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Abstract: An event of sensor faults in sensor networks deployed in structures might result in
the degradation of the structural health monitoring system and lead to difficulties in structural
condition assessment. Reconstruction techniques of the data for missing sensor channels were
widely adopted to restore a dataset from all sensor channels. In this study, a recurrent neural
network (RNN) model combined with external feedback is proposed to enhance the accuracy and
effectiveness of sensor data reconstruction for measuring the dynamic responses of structures. The
model utilizes spatial correlation rather than spatiotemporal correlation by explicitly feeding the
previously reconstructed time series of defective sensor channels back to the input dataset. Because of
the nature of spatial correlation, the proposed method generates robust and precise results regardless
of the hyperparameters set in the RNN model. To verify the performance of the proposed method,
simple RNN, long short-term memory, and gated recurrent unit models were trained using the
acceleration datasets obtained from laboratory-scaled three- and six-story shear building frames.

Keywords: structural health monitoring; sensor data reconstruction; machine learning; recurrent
neural network; external feedback

1. Introduction

Structural health monitoring (SHM) systems typically include sensors and data ac-
quisition systems and are, thus, referred to as sensor-based monitoring systems. Because
monitoring systems increasingly rely on sensor technology, effective management of sensor
networks has become important [1,2]. However, sensor faults are frequent and inevitable
in real systems owing to problems, such as noise, degradation, and harsh environmental
conditions [3,4]. In particular, the sensors installed in buildings are constituted of various
elements, such as structures, facilities, and exterior materials, that are difficult to maintain
and repair [5,6]. Data loss from the failed sensor channels, which results in sparse sensor
networks [7], significantly degrades the structural condition assessment and causes errors
in the assessment of the structural health status [8,9]. Data recovery of defective sensor
channels is crucial not only for operating sensor networks but also for managing the quality
of the SHM [10,11].

Over the last decade, the recovery of missing data caused by the failure of parts
of the sensor network deployed in structures has been extensively studied [12–14]. If
sensors belong to dense sensor networks deployed in a structure, each sensor shares a
certain level of correlation with the others [15]. The reconstruction of defective sensor
data utilizes this correlation by analyzing the data measured by different sensors [16]. The
correlation between sensor data collected for the dynamic behaviors of structures consists
of a spatial correlation between sensor channels at a time instant and a temporal correlation
in a sequence of the timeline, which is often referred to as spatiotemporal correlation [17].
Correlation analysis for sensor data reconstruction has been mainly conducted using the
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numerical method of black box model analysis instead of theoretical dynamic analysis
based on mechanical interpretation.

Data reconstruction techniques using artificial neural networks have shown excellent
performance in recovering lost data by learning nonlinear patterns in correlated data.
For example, a convolutional neural network (CNN) was adopted to reconstruct the
acceleration responses of bridges indirectly by processing transformed images of time-
series data [18,19]. Because the transformation of time series to images involves an inherent
loss of partial information in the time domain, recurrent neural networks (RNNs) have
been applied in the field of data reconstruction as an alternative to CNN. The RNN is a
looped architecture specialized for learning temporal patterns in time-sequential data and
is, therefore, utilized in research on natural language and speech processing [20–22]. A
dominant feature of an RNN is its cyclic structure, in which the current neural networks
share information from previous neural networks at the learning stage. The cyclic structure
is effective for processing data from a dynamic system in which the current state affects the
state in subsequent time steps [23,24]. A series of variants of the RNN, such as long short-
term memory (LSTM) [25], gated recurrent unit (GRU) [26], bidirectional RNN (BRNN) [27],
and bidirectional LSTM (Bi-LSTM) [28], were also used to reconstruct lost data, and their
superior performance was reported [17,29,30].

Numerous hyperparameters determining the network structures, such as the number
of input vectors and hidden layers, learning rate, cost function, regularization parameter,
batch size, and training epoch, must be set before training the RNN models [31,32]. The
repetitive trials to fix them and the subsequent evaluation outputs of the models are
referred to as hyperparameter tuning [33]. The number of input vectors and hidden layers
directly affects the number of parameters in the model and accordingly determines the
accuracy, computational amount, and prediction speed of the model. Setting optimized
hyperparameters for excellent data reconstruction performance is a cumbersome task, and
the related process is often omitted from data reconstruction studies [29,34].

In this study, by leveraging the spatial correlation between sensor channel data more
than the temporal correlation on the dynamic behavior of structures, an RNN model with
external feedback is proposed for the reconstruction of data. The proposed method gen-
erates a robust and precise model by explicitly feeding back the reconstructed data from
the RNN model to the input dataset for the next time step. Accordingly, the advantage
of improving the accuracy of the recovered data was confirmed by simplifying the hyper-
parameter tuning process of the RNN model to recover the lost data. The remainder of
this paper is organized as follows: Section 2 describes the architecture of a general RNN
model to apply and verify the proposed technique. Section 3 explains the RNN model
training and data recovery method that employs the proposed technique. In Section 4, a
performance verification of the proposed method is conducted by utilizing the vibration
data collected from the structural model. The paper concludes with a brief summary and
discussion in Section 5.

2. RNN Architecture for Sensor Data Reconstruction

Various RNN models have been derived according to parameter structures, such as the
type of input–output data and the weight inside the layer [28,35]. In the training time series,
the RNN structure was upgraded so that parameters can contain time-series characteristics
for a longer period of time. Representative RNN models, simple RNN, LSTM, and GRU
are presented in Figure 1. These are used as reference models for performance comparison
of the difference in layer structures in lost data reconstruction studies [36,37].
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Figure 1. The RNN and its variant models. (a) Simple RNN. (b) LSTM. (c) GRU.

A simple RNN, which is a chain of general neural networks, sequentially delivers
input data to the cells of adjacent layers, that is, it is the basic form of a recurrent model.
Because a cell that has delivered data does not store information about the transmitted
data, it cannot remember long-term time-series information. Figure 1a shows the structure
of a simple RNN with one memory between the input and output networks. When the
activation function is used as a hyperbolic tangent, the memory ht used to predict the
output vector is defined as

ht = tan h(Utxt + Wht−1 + b) (1)

where x is an input vector, U and W are flexible matrices, and b is the bias vector. The
training of the model is a process of adjusting the weights such that xt approaches the
correct value yt for predicting ht generated by Ut, W and ht−1. Because ht−1 of the previous
time step is involved in predicting ht of the current time step, a recurrent structure of the
neural network is established. This is a structure in which the results of the previous step
are fed back to the computation of the current step, and through this, the RNN enables the
processing of time-series data.

LSTM and GRU are models in which the cell structure that connects the input and
output vectors is modified to improve the low long-term dependency of a simple RNN
(Figure 1b,c). The biggest feature of LSTM is that the cell state parameter, zt, is additionally
shared between adjacent layers, and the value of the existing input vector is preserved so
that the long-term memory storage capacity is improved. Several parameters determined
by the size of the input and output vectors exist inside a single layer, and the output gate,
forget gate, and input gate composed of these parameters protect and control the cell state.
In particular, the forget gate is built in to directly determine how much to remember and
how much to forget the value of the previous vector. GRU is a simple type of LSTM in
which the structure of the LSTM is modified. GRU has fewer parameters and faster training
than LSTM because the forget gate and input gate of LSTM are merged into a single layer
called the update gate.

3. Internal and External Feedback in RNN Model for Sensor Data Reconstruction

Figure 2a depicts a conventional training RNN model for the reconstruction of the i-th
lost channel in n sensor networks. As shown in the figure, an input dataset consisting of
n− 1 channels excluding the i-th channel was used for training the RNN model. Sensor data
reconstruction utilizes the correlation in sensor data in black-box analysis. With black-box
analysis of spatial correlation in data from sensor channels and temporal correlation in a
sequence of time series, the RNN model generates data from the lost channel. In particular,
the temporal correlation is analyzed using the inherent recurrence in the RNN model that
utilizes the output of the previous step at every time step. In this study, inherent recurrence
is referred to as internal feedback.



Sensors 2023, 23, 2737 4 of 15
Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

 
 

(a) (b) 

Figure 2. Schematic diagram of internal and external feedback in the RNN model. (a) Internal 

feedback. (b) External feedback. 

Figure 3 shows a schematic diagram representing the input–output dataset relation-

ships of the RNN model for both the conventional and external feedback methods. As 

shown in Figure 3a, the input and output, that is, the reconstruction channels, are inde-

pendently set to 𝐗𝑡
𝑐 and 𝐲𝑡, respectively, where 𝑐 and 𝑡 are the channel number and 

time step of the operating sensors, respectively. The input dataset 𝐗𝑛
𝑐  for predicting the 

𝑛-th element 𝑦𝑛 of the 𝐲𝑡 channel consists of the following matrix of size (𝑐 × 𝛼). 

𝐗𝑛
𝑐 = [

𝑥𝑛−𝛼
𝑐 ⋯ 𝑥𝑛−1

𝑐

⋮ ⋱ ⋮
𝑥𝑛−𝛼
1 ⋯ 𝑥𝑛−1

1
].  (2) 

In the external feedback of the reconstruction data method, as shown in Figure 3b, 

the 𝒚𝑡 channel is used simultaneously for the input matrix and output vectors. The input 

dataset 𝐗𝑛
𝑐  for predicting the 𝑛-th element 𝑦𝑛 of the 𝐲𝑡 channel consists of the follow-

ing matrix of size ((𝑐 + 1) × 𝛼). 

𝐗𝑛
𝑐 = [

𝑦𝑛−𝛼 ⋯ 𝑦𝑛−1
𝑥𝑛−𝛼
𝑐 ⋯ 𝑥𝑛−1

𝑐

⋮ ⋱ ⋮
𝑥𝑛−𝛼
1 ⋯ 𝑥𝑛−1

1

].  (3) 

The model learned through repeated training is used as a reconstruction model at the 

point in time when data loss occurred. The reconstructed data of the loss channel are fed 

back to the input data matrix at the next time step.  

 
 

(a) (b) 

Figure 3. Input and output data flow of internal and external feedback in the RNN. (a) Internal 

feedback. (b) External feedback. 

1

RNN

2 ∙∙∙

Recurrent

(Internal feedback)

∙∙∙ 1

RNN

2 ∙∙∙ ∙∙∙

External feedback

RNN

• • •

• • •

• • •

• • •

• • •

• • •

• • •

RNN

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Figure 2. Schematic diagram of internal and external feedback in the RNN model. (a) Internal
feedback. (b) External feedback.

In addition to internal feedback, a method of feeding the reconstructed loss channel
data back to the input dataset is proposed in Figure 2b. In the reconstruction of the i-th lost
channel data in the n sensor network, the output of the i-th channel reconstructed from
the model is composed of the input dataset in the next step. Thus, the input dataset of the
RNN model consists of n datasets. In this study, the looped structure is referred to as the
external feedback.

Figure 3 shows a schematic diagram representing the input–output dataset relation-
ships of the RNN model for both the conventional and external feedback methods. As
shown in Figure 3a, the input and output, that is, the reconstruction channels, are indepen-
dently set to Xc

t and yt, respectively, where c and t are the channel number and time step of
the operating sensors, respectively. The input dataset Xc

n for predicting the n-th element yn
of the yt channel consists of the following matrix of size (c × α).

Xc
n =

xc
n−α · · · xc

n−1
...

. . .
...

x1
n−α · · · x1

n−1

. (2)

Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

 
 

(a) (b) 

Figure 2. Schematic diagram of internal and external feedback in the RNN model. (a) Internal 

feedback. (b) External feedback. 

Figure 3 shows a schematic diagram representing the input–output dataset relation-

ships of the RNN model for both the conventional and external feedback methods. As 

shown in Figure 3a, the input and output, that is, the reconstruction channels, are inde-

pendently set to 𝐗𝑡
𝑐 and 𝐲𝑡, respectively, where 𝑐 and 𝑡 are the channel number and 

time step of the operating sensors, respectively. The input dataset 𝐗𝑛
𝑐  for predicting the 

𝑛-th element 𝑦𝑛 of the 𝐲𝑡 channel consists of the following matrix of size (𝑐 × 𝛼). 

𝐗𝑛
𝑐 = [

𝑥𝑛−𝛼
𝑐 ⋯ 𝑥𝑛−1

𝑐

⋮ ⋱ ⋮
𝑥𝑛−𝛼
1 ⋯ 𝑥𝑛−1

1
].  (2) 

In the external feedback of the reconstruction data method, as shown in Figure 3b, 

the 𝒚𝑡 channel is used simultaneously for the input matrix and output vectors. The input 

dataset 𝐗𝑛
𝑐  for predicting the 𝑛-th element 𝑦𝑛 of the 𝐲𝑡 channel consists of the follow-

ing matrix of size ((𝑐 + 1) × 𝛼). 

𝐗𝑛
𝑐 = [

𝑦𝑛−𝛼 ⋯ 𝑦𝑛−1
𝑥𝑛−𝛼
𝑐 ⋯ 𝑥𝑛−1

𝑐

⋮ ⋱ ⋮
𝑥𝑛−𝛼
1 ⋯ 𝑥𝑛−1

1

].  (3) 

The model learned through repeated training is used as a reconstruction model at the 

point in time when data loss occurred. The reconstructed data of the loss channel are fed 

back to the input data matrix at the next time step.  

 
 

(a) (b) 

Figure 3. Input and output data flow of internal and external feedback in the RNN. (a) Internal 

feedback. (b) External feedback. 

1

RNN

2 ∙∙∙

Recurrent

(Internal feedback)

∙∙∙ 1

RNN

2 ∙∙∙ ∙∙∙

External feedback

RNN

• • •

• • •

• • •

• • •

• • •

• • •

• • •

RNN

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

Figure 3. Input and output data flow of internal and external feedback in the RNN. (a) Internal
feedback. (b) External feedback.

In the external feedback of the reconstruction data method, as shown in Figure 3b,
the yt channel is used simultaneously for the input matrix and output vectors. The input
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dataset Xc
n for predicting the n-th element yn of the yt channel consists of the following

matrix of size ((c + 1)× α).

Xc
n =


yn−α · · · yn−1
xc

n−α · · · xc
n−1

...
. . .

...
x1

n−α · · · x1
n−1

. (3)

The model learned through repeated training is used as a reconstruction model at the
point in time when data loss occurred. The reconstructed data of the loss channel are fed
back to the input data matrix at the next time step.

4. Experimental Verification
4.1. Vibration Experiment with Multi-Story Shear Building Model

To verify the experimental performance of the real-time feedback of the proposed
method for reconstruction of data, a series of vibration experiments was conducted to
collect the dynamic response data of a multi-DOF structure. The test structure was a
three-story single-bay frame, with a total height of 45 cm and a width of 16 cm (Figure 4). It
was assembled with two structural elements: a flexible steel plate (50 cm × 3 cm × 4 mm
thick) and a rigid aluminum plate (50 cm × 50 cm × 2 cm thick). Aluminum plates were
used as floor plates, and both ends of the four steel plates were joined to an L-shaped plate
to support each floor plate. Such a prefabricated structure can be expanded to a six-story
structure by repeatedly connecting the same structural elements, as explained in Section 4.4.
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Figure 4. Experimental setup for acquisition of vibration dataset of structure.

The structural model was mounted on a uniaxial shake table driven by a mechanical
linear actuator, where the rotary motion of an AC servo motor (HC-SFS502, Mitsubishi,
Tokyo, Japan) was converted to linear motion. The column connected to the shake table
was excited on a plane axis by an analog signal, which is obtained by converting the digital
signal generated in MATLAB Simulink using a digital acquisition (DAQ) module, NI-9375
(National Instruments, Austin, TX, USA). Four accelerometers (731A, Wilcoxon, Frederick,
MD, USA) with a 100 Hz sampling rate were installed in the center of the shake table
and in each floor of the structure to measure the acceleration by the movement of the
shake table. White noise and El Centro seismic signals were adopted as the excitations
for the shake table to simulate the ambient and seismic motions of the structure. The
acceleration measured from the shake table and structure were used to verify the quality of
the generated input signals, and to train the RNN model, respectively.
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To build a training dataset for model training, white noise with a frequency range of 0.5
to 30 Hz and a maximum acceleration of approximately 0.3 g was provided as an excitation
for 60 s. The behavior of the building, with a maximum acceleration of approximately 0.2 g
and a trend of vibration that occurred similarly on the three floors, was used for training
and testing for a duration of 40 s and 20 s, respectively (Figure 5a). Two types of validation
datasets that were not involved in training were prepared to compare model accuracy:
(1) the response of the building to white noise of 200 s duration with a frequency range
of 0.5 to 30 Hz and a maximum acceleration of approximately 0.3 g with an acceleration
magnitude similar to the dataset used for model generation (Figure 5b); (2) the response
of the building excited for 50 s by the El Centro seismic signal with a peak value of 2 g,
which is approximately 10-times greater than the maximum acceleration of the dataset
used for model training (Figure 5c). In the validation dataset, the sensor on the third floor
was assumed to be the lost channel, and its data were reconstructed from the RNN model.
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4.2. RNN Model Training and Its Evaluation

Simple RNN, LSTM, and GRU were selected as RNN models for performance compar-
ison of the proposed external feedback of the sensor data reconstruction. The hyperparam-
eters in Table 1 were identical for the three models. The number of input data and hidden
layers were set as variables to evaluate the stability of the model generated by the proposed
method. The numbers of input data and hidden layers were increased a total of 20 times
at intervals of 4, from a minimum of 4 to a maximum of 40, and for a total of 20 times at
intervals of 5, from a minimum of 5 to a maximum of 100. The other hyperparameters, such
as the optimizer, training loss, learning rate, batch size, and maximum epochs, were fixed.

Model training and evaluation were performed to quantitatively calculate the perfor-
mance of the external feedback (termed as proposed) and internal feedback inherent in the
RNN model (termed as existing). In total, 2400 (12 × 200) models were generated for the
number of input vectors and layers in 12 situations, depending on the model type (simple
RNN, LSTM, GRU) and the type of excitation (white noise and El Centro seismic signals).
Figure 6 shows the training and test losses of the RNN model according to the increase
in epochs in the training process of the model and is the average of 200 values of training
and test losses acquired in each situation. Overall, there is a rapid loss reduction in less
than 10 epochs; subsequently, in the case of the existing method, it gradually decreases to
200 epochs, and in the case of the proposed method, it converges to the minimum loss at
approximately 100 epochs. The converged losses of the proposed method were lower than
those of the existing method.
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Table 1. Hyperparameters set in the RNN models.

Hyperparameter Value

Number of input data
(min./max./interval) 4/40/4

Number of hidden layers
(min./max./interval) 5/100/5

Optimizer Adam

Training loss MAE

Learning rate 0.001

Batch size 72

Maximum epochs 200
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Figure 6. Training and testing the loss in existing and proposed methods based on RNN model
and excitation type with respect to the training epochs. (a) Simple RNN, white noise (proposed).
(b) LSTM, white noise (proposed). (c) GRU, white noise (proposed). (d) Simple RNN, white noise
(existing). (e) LSTM, white noise (existing). (f) GRU, white noise (existing). (g) Simple RNN, El
Centro (proposed). (h) LSTM, El Centro (proposed). (i) GRU, El Centro (proposed). (j) Simple RNN,
El Centro (existing). (k) LSTM, El Centro (existing). (l) GRU, El Centro (existing).

4.3. Sensor Data Reconstruction from Trained RNN Models

The validation dataset that is not used for training and testing was input to the previously
generated 2400 models, and the third-floor data that were assumed as a lost channel were recon-

structed. The root mean square error (RMSE,

√
∑k

(
yptredicted

k − ymeasured
k

)2
/number o f data points)

between the reconstructed data and measured data is presented as 3D mesh plots in
Figure 7. In the case of the existing method, starting from high values, the RMSEs tended
to decrease up to 20 input vectors, but gradually increased after 20 input vectors. In addi-
tion, unstable results were obtained when the number of layers was close to 100. On the
other hand, in the case of the proposed method, low RMSEs are obtained regardless of the
number of inputs, which confirms a stable trend of RMSEs, even though RMSEs slightly
increase after 20 input vectors. In addition, robust and low RMSEs were obtained for all
models, except for the high number of hidden layers of the simple RNN with a simple layer
structure. There were no differences according to the type of excitation signal used.

The dynamic response features of the structure can be effectively contained as the
length of the input vector increases. The lengthened input vector increases the number of
parameters inside the RNN model; therefore, the computation becomes more expensive.
Thus, a tradeoff occurs in the determination of the input vector length. In the case of loss
data reconstruction by correlation analysis of sensor data, it is confirmed that the dynamic
response characteristics are related to temporal correlation, and optimization of the input
vector length considering the tradeoff is required in the existing internal feedback. In
contrast, the proposed external feedback method of feeding the reconstruction output of
the lost channel back to the input dataset reduces the influence of temporal correlation by
emphasizing the spatial correlation in the input data between sensor channels. In addition,
it was verified that the proposed method can make the hyperparameter tuning process
robust, even at a high number of layers.
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Table 2 shows the number of input vectors and the RMSE of the models generating
the least RMSE through hyperparameter optimization in each mesh. Because the difference
in accuracy based on the number of layers was insignificant, it was fixed at 50. The number
of input vectors of the existing method according to white noise and El Centro seismic
signal is 18.7 and 25.3, respectively. However, in the case of the proposed method, it
was reduced to 5.3 and 4, respectively. In addition, the model accuracy evaluated by the
RMSEs was reduced to 3.107 × 10−3 g and 7.277 × 10−2 g for the proposed method, against
8.620 × 10−3 g and 20.316 × 10−2 g in the existing method. It is demonstrated that the
RNN model for sensor data reconstruction conducted using the proposed method improves
the dependency of the hyperparameter setting and accuracy.

Table 2. Number of input vectors (NIVs) and RMSE of the optimized RNN models.

Simple RNN LSTM GRU Mean

White noise

Proposed
NIV 4 4 8 5.3

RMSE (g) 4.294 × 10−3 2.147 × 10−3 2.881 × 10−3 3.107 × 10−3

Existing
NIV 20 16 20 18.7

RMSE (g) 11.495 × 10−3 5.256 × 10−3 9.109 × 10−3 8.620 × 10−3

El Centro
seismic signal

Proposed
NIV 4 4 4 4

RMSE (g) 11.037 × 10−2 4.878 × 10−2 5.916 × 10−2 7.277 × 10−2

Existing
NIV 16 28 32 25.3

RMSE (g) 27.910 × 10−2 15.373 × 10−2 17.666 × 10−2 20.316 × 10−2

The responses of the structure reconstructed from the proposed external feedback
method are compared with those of the measurement in Figure 8, where the model accu-
racies are 2.147 × 10−3 and 4.878 × 10−2, respectively, for the white noise and El Centro
seismic signal cases shown in Table 2.
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Figure 8. Acceleration time history of the measured and reconstructed data. (a) structural vibration
due to white noise; (b) structural vibration caused by the El Centro seismic signal.

4.4. Extended Six-Story Structure Model

To evaluate the effect of the complexity of the multi-DOF structure system on the
proposed method, the same mass and stiffness system was extended to the six-story
structure model and sensor channel. A three-story prefabricated structure model composed
of a steel plate, aluminum plate, and L-shaped plate was further assembled with members
of the same size and expanded to six stories. The host channel was assumed to be the sixth
floor, and white noise was excited on the shake table. The other experimental conditions
remained the same as that for the previous testing structure. As a result of the training,
1200 (2 × 3 × 200) models were generated according to the existing and proposed methods,
model types, number of input vectors, and hidden layers. The lost channel of the 200 s
validation dataset that was not used for training and testing was reconstructed. The RMSE
of the accuracy of the model is presented in the 3D mesh plots in Figure 9. The overall trend
was similar to that of the three-story structure model: in the case of the existing method,
a high RMSE occurred when the number of vectors was low and decreased sharply to
16 of the input vectors, and in the case of the proposed method, a low RMSE occurred,
regardless of the number of input vectors. Model instability at a high number of layers is
found in all models of the existing method and in the simple RNN of the proposed model,
but the LSTM and GRU of the proposed method resulted in a low and stable RMSE in
all models. The optimized models of the existing and proposed methods were derived
from LSTM. The number of input vectors and hidden layers and the RMSE are 28, 32,
and 7.319 × 10−3 g, respectively, for the existing method and 4, 24, and 2.871 × 10−3 g,
respectively, for the proposed method. That is, the number of input vectors is reduced by
more than six times, and the RMSE by more than two times. Thus, it is proven that the
proposed method can generate a stable and high-accuracy RNN model, even when the
complexity of the structure increases.
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The performance of the proposed external feedback method using LSTM was further
evaluated under the conditions of multiple sensor channel losses: the sixth-floor sensor
loss (Case 1), the fifth- and sixth-floor sensor losses (Case 2); the fourth-, fifth-, and sixth-
floor sensor losses (Case 3). In comparison experiments on the previous six-story structure
model involving three reconstruction models, data commonly generated at the sixth floor
were compared and are depicted in Figure 10 and the quantitative information is tabulated
in Table 3. Figure 10 shows the time histories of the measured and reconstructed data
acquired in Cases 1 to 3. In general, the measured data and the three reconstructed data
were similar. In the zoomed plots, the reconstructed signals tended to be underestimated
as the number of lost sensors increased.

Table 3. Quantitative information related to reconstructed data.

Measured Value Case 1 Case 2 Case 3

Peak (g) 0.1609 0.1417 0.1446 0.1343

RMS (g) 0.0388 0.0377 0.0354 0.0333

RMSE (g) - 2.781 × 10−3 5.751 × 10−3 8.815 × 10−3
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5. Conclusions

In this study, a real-time external feedback loop was proposed for the use of RNN
models, and its effect was quantitatively evaluated through a series of experiments. The
proposed RNN model with external feedback was demonstrated and verified with the
vibration response dataset obtained from experiments with white noise and El Centro
seismic signal excitation in a three-story structure model, and the experiment was extended
to a six-story structure model. It was proven that the method proposed simplifies hyperpa-
rameter tuning and generates a more accurate model for the RNN-based reconstruction of
lost data.

The accuracy of the RNN model was compared using the RMSE between the re-
constructed and measured data. Based on the results in the case study, the following
conclusions are drawn: the proposed method through the three-story structure model
experiment generated a model with robust accuracy, regardless of the number of input data
and layers in simple RNN, LSTM, and GRU models. Compared to the use of the conven-
tional RNN models, the number of input data was reduced by four-times, and the RMSEs
were reduced by three-times using the proposed external feedback RNN models. In the
six-story structure model experiment, under scenarios in which the number of fault sensors
was increased up to three channels, robust models with high accuracy were evaluated. For
the reconstructed signals on the sixth floor, trivial differences between each reconstruction
of the three fault scenarios were confirmed.
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