-36-10_e2e_sulaoja_20_30 Shakedown 1 6.8
2 2021-05-20-12-43-17_e2e_sulaoja_20_30 Shakedown, backwards 0 GNSS error

3 2021-05-20-12-51-29_e2e_sulaoja_20_30 Shakedown, backwards 0 sums to 6.8 km
with above

4 2021-05-20-13-44-06_e2e_sulaoja_10_10 Shakedown 1 6.83
5 2021-05-20-13-51-21_e2e_sulaoja_10_10 Shakedown, backwards 0 6.14
6 2021-05-20-13-59-00_e2e_sulaoja_10_10 Shakedown, backwards 0 1.12
7 2021-05-28-15-07-56_e2e_sulaoja_20_30 Shakedown 1 6.77
8 2021-05-28-15-17-19_e2e_sulaoja_20_30 Shakedown, backwards 0 1.43
9 2021-06-09-13-14-51_e2e_rec_ss2 SS12/SS16 1 22.04
10 2021-06-09-13-55-03_e2e_rec_ss2_backwards SS12/SS16 backwards 1 24.82
11 2021-06-09-14-58-11_e2e_rec_ss3 SS4/SS8 backwards 1 17.74
12 2021-06-09-15-42-05_e2e_rec_ss3_backwards SS4/SS8 1 17.68
13 2021-06-09-16-24-59_e2e_rec_ss13 RE2020 stage, overlaps SS13/17 & SS3/7 1 13.96
14 2021-06-09-16-50-22_e2e_rec_ss13_backwards RE2020 stage, overlaps SS13/17 & SS3/7 1 13.99
15 2021-06-10-12-59-59_e2e_ss4 RE2020 stage, overlaps SS13/17 & SS3/7 1 10.03
16 2021-06-10-13-19-22_e2e_ss4_backwards RE2020 stage, overlaps SS13/17 & SS3/7 1 10.14
17 2021-06-10-13-51-34_e2e_ss12 RE2020 stage, overlaps with SS2/6 1 6.9
18 2021-06-10-14-02-24_e2e_ss12_backwards RE2020 stage, overlaps with SS2/6 1 6.85
19 2021-06-10-14-44-24_e2e_ss3_backwards SS4/SS8 0 16.23
20 2021-06-10-15-03-16_e2e_ss3_backwards SS4/SS8 0 1.14
21 2021-06-14-11-08-19_e2e_rec_ss14 RE2020 stage, overlaps with SS5/9 0 6.98
22 2021-06-14-11-22-05_e2e_rec_ss14 RE2020 stage, overlaps with SS5/9 0 10.77
23 2021-06-14-11-43-48_e2e_rec_ss14_backwards RE2020 stage, overlaps with SS5/9 1 18.85
24 2021-09-24-11-19-25_e2e_rec_ss10 SS10/SS14 0 12.11
25 2021-09-24-11-40-24_e2e_rec_ss10_2 SS10/SS14 0 6.06
26 2021-09-24-12-02-32_e2e_rec_ss10_3 SS10/SS14 0 3.36
27 2021-09-24-12-21-20_e2e_rec_ss10_backwards SS10/SS14 backwards 1 23.9
28 2021-09-24-13-39-38_e2e_rec_ss11 SS11/SS15 1 12.26
29 2021-09-30-13-57-00_e2e_rec_ss14 SS5/SS9 0 0.93
30 2021-09-30-15-03-37_e2e_ss14_from_half_way SS5/SS9 0 7.89
31 2021-09-30-15-20-14_e2e_ss14_backwards SS5/SS9, backwards 1 19.26
32 2021-09-30-15-56-59_e2e_ss14_attempt_2 SS5/SS9 0 19.2
33 2021-10-07-11-05-13_e2e_rec_ss3 SS4/SS8 1 17.62
34 2021-10-07-11-44-52_e2e_rec_ss3_backwards SS3/SS7 1 17.47
35 2021-10-07-12-54-17_e2e_rec_ss4 SS3/SS7 1 9.16
36 2021-10-07-13-22-35_e2e_rec_ss4_backwards SS3/SS7 backwards 1 9.14
37 2021-10-11-16-06-44_e2e_rec_ss2 SS12/SS16 0 GNSS error

38 2021-10-11-17-10-23_e2e_rec_last_part SS12/SS16 paved section 0 sums to 12.6 km
with above

39 2021-10-11-17-14-40_e2e_rec_backwards SS12/SS16 backwards 0 GNSS error

40 2021-10-11-17-20-12_e2e_rec_backwards SS12/SS16 backwards 0 sums to 12.6 km
with above

41 2021-10-20-13-57-51_e2e_rec_neeruti_ss19_22 SS19/22 1 8
42 2021-10-20-14-15-07_e2e_rec_neeruti_ss19_22_back SS19/22 1 8
43 2021-10-20-14-55-47_e2e_rec_vastse_ss13_17 SS13/SS17 1 6.67
44 2021-10-25-17-06-34_e2e_rec_ss2_arula_back SS2/SS6 1 12.83
45 2021-10-25-17-31-48_e2e_rec_ss2_arula SS2/SS6 1 12.82

Total distance: 465.89
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Table A2. Validation dataset used for early stopping. The recording names start with dates in
yyyy-mm-dd format, followed by hour. The last two recordings are also used in the training set of
models overfitted to the evaluation track. Sections of the last two recordings (sections corresponding
to the on-policy testing route) were used for obtaining seasonal off-policy metrics for models tested
in the autumn.

Recording Name Rally Estonia 2021
Stage Name Complete Length (km) Comment

1 2021-05-28-15-19-48_e2e_sulaoja_20_30 Shakedown,
backwards 0 4.81

2 2021-06-07-14-06-31_e2e_rec_ss6 SS20/SS23 0 1.45
3 2021-06-07-14-09-18_e2e_rec_ss6 SS20/SS23 0 2.06
4 2021-06-07-14-20-07_e2e_rec_ss6 SS20/SS23 1 11.46

5 2021-06-07-14-36-16_e2e_rec_ss6 SS20/SS23,
backwards 1 11.41

6 2021-09-24-14-03-
45_e2e_rec_ss11_backwards

SS11/SS15
backwards 1 9.83 used in autumn val. set

7 2021-10-11-14-50-59_e2e_rec_vahi not RE stage 1 4.97 used in autumn val. set

8 2021-10-14-13-08-
51_e2e_rec_vahi_backwards not RE stage 1 4.9 used in autumn val. set

9 2021-10-20-15-11-
29_e2e_rec_vastse_ss13_17_back SS13/SS17 1 7.11 used in autumn val. set

10 2021-10-26-10-49-06_e2e_rec_ss20_elva SS20/SS23 1 10.91 used in “overfit”, autumn val. set

11 2021-10-26-11-08-
59_e2e_rec_ss20_elva_back

SS20/SS23
backwards 1 10.89 used in “overfit”, autumn val. set

Total distance: 79.8

Table A3. Winter recordings used for seasonal off-policy metrics computation for models tested in
winter. Only 4.3 km sections from each recording were used, corresponding to the on-policy test
route. The recording names start with dates in yyyy-mm-dd format, followed by the hour.

Recording Name Rally Estonia 2021 Stage Name Complete Length (km)

1 2022-01-28-14-47-23_e2e_rec_elva_forward SS20/SS23 1 10.52
2 2022-01-28-15-09-01_e2e_rec_elva_backward SS20/SS23 1 10.82

Table A4. Spring recordings used for seasonal off-policy metrics computation for models tested in
spring. The recording names start with dates in yyyy-mm-dd format, followed by the hour.

Recording Name Rally Estonia 2021 Stage Name Complete Length (km)

1 2022-05-04-10-54-24_e2e_elva_seasonal_val_set_forw SS20/SS23 0 4.3
2 2022-05-04-11-01-40_e2e_elva_seasonal_val_set_back SS20/SS23 0 4.3

Appendix E. On-Policy and off-Policy Metrics

Table A5. On-policy test sessions, on-policy metrics recorded, and the corresponding off-policy
metrics from the same track in the same season. These values serve as the basis for correlation calcu-
lations between distance per intervention (DpI) and other metrics. DpI for tests with 0 interventions
was set to 10 km. Combined refers to the sum of MAEsteer and Wo f f−policy, both standardized to zero
mean and standard deviation one.

Model (Session) DpI MAEtrajectory
Failure

Rate We f f ective Won−policy MAEsteer Wof f−policy Combined

Camera v1 BGR (Nov) 665.00 m 0.2715 m 2.82% 109.99 ◦/s 41.36 ◦/s 7.23◦ 99.00 ◦/s 3.703541
Camera v2 BGR (Nov) 743.87 m 0.2906 m 3.31% 58.91 ◦/s 27.27 ◦/s 6.91◦ 74.50 ◦/s 2.577991
Camera v3 BGR (Nov) 685.03 m 0.2526 m 1.54% 94.10 ◦/s 35.42 ◦/s 7.46◦ 90.50 ◦/s 3.633461

Camera overfit BGR (Nov) 1185.92 m 0.2707 m 4.83% 68.16 ◦/s 28.36 ◦/s 6.86◦ 116.00 ◦/s 4.038257
LiDAR v1 (Nov) 4221.26 m 0.2164 m 0.42% 60.72 ◦/s 22.96 ◦/s 5.93◦ 52.40 ◦/s 1.202971
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Table A5. Cont.

Model (Session) DpI MAEtrajectory
Failure

Rate We f f ective Won−policy MAEsteer Wof f−policy Combined

LiDAR v2 (Nov) 4232.96 m 0.2395 m 0.98% 40.79 ◦/s 17.71 ◦/s 6.05◦ 30.10 ◦/s 0.509354
LiDAR v3 (Nov) 2810.78 m 0.2536 m 2.18% 56.74 ◦/s 18.84 ◦/s 5.88◦ 41.00 ◦/s 0.745176

LiDAR overfit (Nov) 10,000.00 m 0.2599 m 4.38% 38.54 ◦/s 19.21 ◦/s 4.02◦ 27.30 ◦/s −1.221416
Camera v1 RGB (May) 4232.17 m 0.2309 m 0.96% 65.03 ◦/s 24.63 ◦/s 6.26◦ 63.20 ◦/s 1.745492
Camera v2 RGB (May) 2090.79 m 0.2382 m 0.69% 107.73 ◦/s 33.46 ◦/s 6.72◦ 54.70 ◦/s 1.910144
Camera v3 RGB (May) 1198.55 m 0.2403 m 0.66% 67.55 ◦/s 29.70 ◦/s 6.68◦ 63.66 ◦/s 2.076987

Camera overfit RGB (May) 2829.71 m 0.2453 m 1.39% 65.94 ◦/s 23.07 ◦/s 5.96◦ 59.91 ◦/s 1.405479
LiDAR v1 shifted (May) 436.15 m 0.2649 m 1.52% 49.76 ◦/s 23.66 ◦/s 7.54◦ 64.41 ◦/s 2.775023
LiDAR v2 shifted (May) 481.37 m 0.2673 m 3.52% 52.64 ◦/s 27.25 ◦/s 8.03◦ 59.80 ◦/s 3.155804
LiDAR v3 shifted (May) 251.56 m 0.2786 m 3.20% 92.61 ◦/s 40.73 ◦/s 9.64◦ 90.70 ◦/s 5.404183

LiDAR overfit shifted (May) 603.82 m 0.2783 m 4.69% 56.62 ◦/s 31.01 ◦/s 7.88◦ 73.70 ◦/s 3.388144
LiDAR v2 day 2 (Nov) 10,000.00 m 0.2193 m 1.97% 33.89 ◦/s 19.17 ◦/s 6.05◦ 30.10 ◦/s 0.509354

Appendix F. Qualitative Observations of Sensitivity

As a critique to behavioral cloning, we experienced that the models were highly
sensitive to shifts in inputs. First of all, we accidentally performed an experiment of feeding
BGR images to models trained with RGB images. These models were able to drive with
BGR input but clearly worse than with clean RGB input. For a human, the scene would
still be easily understandable after switching blue and red colors, especially with dim light
and cloudy skies, as during autumn testing. The comparison of RGB models’ performance
using BGR and RGB inputs can be seen in Table A5, albeit not in similar conditions (Nov
and May sessions, respectively).

Similarly, we performed an unplanned test with the LiDAR sensor moved from its
original location in the center of the roof to the front of the roof. The performance of LiDAR
models suffered considerably despite our attempts to fix it by changing the cropped area
from the surround-view LiDAR-image. The comparison of performance with the original
and shifted LiDAR location can be seen in Table A5, Nov and May sessions respectively.

More worrying is the fact that changing the location of the crop by only one pixel to the
left or right resulted in perceivable biases in on-policy driving behavior. Also in the vertical
direction, a few pixels difference in crop height clearly mattered. Indeed, logically, a crop
more from the left should result in turning more towards the right, and in a sequential
decision-making task, this effect can accumulate over time. However, the fact that just one
pixel of difference can bias the model to position itself differently on the road and struggle
with certain turns is worrying. We conclude that at least the end-to-end approach used
here is extremely sensitive to changes in sensor data.
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