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Abstract: Pedestrian dead reckoning (PDR) is the critical component in indoor pedestrian tracking
and navigation services. While most of the recent PDR solutions exploit in-built inertial sensors in
smartphones for next step estimation, due to measurement errors and sensing drift, the accuracy
of walking direction, step detection, and step length estimation cannot be guaranteed, leading to
large accumulative tracking errors. In this paper, we propose a radar-assisted PDR scheme, called
RadarPDR, which integrates a frequency-modulation continuous-wave (FMCW) radar to assist the
inertial sensors-based PDR. We first establish a segmented wall distance calibration model to deal
with the radar ranging noise caused by irregular indoor building layouts and fuse wall distance
estimation with acceleration and azimuth signals measured by the inertial sensors of a smartphone.
We also propose a hierarchical particle filter(PF) together with an extended Kalman filter for position
and trajectory adjustment. Experiments have been conducted in practical indoor scenarios. Results
demonstrate that the proposed RadarPDR is efficient and stable and outperforms the widely used
inertial sensors-based PDR scheme.

Keywords: trajectory correction; radar ranging and correction; pedestrian dead reckoning; indoor
tracking

1. Introduction

Pedestrian dead reckoning (PDR) is a widely-used pedestrian tracking solution in
satellite signal-masking environments where global navigation satellite systems such as
the global positioning system (GPS) cannot work correctly [1–4]. The cumulative error
problem is the main obstacle for achieving high tracking accuracy in both the Inertial
Navigation Systems (INSs) and the Step-and-Heading Systems (SHSs) of PDR [5–7]. For
example, SHSs adopt the step-and-heading strategy to calculate the step vectors (step
length, heading) from the inertial sensor data and then evaluate the pedestrian trajectory
according to the step vectors in a step-by-step way. However, such recursive estimation
accumulates large errors originated from sensing drift with the increase of walking distance.
Researchers have devoted a lot of effort towards solving the problem. Their approaches can
be generally divided into two categories: (1) mining latent information to correct sensor
errors; (2) introducing auxiliary information to adjust deviated trajectory.

Latent information assisted methods utilized prior knowledge or general inference as
an extra supplement to fuse inertia step vector estimates for improving pedestrian trajectory
accuracy. In foot-mounted INSs, the zero-velocity update (ZUPT) algorithm is a workable
solution to limit long-term accumulation of errors [8–11]. The ZUPT algorithm is based on
the fact that the speed of the sole should be zero during the stance phase period, when the
sole is completely in contact with the ground. As such, the acceleration integral could be
avoided [12]. The building layout is another source of latent information closely related
to indoor positioning services, which can affect pedestrian motion characteristics. For
instance, pedestrians tend to walk in straight lines in straight corridors [13], or in one of
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several dominant directions of the buildings [14–16]. Pedestrian trajectory and heading
direction can be inferred with the help of such layout characteristics and geometries in
buildings. However, those inferences are not general enough in many indoor scenarios. For
example, a pedestrian could have walked not according to layout dominant directions for a
long time [17].

Auxiliary information assisted methods adopt location-specific information inher-
ent in the environment or created by additional technologies to adjust the PDR posi-
tioning result via a fusion algorithm. The auxiliary techniques or information include
Wi-Fi [18–23], Bluetooth [24,25], Ultra-Wideband (UWB) [26–28], visible light [17,29], and
indoor map [30–35]. Due to the azimuth effect, the procedure of information fusion and tra-
jectory calibration is a nonlinear model that can be solved by particle filtering [20,28,33,34]
and extended Kalman filter (EKF) [36–38]. The auxiliary information-assisted methods
are more applicable in practice, since they do not depend on a specific building layout.
However, most of the auxiliaries require additional hardware infrastructure, which often
has expensive deployment costs.

With miniaturization, lightweight, and low power consumption of sensors, more sen-
sors can be integrated into mobile terminals and wearable devices. For such considerations,
we have initialized experiments of using a lightweight and portable 24 GHz frequency-
modulation continuous-wave radar (FMCW radar, simplified as radar hereafter) to measure
the distance between a radar and a wall. Figure 1 presents our experiment device and
experiment scenario, where a student used a stand to connect an external yet small radar
with a smartphone. On the one hand, we recognized that such wall distance estimations
can be exploited to improve the accuracy of inertial sensor-based PDR. On the other hand,
although a radar can estimate the distance to a wall, the estimation could fluctuate severely
during pedestrian walking due to the irregular indoor layout, such as doors, windows,
corners, obstructions, etc. Therefore, we need to first calibrate wall distance estimations
from a radar and next fuse such estimations to adjust step positions.

ranging 

direction

heading 

direction

smartphone

D2G radar 

module

36mm

45mm

Figure 1. The FMCW radar and experiment scenario.

In this paper, we propose a Radar-assisted Pedestrian Dead Reckoning scheme, called
RadarPDR, for indoor tracking, which employs an external radar for trajectory adjustment.
To the best our knowledge, we are the first to use and experiment with an FMCW radar
for indoor pedestrian tracking. In RadarPDR, we first propose a segmented wall distance
calibration model, which exploits the space-time correlation of neighbor points to deal with
the radar ranging noise caused by irregular indoor building layouts. We next design a
hierarchical particle filter together with an extended Kalman filter to fuse calibrated wall
distances with acceleration, angular velocity, and azimuth information to adjust pedestrian
step positions. We conduct field experiments in typical indoor scenarios. Results validate
the effectiveness of our RadarPDR in terms of lower tracking errors compared with the
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widely used inertial sensor-based PDR scheme. Our main contributions can be summarized
as follows:

• Employ an FMCW ranging radar to assist inertial PDR for indoor pedestrian tracking;
• Correct distance measurement errors caused by concave/convex wall structure in

actual indoor environments;
• Fuse corrected wall distance, pedestrian step length, and head direction for pedestrian

trajectory adjustment.

2. Related Works

Radio-frequency (RF) is the most common auxiliary technology, such as Wi-Fi and Blue-
tooth, to assist PDR indoor tracking. Some research has proposed to integrate fingerprinting-
based localization with PDR [18–21,39]. For example, Shi et al. [19] use a weighted K-
Nearest Neighbor algorithm to obtain Wi-Fi RSS (received signal strength) fingerprinting
locations, which are fused with PDR locations via a simple weighted average. Some re-
searchers propose to fuse the lidar data and inertial sensor data to solve the accumulative
error problem in localization [23,39–41]. Liu et al. [39] develop a radio receiver to estimate
the Doppler speed and range information from digital terrestrial multimedia broadcast-
ing (DTMB) signals and carry out an extended Kalman filter (EKF) algorithm to fuse the
information for the PDR. Li et al. [20] propose to construct a radio map from pedestrian
trajectories for RSS fingerprinting, while adjusting trajectory with the aid of Wi-Fi RSS
fingerprinting results via selective particle filtering. These methods need to construct a
radio map for fingerprnting either by site survey or crowdsourced trajectories.

Some research fuses the trilateral localization method with PDR [22,33,39,40,42–44].
Treating iBeacon as an auxiliary, Xia et al. [33] calculate distances between pedestrian and
bluetooth anchor nodes based on an RSS path loss model to estimate pedestrian locations
by the trilateration method. These locations are fused with PDR results via a particle filter.
Tiwari and kumar Jain [22] propose a Heron-bilateration-based position determination
(HBPD) technique to locate a mobile device with a Wi-Fi access point (AP). They also propose
a hybrid indoor localization system (HILS) to integrate the HBPD technique with the PDR
method. These methods require enough anchor points with known locations. Xu et al. [34]
propose an enhanced particle filter that fuses smartphone built-in sensors’ outputs and
the distances in between smartphones. Tao et al. [42] continuously collect light intensity
values from smartphones, which are used to detect light source location for PDR correction.
De Cock et al. [43] present a smartphone-based multi-floor indoor localization system and
Asraf et al. [45] propose a deep-learning PDR framework based on smartphones’ inertial
sensors. Tian et al. [28] propose a PF-based fusion algorithm to correct position error due to
sensor drift in a PDR-only system. Compared to the path loss model, these methods have
higher distance estimation accuracy. However, almost all RF-based auxiliary technologies
require pre-deployed hardware infrastructures.

Indoor layout is another piece of frequently used auxiliary information, mainly working
in two ways: deterministic trajectory matching [30–32] and probabilistic map model [33–35].
Lan and Shih [31] correct the drift error of the gyroscope by comparing the geometric
similarity between a PDR trajectory and an indoor map. Nguyen-Huu et al. [32] detect a
potential landmark based on turning behaviors in corners or door areas and then update
the current position with the landmark position for meeting some physical constraints.
Zhou et al. [40] use the conditional random field (CRF) model to estimate the optimal
landmark sequence passed by pedestrians with the help of a pseudo indoor plan for PDR
position correction. On the other hand, probabilistic map models usually occur in PF-based
fusion schemes [33,34]. In these methods, an indoor environment is firstly divided into
reachable and unreachable areas, which serve as particle weights in the particle filtering
process. For example, Koroglu et al. [35] use a continuous probability distribution function
to convert a floor plan into a likelihood heat map for weighting particles. However, these
methods require a prior knowledge of indoor layouts.
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For ranging-assisted indoor PDR, many research studies calculate distances by com-
municating with surrounding Wi-Fi access points and then integrate the distance mea-
surements with inertial data to improve positioning accuracy [34,46–49]. For example,
Sun et al. [46] perform ranging based on Wi-Fi fine timing measurement technology and fur-
ther calculate position through their improved trilateral positioning algorithm. The ranging-
based positions are eventually fused with inertial PDR results under an EKF framework.
Other research attempts to integrate active ranging devices. Sadruddin et al. [50] integrate
inertial PDR as an odometry into a body-mounted laser scanner platform for simultaneous
localization and mapping, which also enables more accurate pedestrian localization. Mao
et al. [51] use a smartphone to measure distances to a surrounding wall. Wu et al. [48]
recognize the steady-heading and non-steady-heading human activities to optimize the PDR
without any prior knowledge and Zhang et al. [47] use the Wavelet-CNN deep learning
network to train the smartphones’ built-in MEMS sensor data for human activity recognition.

This paper utilizes an external FMCW radar to assist PDR tracking. Since such a
radar is entirely a self-transmitting and self-receiving device, our RadarPDR scheme can
be applied to environments without prior indoor layouts and does not need additional
expensive hardware infrastructure.

3. Problem Description

We investigate how to use a ranging radar to adjust pedestrian trajectory for indoor
tracking. As illustrated in Figure 2, a user holds a smartphone with an FMCW radar, and
a sequence of steps represents his trajectory. Let sn = (hn, xn, yn) denote the pedestrian
pose at the n-th step, where hn is the heading orientation and (xn, yn) the step coordinate.
The radar is used to measure the distance between the user and a wall. The sampling
rate of radar is 10 Hz, which is higher than the pedestrian walking speed. Thus, between
two steps, we can have M wall distance measurements, denoted by dn,1, . . . , dn,M. Each
observation dn,m links an observation point and a wall point. The observation point is the
pedestrian pose when this observation occurs. We assume that M observation points are
evenly distributed within one step. The wall point is a virtual point on the wall surface,
and the distance between the two points is dn,m.

Figure 2. Problem description. The user trajectory is represented by a sequence of pedestrian poses.
Each pose sn is denoted as a tuple (hn, xn, yn) with hn the heading orientation and (xn, yn) the step
coordinate. The wall distance between adjacent steps establishes the positional relationship between
pedestrian pose and the surrounding walls. Each wall distance dn,m links an observation point on
the trajectory and a wall point on the wall surface. The wall distance observations suffer from large
fluctuations due to corner and barrier (e.g., pillar or door) zones on the wall.
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The proposed RadarPDR adopts a particle filtering framework for trajectory adjust-
ment. Although the principle is straightforward, its implementation faces many practical
challenges: From our field experiences, if a user walks strictly in parallel with a flat wall,
distance measurements of an FMCW radar have high accuracy, with ranging errors often
smaller than 0.2 m. However, such ideal cases are not often in practical indoor environ-
ments. On the one hand, a user may not always walk along with a strict line, and some
turning steps are not unexpected. Sometimes, other people may pass across the user and a
wall, leading to interferences in distance measurements. On the other hand, it is not easy
to find a long flat wall in many buildings, as indoor walls often have some concave and
convex structures, such as recessing doorways or protruding pillars. Furthermore, when
passing by a corner, wall distance measurements have even larger fluctuations, which often
leads to poor positional information for failed trajectory adjustment.

Figure 2 plots the distance measurements of a trajectory in our field experiments. On
the one hand, it can be seen that irregular wall structures can cause some distance pulses,
and wall corners can cause large distance variations. On the other hand, it can be seen that,
besides such distance pulses and large variations, some distance measurements can remain
relatively stable in a short walking interval. These observations inspire us to design an
adaptive scheme to enforce trajectory adjustment: That is, the pedestrian pose sn is subject
to adjustment only when the wall distance dn,m contains sufficient positional information.
Otherwise, we accept the pose estimation from the underlying dead reckoning system.
Now, the research questions can be summarized as follows:

• When to enforce pedestrian pose adjustment?
• How to correct measurement for wall distance dn,m?
• How to adjust a pedestrian pose sn based on dn,m?

We next present our solution RadarPDR to these questions.

4. The Proposed RadarPDR Scheme
4.1. Overview

Figure 3 presents the system diagram of our RadarPDR scheme, which consists of
four main modules: (i) data sensing and preprocessing; (ii) inertial PDR, (iii) wall model
calibration; (iv) multi-source information fusion.

As sources, accelerometer, gyroscope, and radar continuously yield raw observation
data according to their acquisition frequency. The data preprocessing module cuts these
data streams into step-wise pieces implemented by peak detection [52] based on acceleration
observations. Once a new step is completed, these sorts of observations will be distributed
into the following processing modules.

Following standard procedures, the inertial PDR module works to estimate step length
and heading increment using inertial sensor observations. Step length is estimated by the
Weinberg algorithm [53] based on the acceleration series; heading increment is computed
based on the azimuth observations from the gyroscope-based orientation sensor embedded
in our Android smartphone. The wall model calibration module aims to tackle the corner
and barrier problems per our discussion in the previous section. In contrast, the multi-
source information fusion module tries to integrate all available information and finally
estimates an accurate pedestrian trajectory.

4.2. Wall Model Calibration

This module focuses on two realistic challenges in the wall model: the corner problem
and the barrier problem. We assign an operation indicator for each step based on corner
detection, which works to tackle the adjustment failure in the corner zone by an adaptive
operation. Moreover, a wall distance correction algorithm is developed to handle the outlier
issue due to walls’ barrier structures.
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Figure 3. System diagram.

4.2.1. Operation Indicator Assignment

The proposed scheme is based on a flat-wall observation that the wall is approximately
flat during several adjacent steps. A wall parameter tuple (α, β) with slope α the slope and
β the intercept can represent the wall model. Long trajectories can be related to segmented
flat walls with several corners. For example, Figure 2 depicts a trajectory beside a wall
consisting of two flat-segments and one corner. In the non-corner zone, each flat-segment
needs independent parameter initialization and an updating procedure. In addition, wall
distances obtained in the corner zone show significant fluctuation. In short, a corner and
non-corner zone need different operations in the following modules. Therefore, we generate
an operation indicator for every step based on corner detection. In RadarPDR, each step
belongs to one of three states: operate, suspend, and reset. The operation of each state
is as follows: (i) trajectory adjustment and wall parameter updating; (ii) dead reckoning;
(iii) dead reckoning and wall parameter initialization.

The indicator assignment principle is as follows: Firstly, if the heading increment θn is
more significant than an angle threshold Tθ , then n-step is judged to be in a corner zone,
and its corresponding indicator in is assigned to suspend; otherwise we think that n-step
is in a flat-segment zone, and it needs further judgment. Then, if n-step belongs to the
beginning Ni steps of the flat-segment, in is assigned to reset; otherwise, in is set to operate.
Figure 4 presents wall distance observations, heading orientations, and corresponding
indicators of several steps around a corner, where Ni = 1 and Tθ = 25◦. The Tθ is chosen
according to our experiences and has been proven practicable in our experiments to detect
whether a pedestrian has cornered.
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1 5 982 3 4 6 10 11 1271 5 982 3 4 6 10 11 127

OperateOperate SuspendSuspend ResetReset

Figure 4. Illustration of the operation indicator assignment strategy. The plots show wall distance
observations (above) and heading orientations (below) of several steps around a corner in a typical
trajectory. Suspend is assigned to corner steps where heading increment θn > threshold Tθ. Reset is
assigned to the beginning Ni steps of each non-corner segment. Other steps are indicated as Operate state.

4.2.2. Wall Distance Correction

In this paper, barrier refers to the convex and concave structures embedded in a flat
wall, such as recessing doorways or protruding pillars. These unexpected barriers violate
the flat-wall model, yielding noises in wall observations. Figure 5 depicts a series of noisy
wall distance data measured in a field experiment. We classify these noises into two
categories: (i) random noise; (ii) impulse noise. The random noise comes from inherent
radar ranging error, just like many other sensors. It has a relatively small amplitude; the
impulse noises come from internal signal fluctuation or wall barrier structures, presenting a
much larger amplitude than random noise. Our distance correction algorithm discussed in
this subsection aims to handle both random and impulse noises to ensure that the flat-wall
model is well satisfied.

Firstly, we discuss the random noise, which can be approximated to Gaussian white
noise. To simplify the description, we assume the number of single-step observations
M = 1 and simplify the notation of the single observation dn,1 at the n-th step to dn. The
general situation (M > 1) will be explained later. Let νn and qn denote the change rate of dn
and the process noise. Let distn and rn denote the wall distance observation and the random
noise following a Gaussian distribution with zero mean and Rn variance, respectively. The
random noise can be corrected by a Kalman filter (KF) with the following state-space model:

Prediction:

dn = dn−1 + νn (1)

νn = νn−1 + qn (2)

Observation:

distn = dn + rn (3)

The prediction functions describe the state-transition procedure of wall distance and its
change rate, and they are designed by the fact that pedestrians tend to walk in a straight line
or change their directions slowly in most cases. When a pedestrian walks in a straight line,
the wall distance change rate νn remains unchanged, while the process noise qn ∼ N(0, Qn)
gives a fuzzy range for the direction changing case.
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Considering the impulse noise denoted by In, the above observation function is
rewritten as

distn = dn + rn + In (4)

Due to the lack of precise statistics of In, the impulse noise cannot be eliminated easily
by general Kalman filtering as the random noise is. Thus, we design a two-stage correction
strategy. That is, for each observation distn, we judge whether it is an impulse noise firstly,
and then select the correction method correspondingly.

The judgment stage is based on a threshold method imposed on the wall distance
change rate of νn. On the one hand, a normal walking trajectory can be regarded as a
continuous curve with a relatively large curvature radius, usually a few meters, except
in the corner zone, which leads to relatively small νn in inlier observations. On the other
hand, a much larger amplitude of impulse noise or outlier observation makes the wall
distance change rate estimation ν̂n|n severely deviate its normal range. In short, there is a
huge margin between the change rate of inlier wall distance and that of the outlier one, as
shown in Figure 6. Therefore, we define the outlier detection criterion as

ν̂n|n ≥ Tν (5)

where Tν is the upper limit of the change rate of the inlier wall distance selected in the margin.

Random noise

Impulse noise

Random noise

Impulse noise

Figure 5. Classification of wall distance observation noise. The plot shows wall distance observations
in a straight walking test along a parallel wall. The random noise with small amplitude comes
from inherent radar ranging error, while the impulse noise with larger amplitude comes from signal
fluctuation or wall barrier structures.
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Figure 6. Judgment margin. The plot shows the amplitude of wall distance change rate ν̂n|n estimated
on the wall distance observations in Figure 5. The amplitudes of outlier observations are much greater
than the inlier ones, thus the judgment threshold Tν is easily selected from the margin area.

The correction stage adopts the KF solution with the state-space model given by
Equations (1)–(3), if there is no outlier. Otherwise, it will switch to a modified KF version.
In our problem, a KF’s observation is much less reliable than its prediction when an outlier
occurs. The prediction is close to the ground truth in a short time due to the slow-change
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feature of wall distance change rate. Thus, we drop the noisy observation directly and use
modified prediction functions to obtain wall distance correction. The modification lies in
the fact that the trend instead of the single estimation of νn is used here. The final correction
is summarized as

d̄n =

{
d̂n|n, if ν̂n|n < Tν (inlier case),
d̂n−1|n−1 + ν̃n, if ν̂n|n ≥ Tν (outlier case),

(6)

where ν̃n denotes the trend of a few recent distances at the n-th step, calculated by an
exponential average of wall distance change rate corrections.

The proposed wall distance correction algorithm in a general case is summarized in
Algorithm 1. Note that the judgment-correction procedure is just simply repeated M times
according to the order of occurring, when we have M observations in one step.

Algorithm 1 Wall distance correction algorithm

Input: {distn,m}n=1:N,m=1:M : wall distance observations
Output: {d̄n,m}n=1:N,m=1:M : wall distance corrections

for each step n ∈ 1, 2, . . . N do
for each observation m ∈ 1, 2, . . . M do

1. Get state estimations by standard Kalman filtering:
d̂n,m|m, ν̂n,m|m = KF (distn,m)

2. Detect outlier and compute correction:
if ν̂n,m|m < Tν then

d̄n,m = d̂n,m|m, ν̄n,m = ν̂n,m|m
else

d̄n,m = d̂n,m−1|m−1 + ν̃n,m, ν̄n,m = ν̃n,m
end if
3. Update trend:

ν̃n,m+1 = γν̃n,m + (1− γ)ν̄n,m
end for

end for

4.3. Multi-Source Information Fusion

After processing by the upper modules, for each step, we now have information including
step length ln, heading increment θn and wall distance dn,m. We next fuse them to estimate
pedestrian pose sn. Based on the Bayes filtering framework, we define a motion model and an
observation model to output their relation. The motion model presents the recurrence relation
of pedestrian pose sn with step length ln and heading increment θn as follows:

sn = f (sn−1, ln, θn) =

 hn−1 + θn
xn−1 + ln sin hn
yn−1 + ln cos hn

. (7)

As shown in Figure 7, given the pedestrian pose sn, the ranging direction rn and the wall
distance dn, the wall point (xw

n , yw
n ) is represented as

xw
n = xn + dn sin rn, yw

n = yn + dn cos rn. (8)

Combining the wall model y = αnx + βn and the wall point (xw
n , yw

n ), dn is represented as

yn + dn cos rn = αn(xn + dn sin rn) + βn, (9)

dn =
αnxn + βn − yn

cos rn − αn sin rn
. (10)

Note that the ranging direction is always perpendicular to the pedestrian heading in our
device setup. To replace rn with the heading direction hn under the relationship hn = rn − π

2 ,
dn is then represented as
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dn =
αnxn + βn − yn

cos(hn +
π
2 )− αn sin(hn +

π
2 )

=
yn − αnxn − βn

sin hn + αn cos hn
. (11)

In short, the observation model gives wall distance dn,m at observation point sn,m with
wall parameters on as follows:

dn,m = g(sn,m, on) =
yn,m − αnxn,m − βn

sin hn + αn cos hn
. (12)

Now, it can be summarized that ln, θn, dn,m are the given information inherited from the
upper modules, while sn or sn,m, on are the unknown states to be estimated in this module
(note that sn = sn,1). Furthermore, in the observation model, if sn,m serves as the state
to be estimated, then on needs to be the known parameter and vice versa. Therefore, we
adopt a PF-EKF architecture to solve this dual-estimation problem, where PF takes charge
of trajectory adjustment for sn, while EKF is in charge of wall parameter estimation for on.

sn = ( hn, xn, yn)

hn
rn

dn

y = αn x + βn

x

y

h

sn+1

sn-1

( , )w w

n nx y

Figure 7. Illustration of the observation model. The wall distance dn is the straight-line distance from
the observation point sn = (hn, xn, yn) to the wall point (xw

n , yw
n ) along ranging direction rn.

4.3.1. Trajectory Adjustment

The basic idea of PF-based trajectory adjustment [54] is as follows: During each round
of iteration, PF makes a group of guesses, known as particles, around the unreliable state
estimated by the motion model. This is the particle sampling procedure. Some of the
particles are positive adjustments, closer to the ground truth, while others are negative
since they have large deviations. We propose a judgment procedure to weight the particles.
Finally, another sampling procedure is implemented on the weighted particles. Those with
high weights are more likely to be selected, leading to an improvement in pedestrians’ pose
estimation. We next explain these three steps in details below.

The sampling procedure is performed on step length ln and heading increment θn
from which the errors of the pose originate. We assume that the errors of ln and θn follow
Gaussian distribution with zero mean and σl , σθ standard deviation, respectively:

δl[k]n ∼ N(0, σ2
l ), δθ

[k]
n ∼ N(0, σ2

θ ) (13)

Then, the corrections are represented by

l[k]n = ln − δl[k]n , θ
[k]
n = θn − δθ

[k]
n (14)

where n is the step index and k is the particle index. According to the motion model,
particle pose is reckoned as

s[k]n =
[

h[k]n , x[k]n , y[k]n

]T
= f (sn−1, l[k]n , θ

[k]
n ). (15)

K particles are generated within one step by repeating the above procedure.
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The essence of weight calculation is to judge the reliability of particles. Each particle
can obtain its wall distance prediction d̂[k]n,m by feeding its observation point s[k]n,m and
wall parameters to the observation model. At the same time, a distance observation dn,m

obtained by radar is available. By calculating the proximity between d̂[k]n,m and dn,m, we can

obtain the particle weight w[k]
n,m. This procedure is formulated as

d̂[k]n,m = g(s[k]n,m, on) (16)

w[k]
n,m =

1√
2πSn

exp
−(dn,m − d̂[k]n,m)

2

2Sn
(17)

where Sn is the variance of distance observation residual |dn,m − d̂[k]n,m| at the n-step and
on is the wall parameter, and both of them are calculated in the EKF part. The weight
w[k]

n,m considers the distance observation residual following a Gaussian distribution with
zero mean and Sn variance, a larger residual meaning a lower weight. When we have M
observations in the n-th step, we will obtain M weights for one particle. Then, the weight
of the k-th particle at the n-th step is calculated by an average of these M weights:

w[k]
n =

1
M

M

∑
m=1

w[k]
n,m (18)

Resampling is a two-sided procedure which aims to ensure that higher weights get
resampled more while maintaining particle diversity. We adopt the systematic resampling
algorithm introduced in [55]. After the resampling procedure, the final estimated pose state
is obtained by averaging the resampled particles.

4.3.2. Wall Parameters Estimation

Due to the absence of a prior map information, the wall parameters necessary for
particle weighting are unknown to us initially. The proposed wall parameter estimation
algorithm consists of two phases: the initialization phase and the updating phase. The
initialization phase happens at the beginning Ni steps of each flat-segment, while the
updating phase happens at the remaining steps of that flat-segment.

We first introduce the initialization phase. Although the EKF algorithm is insensitive
to initial values, wall parameters from random initialization may deviate from the ground
truth a lot, which could distort the PF weighting procedure. To deal with such issues,
we design an initialization strategy based on the flat-wall discovery as follows: Given an
observation point (hn, xn,m, yn,m) and wall distance observation dn,m, its corresponding
wall point (xw

n,m, yw
n,m) can be calculated by the following geometric relationship:

xw
n,m = xn,m + dn,m cos(hn) (19)

yw
n,m = yn,m − dn,m sin(hn). (20)

The wall parameters are estimated by using the least-square method with all wall points
within this phase. In this phase, pedestrian poses and observation points are estimated by
dead reckoning via the motion model, since the PF-EKF architecture does not work without
wall parameters.

We realize a step-by-step online estimation for wall parameters via extended Kalman
filtering with pedestrian pose and wall distance observations during the updating phase.
Let on = [αn, βn] denote the wall parameters at the n-th step. According to the flat-wall
model, on changes little in several neighboring steps. We thus have the following state
transition function:

on = Fnon−1 + wn, (21)
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where Fn is a two-dimensional identity matrix. The observation function is exactly the
observation model given by Equation (12), rewritten as

dn = g(sn; on) + vn. (22)

Note that here sn is considered as a known parameter from the PF. wn and vn are inde-
pendent Gaussian noise processes with zero mean and Wn and Vn covariance
matrices, respectively.

The extended KF utilizes only the estimated state ôn−1|n−1 of the previous step and
the current observation dn to estimate the current state ôn|n, and the update procedures at
the n-th step are formulated below:

ôn|n−1 = Fn ôn−1|n−1 (23)

Pn|n−1 = FnPn−1|n−1FT
n + Wn (24)

Sn = GnPn|n−1GT
n + Vn (25)

Kn = Pn|n−1GT
n S−1

n (26)

ôn|n = x̂n|n−1 + Kn(dn − g(sn; ôn|n−1)) (27)

Pn|n = (I − KnGn)Pn|n−1 (28)

where Sn is the distance observation residual. Gn is the observation matrix that is equal to
the Jacobi matrix of g(sn; on)|on=ôn|n−1

,

Gn =
[
(βn−yn) cos hn−xn sin hn

D2
1
D

]
|on=ôn|n−1

(29)

where D = sin hn + αn cos hn. I is an identity matrix. Just like the processing style in wall
distance correction, we repeat the update procedure M times according to the occurring
order of these M wall distance observations at one step.

In the PF part, wall parameters must ensure pedestrian poses, while this is the exact
opposite in the EKF part. Consequently, these two parts are concatenated to boost each other,
as illustrated in Figure 8. At the iteration of n-step, the step length, heading increment, wall
distance observations from previous modules and wall parameters, and residual covariance
from the EKF are fed to the PF, which outputs pedestrian pose estimation after the three
procedures of new particles’ sampling, weighting, and resampling. Then, the pose estimated
by PF and wall distance observations are fed into the EKF, which outputs updated wall
parameters. The complete trajectory adjustment algorithm is summarized in Algorithm 2.

Resampling
Pedestrian Pose

sn = (hn, xn, yn)

Wall Distances

{dn, m}m=1:M

Wall Parameters

Prediction

Wall Parameters

Update

Wall 

Parameters 

(αn, βn)

Errors Sampling

Errors Correction

Pose Particles 

Reckoning

Errors Sampling

Errors Correction

Pose Particles 

Reckoning

Weight Calculation

Wall Distance 

Prediction

Weight Calculation

Wall Distance 

Prediction

Step Length

ln

Heading 

Increment

θn

Step Length

ln

Heading 

Increment

θn

EKF

PF

Residual 

Covariance

Sn

Figure 8. Flow chart of the PF-EKF algorithm.
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Algorithm 2 Trajectory adjustment algorithm

Input: {ln}N
n=1: step lengths,

{θn}N
n=1: heading increments,

{dn,m}n=1:N,m=1:M: wall distance,
{in}N

n=1 : indicators
Output: {sn = (hn, xn, yn)}n=1:N : pose estimations

1: for each step n ∈ 1, 2, . . . N do
2: if the indicator in is operate then
3: for each particle k ∈ 1, 2 . . . , K do

4: Get its pose s[k]n according to Equations (13)–(15)

5: Get its weight w[k]
n according to Equations (16)–(18)

6: end for
7: Perform Resampling
8: Get pose estimation sn by average of resampled particles
9: Update wall parameters on according to Equations (21)–(29)

10: end if
11: if the indicator in is suspend then
12: Get pose estimation sn by dead reckoning motion model
13: end if
14: if the indicator in is reset then
15: Get pose estimation sn by dead reckoning motion model
16: Initialize wall parameters
17: end if
18: end for

5. Experiments
5.1. Experiment Setup

We used Distance2Go (D2G), an FMCW radar module by Infineon, to acquire wall
distances. The radar is powered by a highly integrated transceiver BGT24MTR11, operating
at 24–24.2 GHz. The module is connected to a smartphone via a USB cable, ensuring
data exchange and power supply. We developed our data acquisition app running on a
smartphone to ensure that the radar module and the other two embedded sensors are
operated in a synchronized way when collecting measurements. The sampling rate for
wall distance is 10 Hz. The inertial data are obtained from an accelerometer and gyroscope
embedded in our Honor 8 smartphone with a sampling rate at 20 Hz.

As shown in Figure 1, we adopted a supporting stand to fix the D2G module on a
smartphone, keeping a constant 90◦ angle between heading and ranging direction. The
experiments were conducted on the fifth floor of a classroom building at our university.
We designed two different routes, as shown in Figure 9, to experiment our scheme. The
L-shape and Z-shape route are combinations of straight lines and right angles, and their
lengths are 192 m and 136.8 m, respectively. A student holding the device repeats each
route 20 times.

Figure 9. Experiment environment.
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To verify the effectiveness of RadarPDR scheme and its modules, we design the follow-
ing comparison schemes:

• PurePDR: The traditional inertial pedestrian dead-reckoning, using the motion model
to estimate pedestrian trajectory;

• RadarPDR w/o DC: The RadarPDR scheme without the wall distance correction
(DC) module;

• RadarPDR w/o PU: The RadarPDR scheme without the wall parameter updating
(PU) module.

5.2. Wall Distance Results

In order to test the effectiveness of the wall distance correction module, we apply
two different algorithms to correct wall distance observations on 20 trajectories of each
route, including DC in RadarPDR and KF in RadarPDR w/o DC. Specifically, DC is the
completed method summarized in Algorithm 1 while KF is the standard Kalman filter
given by Equations (1)–(3) without the proposed outlier correction stage. Their parameters
are set as: process noise variance Qn = 0.012, observation noise variance Rn = 0.22, wall
distance change rate limit Tν = 0.01, and smoothing factor γ = 0.9. For KF, the process
noise variance Qn is the same as DC, and the observation noise variance Rn = 22, which
compensates for its weakness in handling outliers.

Since the PDR tracking is a recursive process, a small number of wall distance outliers
can have a big impact on the whole trajectory position estimates. Therefore, the error
range is more representative of an error correction algorithm’s contribution to the whole
system. Figure 10 presents wall distance error range by different algorithms. Although the
observation noise setting of KF is much larger than DC, its correction effect is still limited,
and the noise range by our scheme has been reduced by 30.7% and 40.7%, in the L-shape
and Z-shape route, respectively. DC’s correction performance is even better, reducing the
noise by 93.2% and 96.6% in the two routes.

Figure 10. Wall distance error range of all the testing trajectories on the L-shape and the Z-shape routes.

5.3. Wall Parameters’ Results

To demonstrate the effectiveness of the wall parameter estimation module, we com-
pare the parameter estimation results of the RadarPDR and RadarPDR w/o PU scheme.
The RadarPDR has an initialization phase and an updating phase, whose parameters are
set as: the number of initialization steps Ni = 4, the process noise of wall estimation
Wn = [[0.01, 0], [0, 0.1]]T , and the observation noise Vn = 2.4. The RadarPDR w/o PU has
only the initialization phase with the same parameter setting as RadarPDR. Since the range
of wall parameter variables is infinite, the estimation error is not workable as an evaluation
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criterion here. We define the wall distance prediction error (WDPE) to evaluate the estimation
performance by

WDPE =
M

∑
m=1

g(sg
n,m, on)− dg

n,m (30)

where on is the wall parameter estimation at the n-th step; sg
n,m, dg

n,m are the ground truth of
the m-th observation point and wall distance at the n-th step.

Figure 11 shows the variation trend of the WDPE as the pedestrian moves. According
to the observation model, the wall parameter estimation performance depends on wall
distance observation and pedestrian pose estimation. After the wall distance correction, its
noise level on the entire trajectory is almost the same, while the pedestrian pose estimations
have a cumulative error effect. Therefore, the variation trend of WDPE along with the
trajectory mainly depends on the cumulative error effect.

(a)

(b)

Figure 11. Wall distance prediction error. (a) average WDPE of all the testing trajectories on the
L-shape route; (b) average WDPE of all the testing trajectories on the Z-shape route.

Firstly, we analyze the distribution characteristics of the initial WDPE of each flat-
segment in a trajectory. The wall parameters from the initialization phase calculate the
initial WDPEs. Thus, they are almost the same in the RadarPDR and RadarPDR w/o PU
scheme. The initial WDPE in the first flat-segment is relatively small, while quite larger in
the next flat-segments. This is because the pedestrian pose errors are small at the beginning
of the trajectory and gradually increase as the walking distance increases, resulting in a
large wall parameter re-initialization error after the corner zone. Then, we compare the
WDPE of different schemes in each segment. In the first flat-segment of the L-shape and
Z-shape route, the amplitude of WDPE in RadarPDR is slightly larger than that in RadarPDR
w/o PU, which can be attributed to the cumulative error effect of pedestrian pose used
in EKF updating. In the next flat-segments, however, the WDPE converges to a small
amplitude in the RadarPDR but can only change linearly with a flawed initial direction
in the RadarPDR w/o PU. This is because RadarPDR considers more observations for wall
parameter updating, which is able to reduce the error in the initialization phase as only a
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few initial observations are used. Furthermore, the initial direction in the RadarPDR w/o
PU can easily deviate from ground truth according to Figure 11.

5.4. Trajectory Adjustment Results

In this experiment, we compare the performance of four different trajectory estima-
tion/correction schemes. The PurePDR scheme only uses the motion model for trajectory
estimation. Moreover, the rest are the proposed RadarPDR and its variants. They have
the same parameters setting in the PF part: the number of particles K = 128, the num-
ber of initialization steps Ni = 4, the error scale of step length σl = 0.4 and heading
increment σθ = 0.2.

Figure 12 plots the adjusted trajectory results and their corresponding CDFs for L-
shape and Z-shape routes. Compared with the PurePDR scheme, the RadarPDR w/o DC
produces a comparable average localization error (ALE) in the L-shape route and even
performs much worse in the Z-shape trajectory, which can be attributed to the large wall
distance error deactivating the trajectory adjustment procedure. This observation also
verifies the importance of the DC module. On the other hand, the RadarPDR w/o PU can
achieve smaller ALE on both the L-shape and Z-shape routes. Moreover, the complete
RadarPDR has the best trajectory adjustment performance, reducing its ALE by 48.1% in
the L-shape route and 41.1% in the Z-shape route. It is also worth mentioning that the
PurePDR overtakes the RadarPDR at the point (13.5 m, 0.98) in Figure 12d, resulting from
one failed trajectory adjustment in the 20 tests on the Z-shape route. Combined with the
analysis of WDPE in the previous section, this failure should be attributed to large initial
wall parameter error, which makes the EKF estimation process divergent and leads to the
wrong trajectory correction direction.

150 100 50 0 50 100
x (m)

125

100

75

50

25

0

y 
(m

)

Groundtruth
PurePDR
RadarPDR w/o DC
RadarPDR w/o PU
RadarPDR

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
Localization error (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

(C
D

F)

PurePDR
RadarPDR w/o DC
RadarPDR w/o PU
RadarPDR

(b)

0 20 40 60 80 100
x (m)

50

40

30

20

10

0

y 
(m

)

Groundtruth
PurePDR
RadarPDR w/o DC
RadarPDR w/o PU
RadarPDR

(c)

0 2 4 6 8 10 12 14 16 18 20 22 24
Localization error (m)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

(C
D

F)

PurePDR
RadarPDR w/o DC
RadarPDR w/o PU
RadarPDR

(d)

Figure 12. Trajectory and its CDF of ALE. (a) average trajectory of all the tests on the L-shape route;
(b) the localization error CDF of all the testing trajectories on the L-shape route; (c) average trajectory
of all the tests on the Z-shape route; (d) the localization error CDF of all the testing trajectories on the
Z-shape route.

6. Conclusions

In this paper, we have reported our initial attempts of applying an external FMCW
radar to assist PDR-based indoor pedestrian tracking. Although such a ranging radar can
measure wall distances, its measurements during walking could come with large errors
due to complicated indoor layouts and diverse trajectory types. The proposed RadarPDR
deploys two algorithms addressing wall distance correction and trajectory adjustment.
The trajectory adjustment algorithm fuses step lengths and heading increments from
accelerometers and gyroscopes with wall distance from the radar, where the EKF takes
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charge of wall parameter estimation based on wall distance observations and pedestrian
locations. Simultaneously, the PF utilizes outputs of the EKF and distance observations to
adjust pedestrian trajectory. Our field experiments have validated the effectiveness of the
proposed RadarPDR in terms of higher tracking accuracy.
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