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Abstract: This paper presents a test stand for testing alternating current electrical parameters of
Cu–SiO2 multilayer nanocomposite structures obtained by the dual-source non-reactive magnetron
sputtering method (resistance, capacitance, phase shift angle, and dielectric loss angle tangent δ). In
order to confirm the dielectric nature of the test structure, measurements in the temperature range
from room temperature to 373 K were carried out. The alternating current frequencies in which
the measurements were made ranged from 4 Hz to 7.92 MHz. To improve the implementation of
measurement processes, a program was written to control the impedance meter in the MATLAB
environment. Structural studies by SEM were conducted to determine the effect of annealing
on multilayer nanocomposite structures. Based on the static analysis of the 4-point method of
measurements, the standard uncertainty of type A was determined, and taking into account the
manufacturer’s recommendations regarding the technical specification, the measurement uncertainty
of type B.

Keywords: nanocomposites; multilayers; magnetron sputtering; impedance spectroscopy; SEM;
measurement uncertainty

1. Introduction

Among the wide range of nanomaterials and nanostructures, a special place is occu-
pied by metal-dielectric nanocomposites, which include metallic nanoparticles arranged
inside a dielectric or ferroelectric matrix [1–3]. Reducing the dimensions of composite mate-
rials does not change their chemical composition. A characteristic feature of nanocomposite
structures is the size of at least one phase, which does not exceed 100 nm. Modifications of
the structure and composition of nanocomposites enable the adjustment of their physical
properties [4,5]. An important property of the discussed structures is their surface to vol-
ume ratio, which is much higher than in the case of macrocomposites. The structure of the
nanocomposite determines the type of electric charge transfer mechanism, the knowledge
of which is necessary for the selection of potential applications in devices [6,7].

There are two reasons for the great interest of researchers in the translational properties
of metal-dielectric nanocomposite materials. On one hand, disordered systems are a
difficult field in a purely academic sense. For many years, the theory of charge transport
through semiconductors was mainly limited to crystalline systems in which atoms are
located at regular nodes of the crystal lattice [8,9]. The concepts often used in textbooks
to describe the transport of charge carriers in crystalline semiconductors are based on
the assumption of long-range order, so they cannot be applied to electron transport in
disordered materials such as nanocomposites. The development of a consistent theory of
charge transport in such systems was (and still is) a very difficult task. The fact is that
granular metal-dielectric nanocomposites are mixtures of conductive and insulating or
weakly conducting nanoparticles. They are most often discussed within the framework
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of so-called percolation models [10,11]. These models describe the properties of granular
systems as a function of the ratio of the content of conductive nanoparticles x to the total
volume of the system. According to the percolation model, an increase in the content of
the metallic phase to x = xC (percolation threshold) causes a transition from dielectric to
metallic conductivity [12–14].

A good method of determining the mechanisms taking place in nanocomposites is
impedance spectroscopy [15,16]. The principle of dielectric spectroscopy is mainly to deter-
mine the frequency dependent combined dielectric permeability. It also provides information
on molecular dynamics as well as important material parameters such as static permeability,
alternating current electrical conductivity, and dielectric relaxation [17,18]. Almost all mate-
rials are dielectrics, that is, they do not exhibit macroscopic DC conductivity, but instead
act as capacitance. Dielectric testing is conducted mainly for the following two reasons.
First, the acquired data provide detailed information about the electrical properties of the
samples. This provides a lot of theoretical information and also has practical application
in the electronics industry, particularly, in the development of semiconductor devices as
well as in the characterization of insulation materials. Second, the technique serves as an
analytical tool by which the obtained dielectric data can be linked to other properties such
as changes in the material morphology.

The dielectric properties of nanomaterials have potential applications in capacitors,
sensors, and memory devices. The influence of frequency on the dielectric behavior and AC
conductivity of nanomaterials provides key information on the phenomena of conduction
in these materials [19–22]. It should be noted that the dielectric properties and electric
transport of nanomaterials are very different from the properties of materials on a micro-
or macrometric scale.

The structure and morphology of nano-grained metal-dielectric composites determine
their extraordinary electrical properties, the research of which allows us to broaden the
knowledge about the mechanisms of carrier transport in a non-homogeneous medium at
the nanoscale [23,24]. From a practical point of view, it is important to study their conduc-
tivity properties at different temperatures. In order to describe the electrical properties of
nanocomposites, several conduction mechanisms have been proposed, which are realized
in various temperature ranges and depend on the material of the nanoparticles and the
presence of additional oxides around the nanoparticles of the metallic phase [25–29].

Granular metal-dielectric nanocomposites, in which the matrix is SiO2, are of great
interest due to their extraordinary optical [30,31] and electro-physical properties [32,33].
In particular, they provide the possibility of fine-tuning the optical response and electrical
resistance on a large scale, and non-magnetic Cux(SiO2)(100−x) nanocomposites show a
gigantic Hall effect [34,35], are characterized by a hopping of electron transport [36,37],
and exhibit the phenomenon of coinless inductance [38,39]. Therefore, understanding
the structure of granular nanocomposites and developing an optimal method of their
preparation is a necessary condition to control their properties. Depending on the content
of the metallic phase x in the dielectric matrix, there are three types of electrical conductivity
in the granular nanocomposites.

The temperature dependence of the electrical conductivity of nanocomposites in the
dielectric range within the low temperature range mostly shows that there is a characteristic
variable-range hopping conductivity. In the transition range (x ≈ xC), some of the metallic
grains fuse together to form a labyrinthine structure that, with a decrease in metallic phase
content, gradually disintegrates into isolated nanoparticles dispersed in a non-conducting
matrix. The electrical conductivity in this case is due to percolation along the metallic
junctions and electron tunneling between the insulated particles. Then, the contribution
of electrical conductivity due to thermally activated tunneling becomes comparable to
the contribution due to percolation, and the temperature coefficient of resistivity becomes
negative. When the metal content is above the percolation threshold xc, it is said to be a
metallic region in which the temperature coefficient of resistance is positive [40,41].
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The best adapted and clean techniques for obtaining nanoparticles in a dielectric matrix
are ion-beam sputtering and magnetron sputtering [2,42,43]. In this way, it is possible to
obtain nanocomposites with a specific phase composition, showing the phenomenon of
electron tunneling, hopping of electrons, or coinless inductance [1,6,44].

The aim of this work was to develop a technological process for the preparation of
a metal-dielectric nanocomposite with the composition of Cu/SiO2 and to study its basic
AC parameters. Additionally, uncertainties of A and B type measurements were estimated.
The tests were carried out directly after the preparation process and after annealing.

2. Technology of Obtaining Multilayer Nanocomposite Structures and
Measurement Method

The process of obtaining Cu-SiO2 nanocomposites began with the preparation of glass
substrates, on which, after cleaning in an ultrasonic cleaner, Kapton masks were applied,
enabling a rectangular structure with dimensions of 15 mm × 5 mm to be obtained. After
the structures were mounted on the turntable, they were placed in the vacuum chamber of
a NANO 36TM (Kurt J. Lesker Company, Dresden, Germany). The sputtering process was
initiated in a vacuum of 10−7 Torr, 75 sccm argon atmosphere, and 100 W plasma power
for the metal material source and 800 sccm, 59 W for the dielectric material. The material
sources were alternately sputtered by non-reactive magnetron sputtering in the presence of
argon. The first layer was 100 nm of copper, then 4 nm of SiO2 and 1 nm of copper layers
were alternately deposited eight times. After the structures had been removed from the
sputtering machine, the Kapton mask was removed and silver paste contacts were applied.
The diagram of the obtained structure is shown in Figure 1.
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Figure 1. Scheme and dimensions of the structure in the current to plane configuration.

In order to test the electrical properties of the obtained samples, they were measured
using the 4-point method with a HIOKI 3536 impedance meter (Hioki E.E. Corporation,
Nagano, Japan) in the frequency range from 4 Hz to 8 MHz. Due to the high resistance
of the obtained structures, statistical measurements of all parameters obtainable with
the impedance meter were carried out. In order to streamline the process, a program
was written in the MATLAB environment, forcing the simultaneous measurement of
17 parameters. Confirmation of the dielectric nature of the studied structures required the
construction of a stand that would enable experiments at elevated temperatures. Figure 2
shows the measuring equipment that allows for the testing of AC properties at a controlled
temperature. The experiments were performed from 303 K to 393 K on the nanocomposite
immediately after spraying, and then annealed at 473 K in the air atmosphere.
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Figure 2. Stand for testing the AC properties of granular nanocomposites in the frequency range from
4 Hz to 8 MHz and in the temperature range from room temperature to 393 K, consisting of: 1—PC
running the MATLAB program, 2—impedance meter HIOKI 3536, 3—4-point HIOKI 9261 test fixture
relay, 4—temperature display, 5—heating table, 6—Styrofoam housing to maintain the temperature
in the test sample environment, 7—temperature sensor, 8—measuring contacts, 9—tested sample.

3. Result

Figure 3 shows the frequency dependence of the Cu-SiO2 nanocomposite conductivity
measured at room temperature immediately after the preparation process and after heating.
In the structure diagram before annealing, it can be seen that in the low frequency range
up to approximately 100 Hz, the conductivity practically did not depend on the frequency.
As it continued to increase, the conductivity increased by 4-orders of magnitude. Changes
of this type are characteristic of the hopping mechanism of transferring charges in the
material [25,26]. The hopping model assumes that in a nanocomposite, electrons jump
between the nearest neighboring potential wells. These wells are metal nanoparticles
embedded in a dielectric matrix. In this case, thanks to the developed method of deposition
of discontinuous layers, it was possible to obtain a material with such a structure. The
sample heating caused changes in the conductivity-frequency characteristics. Its value also
increased with increasing conductivity by 4-orders of magnitude. However, the changes
are in two stages. In the range up to approx. 1500 Hz, the slope of the almost rectilinear
section of the dependence σ(f) was approximately 0.4, and at higher frequencies, it was 0.8.
A slope of 0.8 corresponds to the hopping conductivity by the Mott model [45].

Figure 4 shows an Arrhenius plot of conductivity measured at 100 Hz of the structure
before and after annealing. In the structure immediately after the preparation the conduc-
tivity increases with temperature, the material exhibited a dielectric nature of conductivity.
In such a case, the derivative of the conductivity after the temperature dσ/dT had positive
values [46]. On this basis, we can conclude that the developed method allows one to obtain
a Cu–SiO2 nanocomposite below the percolation threshold. This means that there are
inclusions of metal in the SiO2 matrix with no electrical contact between them—so they
create potential wells. The thermal activation energy of electrons needed for the jump
between the wells was determined and was ∆E1 ≈ 0.25 eV.
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On the basis of the Arrhenius diagram of the structure after heating conductivity
determined for the frequency of 100 Hz (Figure 4), the thermal activation energy of the
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electrons was calculated and was approximately 0.15 eV. The conductivity increased with
increasing temperature, which corresponded to the dielectric nature of conductivity.

Figure 5 shows the dependence of the frequency permeability coefficient. In the case
of the unannealed structure, the maxima can be observed. However, in the case of the
annealed structure, a maximum was also visible in the low frequency range, which proves
the uniform oxidation of copper nanoparticles. The parabolic shape of the characteristics
confirmed the occurrence of a hopping conduction mechanism in the examined structures.
The increase in the value of the α coefficient in the frequency range above 106 Hz may be
caused by the accumulation of charge on the surface of the structure.
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measured at room temperature before and after annealing Ta = 473 K.

Based on the dependence of the phase shift angle as a function of frequency
(Figure 6) for the structure both before and after annealing, it can be concluded that the
material has a capacitive character. The phase angle was negative over the entire measuring
range. In addition, it can be seen that its value decreased with frequency, reaching almost
−90 degrees. This behavior of phase angle with frequency occurred for the conventional
parallel RC circuit.

3.1. Structural Studies of the Nanocomposite Cu-SiO2

In order to confirm the granular structure of the obtained nanocomposite and to
determine the changes induced by annealing, structural studies were carried out with a
QuantaTM 250 FEG microscope SEM (FEI Company, Eindhoven, The Netherlands). Anneal-
ing in air can affect the oxidation behavior of conductive grains, thereby radically changing
their properties. Figure 7 shows a microscopic image of the structure obtained immediately
after sputtering. Based on studies, it can be concluded that the annealing process of the
structure caused the formation of larger clusters of metal grains, as shown in Figure 8. The
merging of grains into clusters may be the reason for the two-step conduction mechanism
presented in the previous section.
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By comparing the grain sizes in Figures 7 and 8, annealing caused a slight increase in
the copper grains. It can be seen that there were very few bright areas in Figure 7. These
were copper grains distributed in the SiO2 dielectric matrix. On the other hand, in Figure 8,
there were many more bright areas, which may mean that they are starting to merge with
each other, possibly resulting in exceeding the critical content of the metallic phase, at
which well-conductive paths begin to form. This is caused by the process of oxidation of
the metal, and thus the increase in the diffusion barrier of the nanoparticle. In the structure
before annealing, one of the largest grains had a diameter of about 466.4 nm, while after
annealing was 651.1 nm.

3.2. Standard Uncertainty of Type a Measurements

Carrying out a series of four statistical measurements made it possible to determine
the standard measurement uncertainty of type A. The HIOKI 3536 LCR impedance meter
is an automatic device and is burdened with a certain measurement error. Based on the
obtained results of the Cu-SiO2 granular structure resistance, the statistical evaluation
of the standard uncertainty was determined using the A method in accordance with the
equation of the standard uncertainty estimator [47].

uA(x) =

√√√√ 1
(N − 1)N

N

∑
i=1

(xi − x)2, (1)

where N is the number of measurement data; i is this measurement; x is the mean of
the measurements.

Figures 9 and 10 present the estimation of the type A uncertainty of the structure
before and after heating. For the first case, for the frequency of 10 kHz, the error was
approximately 519 Ω, and for the second, it was 119 Ω with such high resistance values of
the tested sample constituting 0.003% and 0.0015% of the measurement, respectively.
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Table 1 presents the percentage values of errors determined by the A method for
characteristic measurement points with different frequency values.
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Table 1. List of measuring resistances and the value of the standard measurement uncertainty of
type A.

Structure before Annealing

f, Hz Rp1 Rp2 Rp3 Rp4
Arithmetic
Average, Ω

uA(Rp), Ω

10 7.58 × 108 7.52 × 108 7.5 × 108 7.5 × 108 7.52 × 108 1,594,641
100 5.64 × 108 5.7 × 108 5.69 × 108 5.69 × 108 5.68 × 108 1,127,854
1 k 1.73 × 108 1.73 × 108 1.73 × 108 1.73 × 108 1.73 × 108 30,671.73

10 k 18,278,700 18,273,400 1,8276,100 18,279,400 18,276,900 519.6152
100 k 1,829,310 1,829,550 1,829,860 1,829,340 1,829,515 59.1784
1 M 224,639 224,640 224,603 224,602 224,621 5.196152

Structure after Annealing

10 91,705,800 92,375,600 90,983,000 92,493,300 91,889,425 53,007.97159
100 36,464,200 36,482,800 36,480,600 36,494,600 36,480,550 4719.838
1 k 18,457,000 18,455,300 18,457,800 18,458,600 18,457,175 50.51815

10 k 8,393,890 8,393,320 8,391,870 8,394,820 8,393,475 119.8002
100 k 1,606,470 1,607,910 1,606,910 1,607,400 1,607,172.5 202.7943
1 M 217,540 217,515 217,518 217,468 217,510.25 8.588085

3.3. Standard Uncertainty of Type B Measurements

The general availability of the specification of the HIOKI 3536 impedance meter
enables the calculation of the non-static uncertainty using the B method. We estimated it
based on the analysis of the properties of the measuring instrument and on the analysis
of other sources of error. Usually, in order to determine the type B uncertainty, the limit
error that is predicted for the operation of a given device is used [43]. An analysis of the
standard uncertainty of measurement type B for two characteristic parameters given by the
producer in the impedance meter specification (i.e., measurement of impedance Z and the
phase shift angle θ). The standard uncertainty is then defined by the equation:

σs =
1√
3

∆mx =
mxδmx√

3
, (2)

where ∆mx is the maximum error value.
For a value below 100 Ω:

δmx = ±
(

A + B×
∣∣∣∣ range

mx

∣∣∣∣− 1
)

, (3)

For a value higher than 1 kΩ:

δmx = ±
(

A + B×
∣∣∣∣10×mx

range

∣∣∣∣− 1
)

, (4)

where A, B are the accuracy factors and range is the measuring range.
Figure 11 shows the dependences of impedance as a function of frequency. As can

be seen, throughout the frequency range, the impedance values were greater than 1 kΩ.
Therefore, only Equation (4) was used to calculate the uncertainty of type B.

Taking into account the manufacturer’s recommendations, the standard uncertainty
was calculated using the B method for the impedance Z. The same as for the type A
uncertainty, the measurement error had a very large value. Figures 12 and 13 show the
impedance measurements with type B uncertainty.
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Figure 13. Frequency dependence of the impedance and standard impedance uncertainty of mea-
surement type B u(Z) of the heated structure.

Table 2 presents the percentage values of errors determined by the B method for
impedance Z measurement points with different frequency values.

Table 2. List of parameters necessary to determine the standard measurement uncertainty of type B
for the measurements of impedance Z.

Structure before Annealing

f, Hz Z1, Ω Z2, Ω Z3, Ω Z4, Ω
Arithmetic
Average, Ω

δ (Z), % u(Z), Ω

10 537,152,000 533,324,000 533,601,000 535,221,000 534,824,500 268.41225 82,880,6215
100 86,135,500 86,118,900 86,056,600 86,122,800 86,108,450 44.054225 21,901,442
1 k 9,202,700 9,202,420 9,203,060 9,203,300 9,202,870 3.159426 167,869.1331

10 k 984,202 984,199 984,174 984,169 984,186 3.152558 17,913.46671
100 k 107,014 107,015 107,016 107,012 107,014.25 0.50701425 313.257264
1 M 11,573.5 11,573.5 11,573.5 11,573.5 11,573.5 1.047205 69.9738542

Structure after annealing

10 72,265,400 72,673,000 71,998,100 72,745,500 72,420,500 37.21025 15,558,347.93
100 26,817,300 26,827,600 26,825,800 26,826,400 26,824,275 14.4121375 2,232,008.079
1 k 7,434,060 7,433,290 7,433,320 7,434,160 7,433,707.5 3.5132585 150,783.8913

10 k 956387 956377 956383 956384 956,382.75 0.51308518 2833.091319
100 k 105671 105666 105669 105673 105,669.75 0.5989433 365.4060768
1 M 11,393.6 11,393.6 11,393.6 11,393.5 11,393.575 1.04180725 68.53095179

The meter’s specification states that it measures two electrical quantities such as the
impedance and phase shift angle. Therefore, the measurement uncertainty of method B
was also determined for the phase shift angle (Figures 14 and 15). As can be seen, the
measurement error varied to a maximum value of 3.75 degrees.
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Table 3 presents the percentage values of errors determined by the B method for phase
shift angle θ measurement points with different frequency values.
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Table 3. List of parameters necessary to determine the standard measurement uncertainty of type B
for measurements of phase shift angle θ.

Structure before Annealing

f, Hz θ1, ◦ θ2, ◦ θ3, ◦ θ4, ◦ Arithmetic
Average, ◦ δ (θ), ◦ uB(θ), ◦

10 −44.872 −44.827 −44.621 −44.477 −44.6993 8.000013 −2.064573382
100 −81.219 −81.316 −81.294 −81.3 −81.2823 8.000024 −3.754277757
1 k −86.949 −86.951 −86.952 −86.952 −86.951 4.000017 −2.00805606

10 k −86.913 −86.913 −86.913 −86.914 −86.9133 0.708691 −0.355616972
100 k −86.646 −86.647 −86.647 −86.646 −86.6465 0.708665 −0.354512185
1 M −87.047 −87.047 −87.046 −87.046 −87.0465 1.326114 −0.666456111

Structure after annealing

10 −38 −38.121 −37.69 −38.141 −37.988 8.000011 −1.754593062
100 −42.656 −42.663 −42.664 −42.686 −42.6673 8.000013 −1.970719015
1 k −66.248 −66.248 −66.252 −66.25 −66.2495 0.600001 −0.229495504

10 k −83.458 −83.457 −83.456 −83.458 −83.4573 0.600002 −0.289105198
100 k −86.228 −86.232 −86.23 −86.231 −86.2303 0.700001 −0.348495836
1 M −38 −38.121 −37.69 −38.141 −37.988 8.000011 −0.654273402

4. Conclusions

In this work, the technology of obtaining thin-film Cu–SiO2 nanocomposite structures
by means of non-reactive magnetron sputtering was developed. A test stand was built
to enable AC measurements in the frequency range from 4 Hz to 8 MHz and in the
temperature range from room temperature to 393 K. Based on the obtained resistance
results and mathematical calculations, the values of conductivity as a function of frequency
were obtained, confirming the dielectric nature of the structure and the hopping conduction
mechanism loads. The influence of annealing on the obtained granular nanocomposites
was analyzed, and the equivalent diagram of the electric circuit was adjusted based on
the phase shift angle diagram. Structural studies confirmed the granular character of
the studied nanocomposite. Based on them, it was observed that the annealing process
caused the oxidation of the copper particles, an increase in their diffusion barrier, and
their merging into larger clusters. Additionally, an error analysis was carried out using
the A method, which showed that for the unheated sample, the error was approximately
519 Ω, while for the heated sample, it was 119 Ω, which was 0.003 % and 0.0015 % of the
measurement, respectively. However, in the case of the B-type standard uncertainty, based
on the impedance measurements for the sample measured immediately after receipt, the
error was very high. It is likely that the reasons for such high error values are the influence
of electrical devices located in the same room, elements that make up the measuring station,
and a very high resistance of the tested samples. In the case of measurements of the phase
shift angle, such large values of measurement uncertainty were not observed.
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