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Abstract: Optical detection of the freshness of intact in-shell shrimps is a well-known difficult task
due to shell occlusion and its signal interference. The spatially offset Raman spectroscopy (SORS)
is a workable technical solution for identifying and extracting subsurface shrimp meat information
by collecting Raman scattering images at different distances from the offset laser incidence point.
However, the SORS technology still suffers from physical information loss, difficulties in determining
the optimum offset distance, and human operational errors. Thus, this paper presents a shrimp
freshness detection method using spatially offset Raman spectroscopy combined with a targeted
attention-based long short-term memory network (attention-based LSTM). The proposed attention-
based LSTM model uses the LSTM module to extract physical and chemical composition information
of tissue, weight the output of each module by an attention mechanism, and come together as a
fully connected (FC) module for feature fusion and storage dates prediction. Modeling predictions
by collecting Raman scattering images of 100 shrimps within 7 days. The R2, RMSE, and RPD
of the attention-based LSTM model achieved 0.93, 0.48, and 4.06, respectively, which is superior
to the conventional machine learning algorithm with manual selection of the optimal spatially
offset distance. This method of automatically extracting information from SORS data by Attention-
based LSTM eliminates human error and enables fast and non-destructive quality inspection of
in-shell shrimp.

Keywords: spatially offset Raman spectroscopy; attention; LSTM; freshness evolution; shrimp

1. Introduction

Shrimp (Fenneropenaeus chinensis) have rich protein content, a reasonable ratio of
amino acids required by the human body, delicious meat, and are becoming a popular
fishery product. Meanwhile, due to their delicate muscle tissue and high autolysis enzyme
activity, shrimp are highly susceptible to spoilage and deterioration during storage and
transportation, resulting in food safety problems [1]. Therefore, rapid and non-destructive
detection of shrimp quality is important to improve product quality and protect the rights
and interests of consumers.

Traditional detection means of shrimp, such as physicochemical experiments, microbi-
ology, gas–liquid phase [2], etc., have high detection accuracy, but also have problems such
as lengthy time, waste of resources, and destruction of samples. Spectroscopic analysis
techniques are used for the quality inspection of shrimp meat with the advantages of being
rapid, being non-destructive, and having high accuracy [3]. The near-infrared and Raman
spectroscopy detection techniques with molecular characterization have a unique ability
to interpret the mechanism. For shrimp with high moisture content, water-insensitive
Raman spectroscopy has higher detection accuracy [4]. However, the penetration depth
of conventional backscattered Raman spectroscopy is limited, while shrimp are usually
stored and sold with the shell intact. The thin and translucent shrimp shell blocks the
Raman photon transmission, and the Raman spectrum of the shell also interferes with
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the freshness detection of the internal shrimp meat. There are no universal means of
detecting internal food quality with surface interference, and the recently developed spa-
tially offset Raman spectroscopy (SORS) provides a candidate with means for completely
nondestructive detection.

The SORS technique is a novel Raman spectroscopy technique proposed by Matousek
to overcome the measurement drawbacks of complex layered samples [5]. This technique
offsets the laser incidence point and detection position, effectively suppressing the Raman
signal and fluorescence interference of the surface material and obtaining the spectral infor-
mation of the deep material two orders of magnitude deeper than the conventional Raman
spectroscopy detection [6]. Qin et al. [7,8] developed a line-scan hyperspectral detection
system to acquire SORS data, combined with optimal offset distance spectral selection
to reduce surface signal interference, and applied it to quantify the lycopene content of
intact tomatoes. Afseth et al. [9] demonstrated that the SORS technique can monitor the
carotenoid content of intact salmon through the skin qualitatively and quantitatively. Liu
et al. [10] detected the freshness of intact in-shell shrimps by the SORS technique, which
quantifies the storage time of shrimp by choosing the optimal offset distance for Raman
spectroscopy combined with a machine learning prediction model. These methods of
selecting the optimal offset distance spectra for subsurface detection are susceptible to
the influence of the optical properties, the surface layer thickness, and the instrument
noise [11,12]. Meanwhile, the physical properties of shrimp meat change with the change
in freshness, and the scattering profile at a specific waveband can reflect the physical prop-
erties of shrimp. Using Raman spectroscopy at a specific offset distance will lose spatial
physical information, which will affect the construction of high-precision models. Finally,
because of the band correlation of the Raman spectral data, the traditional machine learning
model treats the Raman spectral data as an unordered vector, which may further lead to
the loss of potentially useful information and bring potential risk of model over-fitting.
Hence, in-depth detection of bilayer food samples is still a problem to be solved, and an
inspection technique needs to be developed to solve the physical information loss of SORS
tissue distribution, perceived errors in the selection of offset distances, and the redundancy
of adjacent band information in Raman spectroscopy for subsurface detection of foods with
surface interference (freshness of in-shell shrimp herein). With the development of deep
learning and its application in the field of spectral detection, the deep network for process-
ing sequence data represented by LSTM is widely acknowledged [13]. Therefore, based on
existing research, this study proposes a targeted, non-destructive detection method for the
freshness of in-shell shrimp using SORS technology combined with attention-based LSTM,
which aims to:

(1) Use a line-scan Raman hyperspectral imaging system to collect shrimp scattering
images and perform pre-processing and spectral analysis;

(2) Build the LSTM layer to extract the shrimp tissue scattering features and chemical
composition spectral features, use the attention layer to weight the output of the
LSTM module, and train the model;

(3) Validate the advantages of the attention-based LSTM model in assessing the freshness
of in-shell shrimp by comparing different structures of attention-based LSTM and
machine learning models.

2. Materials and Methods
2.1. Sample Preparation

The experimental samples were from the same batch of 100 live shrimps bought from
a supermarket (Auchan Investment Co., Ltd., Shanghai, China) in Wuxi, China. The weight
of individual shrimp was 15 ± 1 g. Shrimp were blended in chopped ice over 20 min to
indirect cadaverous death. Sterile paper towels were used to dry the surface of the shrimp.
To simulate actual storage and marketing environments, shrimp were placed in a constant
temperature and humidity refrigerator at four degrees Celsius. Shrimp were placed in
fused quartz vessels, and Raman scattering images were acquired at intervals of 24 h. A
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total of 700 images were obtained by continuous collection for 7 days, and each image was
treated as a sample.

2.2. Instrument and Experiment

Figure 1 shows the line-scan Raman hyperspectral imaging system based on a point
source used for data acquisition in this study. The system mainly includes a 785 nm laser
(I0785MM0500MF, Innovative Photonic Solutions, South Brunswick, NJ, USA) as the excita-
tion source for Raman spectroscopy, an imaging spectrograph (ImSpector R10E, Specim,
Oulu, Finland), and a CCD camera (iKon-M 934, Andor Technology, Hartford, CT, USA) to
form the detection mechanism for Raman scattering images. The horizontal displacement
platform is used for independent repetitive sampling of the sample at different positions.
All components are integrated in a dark box to ensure that the detection process is not
influenced by the external environment. The system was described in detail in the previous
article [10].
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Figure 1. Line-scan Raman scattering image acquisition system.

In the experiment, the sample is placed on an electric displacement platform, and the
height of the platform is adjusted to make the detection lens focus on the surface of the
sample. The laser power was adjusted to 350 mW and the exposure time was selected
to 5 s to ensure an intense Raman signal without destroying the physical and chemical
properties of the sample. The camera window is 102.4 mm spatial distance, divided into
512 pixels. Platform movement is controlled by a motion controller and acquired ten times
at 3 mm intervals. Raman scattering images of in-shell shrimp were acquired and saved at
this parameter setting. Meanwhile, the reference spectra of shrimp meat and shell were the
Raman spectra acquired at the laser point (backscattered Raman) with the same parameters.

2.3. Scattering Image Preprocessing

Raman scattering images from ten different positions form a three-dimensional image
cube, which is derived as original data (Figure 2a). Each scattering image consists of
x spatial positions and λ bands of spectral intensity. The 3D-cube data derived from
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this study contain not only valid information for model evaluation, but also interference
information such as out-of-sample background images, invalid wavebands, outliers, and
noise interference, which require data pre-processing. At first, a spatial range of 1 cm on
the surface of the shrimp (5 mm to the left and right of the laser spot) was selected as the
region of interest, and the wavelength range of 600–1800 cm−1 was used as the waveband
of interest to streamline the data. An optical reflection abnormality region exists in the
exoskeleton at the intersection of the thoracic carapace of the shrimp shell, and Raman
spectra collected at this position are usually devoid of the typical Raman peaks of shrimp
meat. Typical Raman spectral peaks in the reference spectra of shrimp meat were identified
and the wavebands were recorded. Meanwhile, the typical spectral peaks of the spatially
dimensional averaged spectra of the in-shell shrimp scattered images were also recorded,
and the anomalous spectra of the shrimp shells corresponding to the scattered images
were removed by comparison of the peak positions with the typical peaks (Figure 2b). The
interference of cosmic rays usually produces abrupt narrow peaks, which were eliminated
by removal of the maximum and minimum values in each waveband. Then the spectra
independently and repeatedly collected from different locations on each shrimp were
averaged and smoothed (Savitzky-Golay) to remove random noise caused by mechanical
vibration (Figure 2c). Stokes lines were used to convert Raman wavebands into Raman
shifts to reduce the interference of excitation wavebands [14].
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Figure 2. Key steps in the pre-processing of Raman scattering images. (x is the spatial position on
both sides of the laser spot on each scanning line, y is the line-scan image of shrimp at different
acquisition positions, and λ is the waveband of the Raman spectrum.)

Although LSTM has a long-term memory function, its memory capacity still cannot
fully cover the whole Raman spectrum. Meanwhile, considering that Raman spectra have
a strong correlation in adjacent wavebands, the adjacent waveband values are averaged to
remove redundant information. The Raman scattering image is acquired by a straight line-
scan centered on the laser incident point, and to reduce the effect of sample inhomogeneity,
the images on both sides are flapped and averaged according to the laser point position
(Figure 2d). Finally, a 200 × 11 matrix is selected for subsequent network processing,
where 200 wavebands are used as temporal data and 11 offset positions are used as spatial
feature vectors (Figure 2e). The Raman scattering profile for each waveband contains tissue
distribution properties; thus, the profile is used as input to the network (Figure 2f), taking
into account the spectral information between the wavebands.
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2.4. Attention-Based LSTM Model
2.4.1. Model Structure

Considering that the shrimp quality deterioration process affects both the molecular
chemical structure and the physical tissue distribution, a deep learning model (Figure 3)
named attention-based LSTM was built to extract effective information from Raman scat-
tering images to realize shrimp freshness prediction, which mainly includes: (1) an input
layer of scattering images; (2) an LSTM layer to extract scattering information and spectral
information; (3) an attention layer to weight the output of LSTM module; and (4) an output
layer to integrate features and regression prediction.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 13 
 

 

Although LSTM has a long-term memory function, its memory capacity still cannot 

fully cover the whole Raman spectrum. Meanwhile, considering that Raman spectra have 

a strong correlation in adjacent wavebands, the adjacent waveband values are averaged 

to remove redundant information. The Raman scattering image is acquired by a straight 

line-scan centered on the laser incident point, and to reduce the effect of sample inhomo-

geneity, the images on both sides are flapped and averaged according to the laser point 

position (Figure 2d). Finally, a 200 × 11 matrix is selected for subsequent network pro-

cessing, where 200 wavebands are used as temporal data and 11 offset positions are used 

as spatial feature vectors (Figure 2e). The Raman scattering profile for each waveband 

contains tissue distribution properties; thus, the profile is used as input to the network 

(Figure 2f), taking into account the spectral information between the wavebands. 

2.4. Attention-Based LSTM Model 

2.4.1. Model Structure 

Considering that the shrimp quality deterioration process affects both the molecular 

chemical structure and the physical tissue distribution, a deep learning model (Figure 3) 

named attention-based LSTM was built to extract effective information from Raman scat-

tering images to realize shrimp freshness prediction, which mainly includes: (1) an input 

layer of scattering images; (2) an LSTM layer to extract scattering information and spectral 

information; (3) an attention layer to weight the output of LSTM module; and (4) an out-

put layer to integrate features and regression prediction. 

LSTM LSTM LSTM...

Scattering 

profiles

Input

LSTM

Attention

Attention module

x1 x2 xm

Output

h1

Prediction

Scattering 

and spectral 

feature 

Spectral 

feature 

weighting

Feature 

Integration

h2 hm

tanhσ σ σ 

tanh

ht

ht

CtCt-1

ht-1

...
ht

...
Weights

at

y

LSTM module

Attention-based 

LSTM

Fully connected network

600–1800 cm 1

5
 m

m Scattering 

image

 

Figure 3. Schematic diagram of the deep network structure of attention-based LSTM. (m = 200 is the 

number of input characteristic bands, x is the scattering profiles of different bands, and h is the 

scattering feature extracted by LSTM modules.) 

The input layer is the processed 2D Raman scattering image consisting of the profile 

( 11

1 2, ,..., 200m ix x x x m =, , ), where the 200 wavebands uniformly cover 600–1800 

cm−1 and the 11 spatial positions uniformly cover the offset positions within 5 mm of the 

Figure 3. Schematic diagram of the deep network structure of attention-based LSTM. (m = 200 is
the number of input characteristic bands, x is the scattering profiles of different bands, and h is the
scattering feature extracted by LSTM modules.)

The input layer is the processed 2D Raman scattering image consisting of the pro-
file (x1, x2, . . . , xm, xi ∈ R11, m = 200), where the 200 wavebands uniformly cover
600–1800 cm−1 and the 11 spatial positions uniformly cover the offset positions within
5 mm of the laser point. The LSTM layer is a feedback neural network structure dealing
with sequence features as a modification of the recurrent neural network, which can solve
the gradient disappearance problem in long-term memory and has been applied in Raman
spectral analysis [15]. The LSTM carries out feature selection and storage through the
interaction between four chained repetitive cells. Firstly, the redundant information in the
former input temporary cell state (ht−1) is removed through the forgetting gate to reduce
the network burden; secondly, the valid information is filtered from the current sequence
input information through the memory gate, and each information component is rated
for updating the cell state (Ct−1); and thirdly, the new output (ht) is obtained through the
output gate based on the current sequence input and the current sequence state (Ct), which
is also the input of the next sequence point [16]. Due to the uncertainty of the optimal offset
distance selection, the effective spatial information of the subsurface layer may exist in
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other positions. The LSTM extracts the optimal offset distance and the information of other
adjacent positions simultaneously to improve the robustness of the model.

The attention layer is a network structure that enables a neural network to have the
ability to focus on a specific subset of features by automatically learning and calculating
the contribution size of the input data to the output data. The attention mechanism can be
applied to any complex form of input and can also handle information overload in parallel.
The essence of the attention mechanism is to learn the importance of each waveband from
the Raman spectral sequence and assign each a weighting factor (at). A many-to-one
attention mechanism for Keras was used to build the attention layer [17], where multi-
dimensional spatial scattering features (ht) share the same attention weights. The output
layer is a fully connected network for feature integration and shrimp freshness prediction.

2.4.2. Parameter Setting and Running Environment

Table 1 shows the parameter settings of the attention-based LSTM model. The num-
ber of nodes of each LSTM module for scattering feature extraction corresponding to
tissue distribution is set to 21. The activation function is set to ‘tanh’ to mitigate gradient
disappearance. The number of attention units is set to 50 to extract spectral features corre-
sponding to composition information. Training speed is ensured by reducing the number
of model parameters after sample data dimensionality. The number of fully connected
nodes is set to 10, and the activation function is ‘ReLU’. The output loss function is set
to the mean square error (MSE). A gradient descent method is used, while adjusting the
appropriate learning rate and training period. The epoch of a single training iteration for all
batches is set to 1000. The PyCharm (2021.1.2, JetBrains, Prague, Czech Republic) software
and the TensorFlow (2.6.3) package are used for data analysis processing and modeling
predictions.

Table 1. Parameter setting of attention-based LSTM model.

Layer Input Shape Units Activation/Loss Output Shape Parameters

LSTM 200 × 11 21 tanh 200 × 21 2772
Attention 200 × 21 50 tanh 50 2541

FC 50 10 ReLU 10 510
Output 10 - MSE 1 11

2.5. Model Comparison and Evaluation

This research compared the built attention-based LSTM deep learning model with
traditional machine learning prediction models combined with an optimal offset distance
Raman spectrum. A common predictive modeling method applied in the spectral analysis
is partial least squares regression (PLSR). When the number of samples is limited, espe-
cially when it is fewer than the number of the characteristics, and the correlation is high,
PLSR can be used [18]. Support vector regression (SVR) is a substitute for the traditional
method of partial least squares. SVR realizes complex detection tasks through nonlinear
kernel function and has better generalization performance [19]. The extreme random tree
algorithm (ET) integrates decision trees and a feature point random selection strategy to
generate a complex tree network, which has a stronger generalization ability [20].

The training and testing sets were split randomly in a 8:2 ratio. Five-fold cross-
validation was used to train the model parameters and avoid model overfitting. The
coefficient of determination (R2), root mean square error (RMSE), and residual prediction
deviation (RPD) were used as model evaluation indicators. The larger the R2 and RPD and
the smaller the RMSE, the better the fit and prediction of the regression model.

3. Result and Discussion
3.1. Raman Spectra Analysis

Reference Raman spectra of in-shell shrimp, shrimp shells, and shrimp meat were
collected at the laser incidence point by a point laser-based line-scan Raman scattering
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image acquisition system (i.e., backscatter Raman spectroscopy). Figure 4a shows the
normalized Raman spectra of these reference spectra and the typical Raman peaks. The
main spectral peaks of shrimp meat are distributed at Raman shifts of 1003, 1148, 1269,
1311, and 1487 cm−1. The waveband of 1003 cm−1 corresponds to an important amino
acid, phenylalanine, which ensures the freshness of shrimp products [21]. The waveband
adjacent to 1148 cm corresponds to the C-N stretching vibration of proteins. This waveband
serves as the main protein characterization and effectively responds to protein–lipid and
protein–protein interactions [22]. The spectral peaks at 1269 and 1311 cm−1 correspond to
protein secondary structures, which reflects the contribution of C-N stretching and N-H
in-plane bending vibrations of the peptide bond as well as the Cα-C stretching and C=O
in-plane bending [23]. The Raman peak corresponding to 1487 cm−1 characterizes CH2
and CH3 bending vibrations and CH stretching vibrations. The reduction of the Raman
spectral peak at this waveband is influenced by the hydrophobic effect around the aliphatic
residues. In contrast to the multiple spectral peaks typically shown by shrimp meat, the
main manifestation of shrimp shells is a large fluorescence background. Under the present
study, the fluorescence background of shrimp shells may mask the Raman peaks of shrimp
shells (e.g., 1148 cm−1); meanwhile, the blocking of Raman photons by shrimp shells
and the masking of fluorescence also limits the transmission of signals from subsurface
shrimp meat, which interferes with the assessment of freshness of shrimp meat. The Raman
spectrum of intact in-shell shrimp can also be found to be composed of the spectra of
both the shrimp meat and the shrimp shell, but the expression is mainly influenced by the
external shell.
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As shrimp meat storage time increases and freshness changes, the fat appears oxidized
and protein denaturation occurs. The corresponding typical characteristic Raman peaks and
fluorescence background also change regularly since the Raman spectrum of shrimp meat at
the laser incidence point is somewhat masked by the interference of shrimp shells. Spatially
offset Raman spectra were used to demonstrate the Raman spectra and characteristic peak
variations of in-shell shrimp with different storage days. As shown in Figure 4b, the
Raman peaks at 1148, 1269, and 1311 cm−1 corresponding to the secondary structure of the
protein decrease gradually with increasing storage time. The increase in the fluorescence
background is due to the decomposition of biological tissues and the change and fusion of
both the chemical composition and physical distribution as shrimp meat deteriorates. The
correspondence between Raman spectral peaks and substances determines that spectral
peak identification and intensity can be used to characterize substance composition and
content. For an intact in-shell shrimp, which has a complex tissue and composition to be
measured, it is difficult to accurately and quantitatively assess the freshness of the shrimp
using simple Raman spectral peak correspondence. Conventional modeling and analysis
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methods generally require first selecting the optimal offset distance Raman spectrum,
which is considered to be dominated by the Raman spectral peaks corresponding to the
quality of the subsurface shrimp meat. The selected Raman spectrum is combined with
a chemometric prediction model to assess the freshness and storage time of the shrimp
meat. However, this single offset distance Raman spectrum loses a lot of information on
the physical properties of the tissue distribution and the chemical properties of the tissue
composition of shrimp meat. Therefore, Raman scattering images consisting of Raman
spectra at different offset distances were used as data for modeling and analysis, and the
attention-based LSTM model was constructed to further improve the freshness detection
accuracy of in-shell shrimp.

3.2. Freshness Modeling Prediction Results

The 700 scatter images of 100 shrimps collected and pre-processed within seven days
were used as a sample set for the attention-based LSTM model construction, training, and
prediction process. Figure 5 shows the box plot of the true values of shrimp storage days
and predicted value of attention-based LSTM model. Five independent iterations of the
prediction process were performed in the cross-validation with all predicted and true values
being stored that were used to produce the resulting statistics in the box plot. The mean of
R2, RMSE, and RPD predicted by the attention-based LSTM model for the 140 test samples
were 0.93, 0.48, and 4.06, respectively. The box plot shows that the mean and median of
the predicted deviations are within one day of the true value for the first five days. The
attention-based LSTM model can accurately predict the storage date corresponding to
freshness when the freshness of shrimp meat changes. According to the interquartile range
in the box plot, most of the samples have a concentrated distribution of predicted values in
the first five days. The shrimp meat deteriorated on the 6th and 7th day, appearing locally
black, oozing tissue mucus, and emitting pungent odor. This also caused sample prediction
results to be discrete and outliers to appear. Overall, the model clearly reflects the change
in freshness of shrimp meat with the predicted number of storage days.
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3.3. Validation of Model Structure Rationalization

The network structure of the deep learning model affects the results of freshness
assessment of in-shell shrimp. Figure 6 shows the comparison of the network performance
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of the built attention-based LSTM model and the deleted LSTM layer, attention layer, and
fully connected layer in the attention-based LSTM model, respectively. The loss function
MSE of the training set and the prediction accuracy corresponding to R2 of the test set
are used as two metrics to evaluate the superiority of the network structure in both the
training process and the test process. Among them, the MSE and R2 correspond to the
one-fold model training process in five-fold cross-validation. After removing the LSTM
layer for extracting the physical distribution characteristics and the chemical composition
characteristics and removing the attention layer network structure for weighting the output
of the LSTM module, the MSE of the training process no longer converged after dropping
to four. The model under fitting makes it difficult to train an effective shrimp freshness
prediction model, while it cannot perform the test set prediction task. The fully connected
layer of feature integration has less impact on the convergence speed and performance
of the training set but improves the prediction accuracy of the test set. The reason is that
the fused features limit the overfitting of the deep model and improve the robustness of
the model. Therefore, each layer structure in the attention-based LSTM model was built
based on the Raman spectral characteristics of shrimp to jointly achieve the task of shrimp
freshness detection.
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3.4. Model Comparison Results

Compared with the traditional machine learning models, the target-built deep models
can extract features more effectively and achieve end-to-end detection tasks. Figure 7 com-
pares the R2, RMSE, and RPD of the predictions of the constructed attention-based LSTM
deep learning model with those of linear PLSR, nonlinear kernel SVR, and integrated ET
models. In the process of training and prediction model by cross-validation, the SVR and
ET models performed similarly and both outperformed the PLSR model, which indicates
that the Raman spectra are not simply linearly related to the storage date corresponding to
freshness. However, although the SVR and ET models have been effective in extracting the
optimal offset Raman spectral features, the attention-based LSTM model still has significant
advantages with R2, RMSE, and RPD values of 0.93, 0.48, and 4.06, respectively. Meanwhile,
the smaller prediction standard deviations with R2, RMSE, and RPD of 0.005, 0.023, and
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0.159 demonstrate the stability of the attention-based LSTM model. This is attributed to the
fact that the attention-based LSTM model extracts both chemical composition information
and physical distribution information from the Raman scattering images corresponding to
the freshness of shrimp meat. The physical information carried by the scattering charac-
teristics of shrimp meat effectively complements the characterization of Raman spectral
curves for differences in tissue distribution as freshness changes. Although the structure of
the attention-based LSTM model is complex, with sufficient numbers of training samples
and iterations, it can achieve the processing of high-dimensional data and high-accuracy
detection of complex tasks.
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3.5. Analysis and Discussion

The translucent characteristics of the shrimp shell ensure that the laser penetrates
through the shell to excite the shrimp Raman spectrum, which is transmitted and then
accepted through the shell again by the detector. This satisfies the basic requirement
for spatially offset Raman spectroscopy; i.e., the subsurface signal can be detected. The
subsurface Raman signal is influenced by the thickness and transmittance of the surface
layer, and the shelled shrimp selected for this study were intact shrimp with uniform
specifications to ensure high-accuracy detection. In the subsurface detection of food
with surface interference (e.g., meat products with packaging), the requirements of SORS
combined with the attention-based LSTM method proposed in this study can be effectively
implemented: (a) Subsurface signals can penetrate surface-interfering substances; (b) The
surface interference of the same sample is uniform; (c) There should be no significant
difference in surface interference among samples.

The SORS data collected by a line-scan Raman detection device based on a point laser
source are complex and high-dimensional information. The conventional SORS detection
technique first selects the optimal spatial offset distance, then uses the Raman spectrum
detected at that offset position for waveband feature selection, and finally predicts by
chemometric model. The technique of choosing the optimal offset distance [10] loses large
amounts of physical scattering information. It is difficult for traditional chemometric mod-
els to extract effective features and make index predictions for all the Raman scattering
images. Therefore, the attention-based LSTM model constructed for the physical distribu-
tion and chemical composition of shrimp tissues achieves better analytical results, which
also requires sufficient training samples and iterations. The end-to-end depth network
model also avoids the artificial error of selecting the offset distance.

The attention-based LSTM model is a deep network structure customized for specific
inspection tasks, which can obtain high-precision inspection results under the premise
of good consistency of surface layer organization. However, this physical and chemical
feature extraction method finds it is difficult to eliminate the interference of surface spectra
and cannot adapt to the detection task under the interference of different surface materials.
In the deep detection of layered tissues, the surface material exists corresponding to the
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variation of composition, thickness, optical properties, and other indicators, and the strategy
of extracting effective features by considering the Raman hybrid scattering images of the
acquired layered samples as a unit is usually vulnerable to the influence of the diverse
tissue of the surface layer. Considering the molecular specificity of Raman spectroscopy,
the qualitative and quantitative characterization of substance components can be achieved
by the position, intensity, and full width at half maxima (FWHM) of Raman spectral peaks,
and the blind signal separation technique to separate subsurface Raman spectra without a
priori information is an effective method to adapt to different surface interferences.

4. Conclusions

A deep learning model of attention-based LSTM is constructed for intact shelled
shrimp freshness detection due to the obstruction of shrimp shells and the interference of
the shrimp shell’s own Raman signal. The model extracts both physical scattering features
and chemical composition features, making it significantly better than the traditional
spatially offset Raman selection optimal offset distance analysis method. The reasonability
of the structure and performance advantages of the attention-based LSTM model proposed
in this study are verified by comparing the prediction results of different structures of the
attention-based LSTM model and three other machine learning models. In detection tasks
with surface interference, the effective acquisition of deep matter signals is complemented
by a rational model structure. Therefore, the selection of a penetrating laser wavelength
and power for the material properties and the development of a high-precision detector are
also important research elements.
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