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Abstract: The aim of this study was to evaluate the feasibility of a noninvasive and low-operator-
dependent imaging method for carotid-artery-stenosis diagnosis. A previously developed prototype
for 3D ultrasound scans based on a standard ultrasound machine and a pose reading sensor was
used for this study. Working in a 3D space and processing data using automatic segmentation
lowers operator dependency. Additionally, ultrasound imaging is a noninvasive diagnosis method.
Artificial intelligence (AI)-based automatic segmentation of the acquired data was performed for
the reconstruction and visualization of the scanned area: the carotid artery wall, the carotid artery
circulated lumen, soft plaque, and calcified plaque. A qualitative evaluation was conducted via
comparing the US reconstruction results with the CT angiographies of healthy and carotid-artery-
disease patients. The overall scores for the automated segmentation using the MultiResUNet model
for all segmented classes in our study were 0.80 for the IoU and 0.94 for the Dice. The present study
demonstrated the potential of the MultiResUNet-based model for 2D-ultrasound-image automated
segmentation for atherosclerosis diagnosis purposes. Using 3D ultrasound reconstructions may help
operators achieve better spatial orientation and evaluation of segmentation results.

Keywords: carotid artery ultrasonography; medical imaging; artificial intelligence; carotid disease
diagnosis; atherosclerosis diagnosis

1. Introduction

Atherosclerosis is a progressive disease characterized with accumulation of lipids and
fibrous elements in the large arteries. It initiates in early adulthood and manifests clinically
in middle to late adulthood after decades of plaque progression. Extracranial atherosclerotic
disease (ECAD), primarily carotid artery stenosis, accounts for approximately 18–25% of
ischemic stroke [1], and over one-third of all strokes are caused by thromboembolism
from a stenotic carotid artery [2]. In patients with acute ischemic stroke, the prevalence of
intracranial atherosclerosis does not differ between women and men, while extracranial
atherosclerosis is less often present in women compared with in men [3]. European and
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U.S. guidelines for prevention of stroke in patients with carotid plaque are based on
quantification of the percentage reduction in the luminal diameter due to the atherosclerotic
process in order to select the best therapeutic approach [4]. Stenosis quantification is
not sufficient, and plaque characterization is also necessary when discussing treatment
strategies and prognosis. The accuracy of carotid artery stenosis (CAS) diagnosis has
substantially increased over the decades, with the progressive technological developments
passing from measurement of the narrowing carotid artery diameter to evaluation of the
increased velocity field near the obstruction/lesion site in the carotid artery, with increased
emphasis now on detection of additional parameters to characterize plaque vulnerability [5].
Early and secure identification of these plaques would allow development of individualized
therapeutic and pharmacological strategies, applied in a timely manner [6]. Soft plaque,
plaque ulceration, and increased common carotid artery wall thickness on computed
tomography angiography (CTA) are associated with ipsilateral cerebrovascular ischemia,
while calcified plaque is associated with downstream ischemic events to a lesser extent in
comparison [7]. Additionally, for other large blood vessels, with computed tomography
coronary angiography (CTCA), high-risk plaque (HRP) lesions with obstructive (>50%)
stenosis and large, low-attenuation plaque areas, which demonstrated great association
with future acute coronary syndrome (ACS), were identified, while stenosis severity alone
in the absence of HRP features was not associated with future ACS [8].

Today, various diagnostic modalities are available for evaluation of carotid artery
disease: color Doppler ultrasonography, computed tomography angiography, magnetic
resonance angiography, and intra-arterial digital subtraction angiography (DSA) [9]. Other
potential imaging tools are optical coherence tomography (OCT), photoacoustic tomogra-
phy (PAT), and infrared (IR) thermography [5]. DSA is still considered a gold standard in
assessment of stenosis, but because of the stroke risk, patient discomfort, and high cost,
it is increasingly being replaced with noninvasive techniques [10]. Assessment of plaque
enhancement is limited in the case of single-phase CTA, and multiphase CTA is rarely
performed outside of research studies due to radiation concerns [11].

The aim of our study is to evaluate the feasibility of a noninvasive and low-operator-
dependent imaging method for carotid-artery-stenosis diagnosis. A previously developed
prototype for 3D ultrasound scans based on a standard ultrasound machine and a pose
reading sensor was used for this study. Working in a 3D space and processing data using
automatic segmentation lowers operator dependency. Additionally, ultrasound imaging is
a noninvasive diagnosis method. Artificial intelligence (AI)-based automatic segmentation
of the acquired data was performed for the reconstruction and visualization of the scanned
area: the carotid artery wall, the carotid artery circulated lumen, soft deposits, and calcified
deposits. The evaluation was carried out via comparing the result with CT angiographies
of healthy and carotid-artery-disease patients. The chosen AI model was a variation of
the UNet CNN (convolutional neural network) model, which has yielded good results in
other studies [12–14].

2. Materials and Methods

This study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Institutional Review Board (or Ethics Committee) of the Iuliu Hatieganu
University of Medicine and Pharmacy, Cluj-Napoca, Romania (1NZ202/11 July 2022).
Informed consent was obtained from all subjects involved in this study.

2.1. Ultrasound Data Acquisition

A 3D high-frequency ultrasound (US) imaging prototype based on a standard medical
2D US scanner (Vinno 6, Suzhou, China) with a high frequency (10–23 MHz), a small-
aperture (12.8 mm) linear transducer (X10-23L, Vinno, Suzhou, China), and an articulated
measurement arm (Evo 7, RPS Metrology (Sona(VR)/Italy)), used as a pose-reading sensor,
was used for this study. The linear array transducer was used at 20 MHz, having as its setup
a standard vascular preset and a reference depth of 2.5 cm. The probe was attached to the
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sensor, and the scanning was performed after temporal and spatial calibration of the devices.
This prototype had been developed previously for periodontal-tissue ultrasound imaging
investigations, as described in other studies [15,16] detailing the technical performances
and obtained results for periodontal-tissue 3D ultrasound reconstructions. Using the
same prototype and setup, with the added vascular preset of the ultrasound machine,
the carotid arteries in the neck region and the thyroid were scanned. Four consecutive
scans of 2 conscious and responsive patients, hospitalized for stroke signs and symptoms,
and 1 healthy patient were performed by the same radiologist. The examination began
with the patient in a supine position and with the head in a slight hyperextension. The
transducer was placed in the right submandibular area in the region of the carotid bulb
in a transverse position; the examination continued in craniocaudal motion in the lateral
cervical (jugular–carotid) region, examining the right common carotid artery in its cervical
pathway until the right lobe of the thyroid gland was reached, then continuing examining
the entire thyroid gland, starting with the right lobe, moving to the isthmus and finally
examining the left lobe. After that, the left common carotid artery was examined from the
level of the left thyroid lobe in caudocranial manner until the left carotid bulb was reached.
The examination followed a “U”-letter pattern from the right to the left side.

The examination was performed with the craniocaudal and midsagittal free movement
of the operator’s hand, which held the transductor and the pose-sensor assembly, with
irregular operator-dependent movement speed, along the previously described trajectory.
Because of the free hand movement of the transductor and the pose-sensor assembly, the
number, relative spacing, and orientation of the 2D frames in 3D space, belonging to distinct
scans of the same examined region of the same patient, differed along the scan direction.

2.2. CT Angiography

The two patients who had stroke signs and symptoms benefited from the standard
examination for their condition, performed on a General Electrical (GE) Revolution EVO
128-slice CT system with a standard angiogram supra-aortic trunk protocol. The source
parameters were set at 120 KV and 50 mA for the CT angiography. Each patient was
positioned, supine, in the gantry, with their arms at their side. First, the scout image was
acquired from the midchest to the head vertex, with a scanning extent from the aortic
arch to the vertex and a scan direction orientated caudocranially as per a noncontrast
study performed prior to the angiographic phase. The contrast medium was injected in
the peripheric cubital vein at around a dose of 80–90 mL of Omnipaque contrast agent,
with 100 mL of saline chaser at around 4.5 mL/s, with a set region of interest (ROI) in the
descending aorta and automatic bolus tracking with minimal delay and scan triggering
when 120 HU was reached in the descending aorta. Diagnostically, every major vessel from
the aortic trunk upward, including the intracranial arteries, was assessed, with the types of
plaque (calcified, soft/mixed) and grading stenosis reported according to five categories:
normal (0% stenosis), mild stenosis (1–49%), moderate stenosis (50–74%), severe stenosis
(75–99%), and occluded artery.

2.3. Original 2D Ultrasound Image Segmentation

After acquisition, the 2D neck-region US images were extracted using an in-house-
developed Python software application and were saved as png files. Semiautomatic
segmentation was performed by a student trained and supervised by an experienced radi-
ologist. Five anatomical elements (the carotid artery wall, the circulated lumen, soft plaque,
calcified plaque, and the thyroid) were searched for and identified if present (Figure 1). Ev-
ery anatomical element was masked using an in-house-developed semiautomatic software
annotation tool relying on a customized region-growing-based segmentation algorithm,
described in a previous study [16]. The algorithm expects the user to click on seed points,
which are “grown” via iteratively adding neighboring pixels with similar intensities. The
algorithm is customized in such a way that already-labeled pixels are not considered. The
similarity predicate is controlled with a threshold, T, that is tunable by the user. It interacts
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with the user through the keyboard and the mouse as well as through the OpenCV and
PyQT GUIs to display input and output images and to control a track-bar used to set the
threshold, T, for region growing. Tools such as the eraser and the pencil-drawing tool were
used for fine corrections.
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Figure 1. Manual and semiautomatic segmentation using our own software application: original US
image, thyroid—yellow, carotid arterial wall—white, calcified plaque—light blue, soft plaque—dark
blue, and circulated lumen—red.

2.4. CT-Scan Segmentation Methods

For manual segmentation of CBCT, the software Slicer 3D, version 5.2.1 [17], was used.

2.4.1. Semiautomatic Segmentation Method of Patient CT Scans Using 3D Slicer

The following steps were taken to semiautomatically segment the reference CT scans
for the patients in the scope of this study:

1. Patient’s DICOM scans were loaded into 3D Slicer.
2. The CT angiography volume was selected as the closest 3D representation of the

regions of interest: the carotid circulated lumen, the carotid artery wall, carotid artery
soft plaque and calcified plaque, and the thyroid gland.

3. The rendering mode was adjusted to MR angio to obtain a colored view of the bones
and the blood vessels in the volume and identify the regions of interest.

4. The regions of interest were selected to capture both the carotid arteries and the entire
neck length of the patient, and the volume was cropped to the space inside the regions
of interest.

5. Segments for the relevant anatomical regions of the volume were created using the
segmentation editor: for the carotid circulated lumen, the carotid artery wall, carotid
artery soft plaque and calcified plaque, and the thyroid gland.

6. Segmentation editor tools such as region growing, the paint tool, the eraser tool, the
islands tool, etc. were used to segment various tissue types across various DICOM
frames on all 3 axes. At the end, the 3D rendering feature of the region-growing
tool was used to visualize and fine-tune the result before it was exported to STL
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format in order to have it as a comparison reference for the ultrasound segmentation.
The segmentation was conducted in such a way so that the segmented result would
overlap as closely as possible to the MR-angio visualization of the angiography
volume, described above, this visualization being considered the gold-standard 3D
representation of tissues of interest.

2.4.2. Methodology for CT Segmentation of Ground Truth

1. The circulated lumen was segmented from the CT angiography volume (Figure 2).

a. It was possible for some of the hard deposits to be partially or totally included
in the circulated-lumen segmentation because the HU range for these, in some
cases, depending on deposit density, was similar to the HU range of the con-
trast substance.

b. The intersection volumes between the segmented circulated lumen on the
CT angiography volume and the segmented hard deposits on the native CT
volume were excluded from the result. This represented the ground truth for
the circulated lumen.

2. Hard deposits were segmented from the native CT volume. This was the ground truth.
3. The thyroid was segmented from either the native or the CT angiography volume.
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Figure 2. Segmented blood vessels from CT angiography.

2.5. Machine-Learning Dataset Preparation

For the construction of the machine-learning training dataset, five separate 3D ul-
trasound scans, acquired using the abovementioned prototype, were selected from the
totality of those performed by an experienced radiologist, resulting in the image datasets
described in Table 1. The acquired original ultrasound 2D images in each selected dataset
were segmented by a student trained and supervised by an experienced radiologist. The
outcome of these actions was the sets of masks corresponding to the original 2D US images,
from the datasets in Table 1 that were in the scope of the segmentation. The distribution
of the number of masks per class in the datasets is presented in Figure 3. The dataset was
divided into sections for training, validation, and testing according to the 0.8–0.1–0.1 ratio.
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Table 1. Dataset total frames per class.

Dataset Number of Frames Patient

Dataset 1 1001 Healthy (patient 1)
Dataset 2 971 Healthy (patient 1)
Dataset 3 959 Healthy (patient 1)
Dataset 4 531 Carotid disease (patient 2)
Dataset 5 222 Carotid disease (patient 3)

Sensors 2023, 23, 2806 7 of 15 
 

 

 
Figure 3. Distribution of number of masks/classes in datasets. Datasets from carotid-artery-disease 
patients—orange; healthy patients—blue. 

2.6. Ultrasound-Scan Automatic Segmentation Methods 
The automatic segmentation of the images was performed with pixel-level classifica-

tion of the original US images in the abovementioned 5 classes of interest (the blood vessel 
wall, the circulated lumen of the blood vessel, soft plaque, calcified plaque, the thyroid 
gland) and the background. For that purpose, MultiResUNet [18] CNN architecture was 
used. This is an improvement of the original UNet architecture that solves the scale prob-
lem of tissues of interest found in medical images via replacing the simple convolutional 
blocks with MutiRes blocks consisting of the concatenation of three successive 3 × 3 con-
volutions and additional input. Another improvement is the replacement of the skip con-
nections with residual paths consisting of 4 successive blocks, each performing a 3 × 3 
convolution with additional input. The predictions were made for 5025 2D original US 
images selected from scans 2, 3, and 4 from the two carotid-disease patients (Table 2). 

Table 2. The frames selected from the acquired US data for the carotid-artery-disease patients. 

US Scan Frame Interval 
Number of 

Frames 
Type of Segmenta-

tion 
Healthy Patient Scan 1–4 - 2931 Manual 
Carotid Disease Patient1 

Scan 1 530–1060 531 Manual 

Carotid Disease Patient1 
Scan 2 

330–1100 770 AI Prediction 

Carotid Disease Patient1 
Scan 3 230–1200 970 AI Prediction 

Carotid Disease Patient1 
Scan 4 280–1210 930 AI Prediction 

Carotid Disease Patient2 
Scan 1 

400–622 222 Manual 
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2.6. Ultrasound-Scan Automatic Segmentation Methods

The automatic segmentation of the images was performed with pixel-level classifica-
tion of the original US images in the abovementioned 5 classes of interest (the blood vessel
wall, the circulated lumen of the blood vessel, soft plaque, calcified plaque, the thyroid
gland) and the background. For that purpose, MultiResUNet [18] CNN architecture was
used. This is an improvement of the original UNet architecture that solves the scale problem
of tissues of interest found in medical images via replacing the simple convolutional blocks
with MutiRes blocks consisting of the concatenation of three successive 3 × 3 convolutions
and additional input. Another improvement is the replacement of the skip connections
with residual paths consisting of 4 successive blocks, each performing a 3 × 3 convolution
with additional input. The predictions were made for 5025 2D original US images selected
from scans 2, 3, and 4 from the two carotid-disease patients (Table 2).
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Table 2. The frames selected from the acquired US data for the carotid-artery-disease patients.

US Scan Frame Interval Number of Frames Type of Segmentation

Healthy Patient
Scan 1–4 - 2931 Manual

Carotid Disease
Patient1 Scan 1 530–1060 531 Manual

Carotid Disease
Patient1 Scan 2 330–1100 770 AI Prediction

Carotid Disease
Patient1 Scan 3 230–1200 970 AI Prediction

Carotid Disease
Patient1 Scan 4 280–1210 930 AI Prediction

Carotid Disease
Patient2 Scan 1 400–622 222 Manual

Carotid Disease
Patient2 Scan 2 330–1080 750 AI Prediction

Carotid Disease
Patient2 Scan 3 280–1000 720 AI Prediction

Carotid Disease
Patient2 Scan 4 310–1195 885 AI Prediction

2.7. 3D Ultrasound Reconstructions of the Carotid Arteries

Methodology for the ultrasound reconstruction:
Using the 3D US scanner prototype and the developed software, after the US data

was acquired, each frame was paired or matched with the sensor’s readings. The spatial
coordinates and orientation of each frame were determined.

The acquired 2D frames were 375 × 735-pixel grayscale png files. For a subset of
the acquired 2D frames, a manual segmentation of ground-truth masks for five tissue
categories (the carotid wall, the carotid circulated lumen, carotid calcified plaque, carotid
soft plaque, the thyroid) was performed. These ground-truth masks were combined into
multiple training datasets for a MultiResUNet [18] convolutional neural network model.
Later, the trained model was used to automatically segment the 5 tissue classes previously
mentioned, plus the background, on a selected set of acquired ultrasound 2D frames. The
resulting segmented masks were used to make 3D reconstructions of the morphologies for
the abovementioned tissue classes for the selected set of ultrasound acquisitions. This was
achieved through having all 2D ultrasound frames reorganized in the 3D space and masked
with the results from the semiautomatic or automatic segmentation, thus reconstructing
the 3D data volume.

For the training and segmentation, we used a dedicated machine with the following
specifications: GPU GeForce RTX 2060 8GB RAM, Nvidia driver 450.51.06, CUDA version
11.0, and TensorFlow 2.0.

2.8. Qualitative Analysis of the 3D US Reconstructions

Methodology for the qualitative evaluation of the 3D volumes obtained from the CT
and the ultrasound for ground-truth segmentation classes from the CT:

For the qualitative comparison, the ultrasound 3D reconstructions, based on auto-
matically segmented 2D ultrasound frames, were visually compared with reference CT
scans of the same patients. The focus of the comparison was on the circulated lumen and
calcified plaque.

A refinement applied to the qualitative visual inspection of the USs and the corre-
sponding CT scans was the visual comparison of the circulated-lumen center line identified
in the CT and US scans selected for this study.

Segmentation of the CT DICOMs in scope:
For this study, CT scans of 2 patients with clinically confirmed atherosclerosis were

used. For each patient, segmentation of the circulated lumen and calcified plaque deposits
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was performed using 3D Slicer [19] on a CT scan selected for this study. Additionally, for CT
scans in this study, a calculation of the center line of the circulated lumen was performed.

The main 3D Slicer toolbox item used for segmentation was the Segmentation Editor
augmented with the Segment Editor Extra Effects and Slicer VMTK plug-ins. The Segment
Editor Extra Effects plug-in was used for segmenting the circulated lumen. The Slicer
VMTK plug-in was used for calculating the center line of the circulated lumen.

2.9. Quantitative Analysis of the 3D US Reconstructions

For quantitative analysis of the 3D US reconstructions, point-cloud mathematical
comparison methods were employed. The tool used for this purpose was Cloud Compare
Open-Source Software 2.12.4 (CCOSS).

The method used was to select, for each patient in the study group, a reference 3D
ultrasound reconstruction based on manually segmented masks for the 5 tissue classes
described above. This reference was then compared with each 3D US reconstruction
based on masks that had been automatically segmented with the specific machine-learning
models described above. The first step consisted of alignment of the corresponding point
clouds of the two reconstructions, with the help of Cloud Compare’s point-cloud-alignment
tool. The next step was fine-tuning the alignment using Cloud Compare’s fine registration
tool. The last step was to measure the distance between the aligned point clouds.

The metrics used in the comparison were the mean distance between the point clouds,
the standard deviation of the alignment, the scale factor of the alignment, theoretical
overlap, and the root mean square (RMS).

3. Results
3.1. 2D Automatic Segmentation
3.1.1. Automatic Segmentation Results Compared with the Gold Standard
(Operator’s Segmentation)

The qualitative analysis of the results of the automatic segmentation/prediction of
a US image using the CNN model (MultiResUNet) can be seen in the example shown in
Figure 4.
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Figure 4. (a) Original US image and (b) CNN-based automatic segmentation. Arterial wall—white,
calcified plaque—light blue, soft plaque—dark blue, circulated lumen—red. (c) Masks generated
by the operator and (d) 3D US reconstructions of the scanned area, based on masks generated with
CNN-based automatic segmentation.
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3.1.2. Automatic Segmentation (MultiRes U-Net) Training Results Metrics

The average intersection over union (IoU) [20] was 80.29% for the dataset formed of
3864 2D US images from the neck region, showing the carotid arteries and the thyroid gland.
The best performances were achieved for the interior of the blood vessel, the circulated
lumen segment: an IoU of 93.09% and a Dice coefficient (Dice) [20] of 0.97. Additionally,
the accuracy, specificity, recall, and precision were calculated and are presented in Table 3.

Table 3. Prediction performance based on reference training data, where, for the given dataset and
tissue class name, tp represents the number of true positive predictions, tn represents the number of
true negative predictions, fp represents the number of false positive predictions, and fn represents
the number of false negative predictions.

Per Class Prediction’s Performance Based on Refernce Training Data.

Dataset Class
Name tp tn fp fn Accuracy Specificity Recall Precision Misclassification

Rate
f1_Score

(Dice) Avg_iou Std_
dev

Carotid
Disease
Patients

Artery
Wall 637 73 0 43 0.94290 1.00000 0.93676 1.00000 0.05710 0.96735 0.76728 0.16596

Carotid
Disease
Patients

Hard
Plaque 290 439 6 18 0.96813 0.98652 0.94156 0.97973 0.03187 0.96026 0.64748 0.19819

Carotid
Disease
Patients

Interior 622 105 2 24 0.96547 0.98131 0.96285 0.99679 0.03453 0.97953 0.93094 0.05395

Carotid
Disease
Patients

Soft
plaque 444 280 15 14 0.96149 0.94915 0.96943 0.96732 0.03851 0.96838 0.75507 0.17420

Carotid
Disease
Patients

Thyroid 187 494 11 61 0.90438 0.97822 0.75403 0.94444 0.09562 0.83857 0.85365 0.18058

Carotid
Disease
Patients

All
Classes 0.80296 0.14231

3.2. 3D US Reconstruction Compared with CT Angiography

Three-dimensional ultrasound reconstructions were performed for easier spatial ori-
entation for the operator during masks’ semiautomatic segmentation. The continuity of
the artery lumen and wall was easily verified using these reconstructions. Qualitative
analyses were performed for the 3D ultrasound reconstructions in comparison with the CT
angiography scans as the gold standard (Figure 5).

3.3. Quantitative Analysis for the 3D US Reconstruction Based on Automated Mask Segmentation

The 3D ultrasound reconstructions for scans 2, 3, and 4 for the two patients with
atherosclerosis were performed based on the automated segmentation of the ultrasound
images. For quantitative evaluation of the results of the segmentation, the 3D US recon-
structions were compared with scan 1 for the same patient. For scan 1, 3D ultrasound
reconstruction manual segmented frames were considered masks. In Table 4, the mean dis-
tances and the standard deviations (stds) for the aligned 3D objects are as calculated using
CCOSS. In Figure 6, one can visualize the distance between two aligned 3D ultrasound
reconstructions. Red-colored points are further apart and blue ones are closer.



Sensors 2023, 23, 2806 10 of 13Sensors 2023, 23, 2806 11 of 15 
 

 

 
Figure 5. (a). The 3D US reconstruction of the carotid artery circulated lumen, (a′). the centroid of 
the cross-section of the circulated lumen, and (a″): representation in the 3D space of the centroids of 
the 2D ultrasonographic section through the carotid artery. (b). The CT angiography for the carotid 
artery of the circulated lumen, (b′). the transversal section through the carotid arteries’ CT scans, 
and (b″). extracted centroids of the carotid arteries, from the CT angiography represented in the 3D 
space. 

3.3. Quantitative Analysis for the 3D US Reconstruction Based on Automated Mask 
Segmentation 

The 3D ultrasound reconstructions for scans 2, 3, and 4 for the two patients with ath-
erosclerosis were performed based on the automated segmentation of the ultrasound im-
ages. For quantitative evaluation of the results of the segmentation, the 3D US reconstruc-
tions were compared with scan 1 for the same patient. For scan 1, 3D ultrasound recon-
struction manual segmented frames were considered masks. In Table 4, the mean dis-
tances and the standard deviations (stds) for the aligned 3D objects are as calculated using 
CCOSS. In Figure 6, one can visualize the distance between two aligned 3D ultrasound 
reconstructions. Red-colored points are further apart and blue ones are closer. 

a a′ a″

b b′ b″ 

Figure 5. (a) The 3D US reconstruction of the carotid artery circulated lumen, (a′) the centroid of
the cross-section of the circulated lumen, and (a′′) representation in the 3D space of the centroids of
the 2D ultrasonographic section through the carotid artery. (b) The CT angiography for the carotid
artery of the circulated lumen, (b′) the transversal section through the carotid arteries’ CT scans, and
(b′′) extracted centroids of the carotid arteries, from the CT angiography represented in the 3D space.

Table 4. Mean distances and stds for the aligned 3D US reconstructions.

Aligned 3D
US Reconstructions

Mean
Distance

Std
Deviation Scale Theoretical

Overlap RMS

Patient 1 Scan1 + Scan2,
CCOSS-Aligned 10.9656 25.5394 0.96326 100% 25.0231

Patient 1 Scan1 + Scan3,
CCOSS-Aligned 24.5671 34.3423 0.943269 100% 16.064

Patient 1 Scan1 + Scan4,
CCOSS-Aligned 5.03695 8.62778 1.01003 100% 25.2053

Patient 2 Scan1 + Scan2,
CCOSS-Aligned

Corrupt
data

Corrupt
data

Corrupt
data

Corrupt
data

Corrupt
data

Patient 2 Scan1 + Scan3,
CCOSS-Aligned 7.62545 15.7469 0.628546 100% 50.2331

Patient 2 Scan1 + Scan4,
CCOSS-Aligned 6.07168 16.0121 0.638966 100% 18.9179
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Figure 6. Patient 1, scan 2, circulated lumen evaluated with Patient 1, scan 1, circulated lumen as
reference, aligned using CCOSS. The 100% overlapped 3D points are blue; the most distant points are
represented in red.

4. Discussion

The circulated lumen of the carotid artery had the most regulated form compared with
the masks from the other classes. More than that, along with the arterial wall, it was the
most present element in the 2D ultrasonographic images, followed by the thyroid. That
explains the highest IoU and Dice values: 0.93 and 0.97, respectively. The average scores
for all classes in our study were 0.80 for the IoU and 0.94 for the Dice. Groves et al., in their
study segmenting the carotid artery from US images in 2020, obtained an IoU value that
was a little higher and a lower Dice value: 0.88 for the IoU and 0.90 for the Dice [21]. They
obtained the highest values using a Mask R CNN AI model for the automatic segmentation.
Zhuang et al. [22] reported, for carotid intima, a 95% Dice value, using their own AI
model based on a superpixel generation algorithm and the fractal theory for automatic
segmentation; this is comparable with our result of 96%. Li et al., in 2022 [23], obtained,
for a FRDD-Net model, the best results of automated carotid plaque ultrasound image
segmentation compared with other CNN models: an average IoU of 78.18. In our study, for
the MultiResUNet model, the IoU for the soft plaque segmentation was 75.5%. A study by
Smits et al. [24] showed that agreement between manual and automated segmentation of
plaque components, lipid-rich necrotic cores (LRNCs), and calcifications was poor despite
good interscan reproducibility of both methods. In our study, with an IoU of 0.64, the
automated segmentation of the calcified plaque obtained the lowest score. The sizes of the
masks from this class and the small number of calcification masks from the dataset were
probably the main cause of this poor result.

The qualitative evaluation of the 3D US reconstructions was performed with visual
analysis comparing the shapes and number of deposits with the CT angiography and com-
paring the reconstructions based on AI-segmented masks with those manually segmented
by the operator. The reconstructions showed good quality, excepting scan 2 from patient 2,
where the shape of the vessel was irregular, probably due to a corruption of the acquired
data from the pose-reading sensor.

Despite the limitations of our study due to the small number of patients and the
reduced size of the dataset, especially for plaque classes, promising results were obtained.
Future studies are necessary to fully demonstrate the feasibility of automated segmentation
of anatomical elements for carotid-disease diagnosis. Larger datasets and their quantita-
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tive evaluations of the results via comparison with CT angiography are needed after an
improved method for alignment and scaling of obtained 3D models is found.

5. Conclusions

The present study demonstrated the potential of the MultiResUNet CNN model for
2D-ultrasound-image automated segmentation for atherosclerosis diagnosis purposes.
Using 3D ultrasound reconstructions may help operators with better spatial orientation
and evaluation of the segmentation results. Future studies are needed, using larger datasets
and quantitative evaluation methods of the results.
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