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Abstract: Modern depth sensors are often characterized by low spatial resolution, which hinders
their use in real-world applications. However, the depth map in many scenarios is accompanied
by a corresponding high-resolution color image. In light of this, learning-based methods have been
extensively used for guided super-resolution of depth maps. A guided super-resolution scheme
uses a corresponding high-resolution color image to infer high-resolution depth maps from low-
resolution ones. Unfortunately, these methods still have texture copying problems due to improper
guidance from color images. Specifically, in most existing methods, guidance from the color image
is achieved by a naive concatenation of color and depth features. In this paper, we propose a fully
transformer-based network for depth map super-resolution. A cascaded transformer module extracts
deep features from a low-resolution depth. It incorporates a novel cross-attention mechanism to
seamlessly and continuously guide the color image into the depth upsampling process. Using
a window partitioning scheme, linear complexity in image resolution can be achieved, so it can
be applied to high-resolution images. The proposed method of guided depth super-resolution
outperforms other state-of-the-art methods through extensive experiments.

Keywords: super-resolution; deep learning; depth maps; attention; multimodal; transformers

1. Introduction

High-resolution (HR) depth information of a scene plays a significant part in many
applications, such as 3D reconstruction [1], driving assistance [2], and mobile robots.
Nowadays, depth sensors such as LIDAR or time-of-flight cameras are becoming more
widely used. However, they often suffer from low spatial resolution, which does not always
suffice for real-world applications. Thus, ongoing research has been done on reconstructing
a high-resolution depth map from a corresponding low-resolution (LR) counterpart in a
process termed depth super-resolution (DSR).

The LR depth map does not contain the fine details of the HR depth map, so recon-
structing the HR depth map can be challenging. Bicubic interpolation, for example, often
produces blurry depth maps when upsampling the LR depth, which limits the ability to,
e.g., separate between different objects in the scene.

In recent years, many learning-based approaches based on elaborate convolutional neu-
ral network (CNN) architectures for DSR were proposed [3–7]. These methods surpassed
the more classic approaches such as filter-based methods [8,9], and energy minimization-
based methods [10–12] in terms of computation speed and the quality of the reconstructed
HR information. Although CNN-based methods improved the performance significantly
compared with traditional methods, they still suffer from several drawbacks. To begin
with, feature maps derived from a convolution layer have a limited receptive field, making
long-range dependency modeling difficult. Second, a kernel in a convolution layer operates
similarly on all parts of the input, making it content-independent and likely not the optimal
choice. In contrast to CNN, transformers [13] have recently shown promising results in
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several vision-related tasks due to their use of attention. The attention mechanism enables
the transformer to operate in a content-dependent manner, where each input part is treated
differently according to the task.

LR depth information is often accompanied by HR color or intensity images in real-life
situations. Thus, numerous methods proposed to use this HR image to guide the DSR
process [3,4,7,14–23] since the HR image might provide some additional information that
does not exist in the LR depth image, e.g., the edges of a color image can be used to identify
discontinuities in a reconstructed HR depth image. However, one major limitation, termed
texture-copying, still exists in these guided DSR methods. Texture copying may occur when
intensity edges do not correspond to depth discontinuities in-depth maps, for example,
a flat and highly textured surface. Consequently, the reconstruction of HR depth is then
degraded due to the over-transfer of texture information.

This paper proposes a novel, fully transformer-based architecture for guided DSR.
Specifically, the proposed architecture consists of three modules: shallow feature extraction,
deep feature extraction and fusion, and an upsampling module. In this paper, we term the
feature extraction and fusion module the cross-attention guidance module (CAGM). The
shallow feature extraction module uses convolutional layers to extract shallow features
from LR depth and HR color images, which are directly fed to the CAGM to preserve low-
frequency information. Next, several transformer blocks are stacked to form the CAGM,
each operating in non-overlapping windows from the previous block. Guidance from the
color image is introduced via a cross-attention mechanism. In this manner, guidance from
the HR color image is seamlessly integrated into the deep feature extraction process. This
enables the network to focus on salient and meaningful features and enhance the edge
structures in the depth features while suppressing textures in the color features. Moreover,
contrary to CNN-based methods, which can only use local information, transformer blocks
can exploit the input image’s local and global information. This allows learning of structure
and content from a wide receptive field, which is beneficial for SR tasks [24]. As a final
step, shallow and deep features are fused in the upsampling module to reconstruct HR
depth. Section 4 shows that the proposed architecture provides better visual results with
sharper boundaries and better root mean square error (RMSE) values than competing
guided DSR approaches. We also show how the proposed architecture helps to mitigate the
texture-copying problem of guided DSR. The proposed architecture is shown in Figure 1.
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Figure 1. The proposed FCTN architecture for guided depth SR with a 2× upsampling factor.

Our main contributions are as follows: (1) We introduce a transformer-based architec-
ture with a novel guidance mechanism that leverages cross-attention to seamlessly integrate
guidance features from a color image to the DSR process. (2) Linear memory constraints
make the proposed architecture applicable even for large inputs. (3) This architecture is not
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limited to a fixed input size, so it can be applied to a variety of real-world problems. (4)
Our system achieves state-of-the-art results on several depth-upsampling benchmarks.

The remainder of this paper is organized as follows. A summary of related work is
presented in Section 2. We describe our architecture for guided DSR in Section 3. Section 4
reports the results of extensive experiments conducted on several popular DSR datasets.
Additionally, an ablation study is conducted. We conclude and discuss future research
directions in Section 5.

2. Related Work
2.1. Guided Depth Map Super-Resolution

A number of methods for reconstructing the HR depth map only from LR depth have
been proposed in earlier works for single depth map SR. ATGV-Net was proposed by [5]
combining a deep CNN in tandem with a variational method designed to facilitate the
recovery of the HR depth map. Reference [25] modeled the mapping between HR and LR
depth maps by utilizing densely connected layers coupled with a residual learning model.
Auxiliary losses were tabulated at various scales to improve training.

However, it is pertinent to note that in most real-life scenarios, the LR depth image is
coupled with a HR intensity image. Recently, several methods have been proposed to im-
prove depth image quality, relying on the HR intensity image to guide the upsampling pro-
cess. We group these methods under four sub-categories: filtering-based methods [26–28],
global optimization-based methods [10–12,16,29–34], sparse representation-based meth-
ods [14,15], and deep learning-based methods [3,4,7,17–23,35–40], which are the focus of
this paper.

Notable amongst the more classical works are [10], which formulated the upsampling
of depth as a convex optimization problem. The upsampling process was guided by a
HR intensity image. A bimodal co-sparse analysis was presented in [14] to describe the
interdependency of the registered intensity and depth information. Reference [15] proposed
a multi-scale dictionary as a method for depth map refinement, where local patches were
represented in both depth and color via a combination of select basis functions.

Deep learning methods for SR of depth images have gained increasing attention due
to recent success in SR of color images. A fully convolutional network was proposed in [35]
to estimate the HR depth. To optimize the final result, this HR estimation was fed into
a non-local variational model. Reference [4] proposed an “MSG-Net”, in which both LR
(depth) and HR (color) features are combined within the high-frequency domain using a
multi-scale fusion strategy. Reference [3] proposed extracting hierarchical features from
depth and color images by building a multi-scale input pyramid. The hierarchical features
are further concatenated to facilitate feature fusion, whilst the residual map between the
reconstructed and ground truth HR depth is learned with a U-Net architecture. Refer-
ence [37] proposed another multi-scale network in which the LR depth map upsampling,
guided by the HR color image, was performed in stages. Global and local residual learning
is applied within each scale. Reference [17] proposed a cosine transform network in which
features from both depth and color images were extracted using a semi-coupled feature
extraction module. To improve depth upsampling, edges were highlighted by an edge at-
tention mechanism operating on color features. Reference [19] proposed to use deformable
convolutions [41] for the upsampling of depth maps, using the features of the HR guidance
image to determine the spatial offsets. Reference [42] also applied deformable convolutions
to enhance depth features by learning the corresponding feature of the high-resolution color
image. An adaptive feature fusion module was used to fuse different level features adap-
tively. A network based on residual channel attention blocks was proposed in [20], where
feature fusion blocks based on spatial attention were utilized to suppress texture-copying.
Reference [21] proposed a progressive multi-branch aggregation design that gradually
restores the degraded depth map. Reference [22] proposed separate branches for HR color
image and LR depth map. A dual-skip connection structure, together with a multi-scale
fusion strategy, allowed for more effective features to be learned. Reference [39] used a
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transformer module to learn the useful content and structure information from the depth
maps and the corresponding color images, respectively. Then, a multi-scale fusion strategy
was used to improve the efficiency of color-depth fusion. Reference [43] proposed explicitly
incorporating the depth gradient features in the DSR process. Reference [44] proposed
PDR-Net, which incorporates an adaptive feature recombination module to adaptively
recombine features from a HR color guidance image with features from the LR depth. Then,
a multi-scale feature fusion module is used to fuse the recombined features using multi-
scale feature distillation and joint attention mechanism. Finally, Reference [23] presented
an upsampling method that incorporates the intensity image’s high-resolution structural
information into a multi-scale residual deep network via a cascaded transformer module.

However, the methods above mostly fuse the guidance features with the depth features
using mere concatenation. Moreover, most of these methods rely on CNN for feature
extraction, which operates on a limited receptive field and lacks the expressive power of
transformers. At the same time, we propose using a CAGM module, which leverages
transformers to fuse and extract meaningful features from HR color and LR depth images,
resulting in superior results, as shown in Section 4.

2.2. Vision Transformers

Transformers [13] have gained great success across multiple domains recently. Con-
tributing to this success was their inherent attention mechanism, which enables them to
learn the long-range dependencies in the data. This success led many researchers to adopt
transformers to computer vision tasks, where they have recently demonstrated promis-
ing results, specifically in image classification [45–47], segmentation [47,48], and object
detection [49,50].

To allow transformers to handle 2D images, an input image I ∈ RH×W×C is first
divided into non-overlapping patches of size (P, P). Each patch is flattened and projected
to a d-dimensional vector via a trainable linear projection, forming the patch embeddings
X ∈ RN×d where H, W are the height and width of the image, respectively, C is the number
of channels, and N = H ×W/P2 is the total number of patches. Finally, N is the effective
input sequence length for the transformer encoder. Patch embeddings are enhanced with
position embeddings to retain 2D image positional information.

In [13], a vanilla vision transformer encoder is constructed by stacking blocks of multi-
head self-attention (MSA) and MLP layers. A residual connection is applied after every block,
and layer normalization (LN) before every block. Given a sequence of embeddings X ∈ RN×d

with dimension d as input, a MSA block produces an output sequence X̄ ∈ RN×d via

Q = XWQ , K = XWK , V = XWV

A = Softmax(QKT/
√

d)

X̄ = AV

(1)

where WQ , WK , and WV are learnable matrices of size d× d that project the sequence X
into keys, queries, and values, respectively. X̄ is a linear combination of all the values in V
weighted by the attention matrix A. In turn, A is calculated from similarities between the
keys and query vectors.

Transformers derive their modeling capabilities from computing self-attention A and
X̄. Since self-attention has a quadratic cost in time and space, it cannot be applied directly
to images as N quickly becomes unmanageable. As a result of this inherent limitation,
modality-aware sequence length restrictions have been applied to preserve the model’s
performance while restricting sequence length. Reference [45] showed that a transformer
architecture could be directly applied to medium-sized image patches for different vision
tasks. The aforementioned memory constraints are mitigated by this local self-attention.

Although the above self-attention module can effectively exploit intra-modality rela-
tionships in the input image, in a multi-modality setting, the inter-modality relationships,
e.g., the relationships between different modalities, also need to be explored. Thus, a
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cross-attention mechanism was introduced in which attention masks from one modality
highlight the extracted features in another. Contrary to self-similarity, wherein query, key,
and value are based on similarities within the same feature array, in cross-attention, keys,
and values are calculated from features extracted from one modality, while queries are
calculated from the other. Formally, a MSA block using cross-attention is given by

Q = X̂WQ , K = XWK , V = XWV (2)

where X is the input sequence of one modality and X̂ is the input sequence of the second
modality. The calculation of attention matrix A and output sequence X̄ remains the same.

3. Proposed Method
3.1. Formulation

A guided DSR method aims to establish the nonlinear relation between corresponding
LR and HR depth maps. The process of establishing this nonlinear relation is guided by a
HR color image. We denote the LR depth map as DLR ∈ RH/s×W/s and the HR guidance
color image as IHR ∈ RH×W , where s is a given scaling factor. The corresponding HR depth
map DHR ∈ RH×W can be found from:

DHR = F̂(DLR, IHR; θ) (3)

where F̂ represents mapping learned by the proposed architecture, and θ represents the
parameters of the learned network. Although the scaling factor s is usually an exponent of
2, e.g., s = 2, 4, 8, 16, our upsampling module can perform upsampling for other scaling
factors as well, making this architecture flexible enough for real applications.

3.2. Overall Network Architecture

Throughout the remainder of this paper, we denote the proposed architecture as the
fully cross-attention transformer network (FCTN). As shown in Figure 1, the proposed
architecture consists of three parts: a shallow feature extraction module, a deep feature
extraction and guidance module called the cross-attention guidance module (CAGM), and
an upsampling module. The CAGM extracts features from the LR depth image and guides
the HR intensity image simultaneously.

Before we elaborate on the structure of each module, some significant challenges in
leveraging transformers’ performance for visual tasks, specifically SR, need to be addressed.
First, in real-life scenarios, images can vary considerably in scale. Transformer-based
models, however, work only with tokens of a fixed size. Furthermore, to maintain HR
information, SR methods avoid downscaling the input as much as possible. Processing HR
inputs of this magnitude would be unfeasible for vanilla transformers due to computational
complexity as described in Section 2.2.

3.2.1. Shallow Feature Extraction Module

The proposed shallow feature extraction module extracts essential features to be fed to
the CAGM. Shallow features are extracted from LR depth and HR color images via a single
convolution layer with a kernel size of 3× 3, followed by an activation function of a rectified
linear unit (ReLU). In the experiments, we did not notice any noticeable improvement
by using more than a single layer for shallow feature extraction. For shallow feature
extraction, incorporating a convolution layer leads to more stable optimization and better
results [51–53]. Moreover, the input space can also be mapped to a higher-dimensional
feature space d easily.

Specifically, the shallow feature extraction module can be formulated as

I0 = σ(Conv3(IHR)) (4)

D0 = σ(Conv3(DLR)) (5)
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where σ is a ReLU activation function and Conv3(·) is a 3× 3 kernel.

3.2.2. Deep Feature Extraction and Guidance Module

While shallow features primarily contain low frequencies, deep features recover lost
high frequencies. We propose a stacked transformer module that extracts deep features
from the LR depth image based on the work of [47]. Self(cross)-attention is computed locally
within non-overlapping windows, with complexity linear with image size. Working with
large and variable-sized inputs is made feasible due to the aforementioned linear complexity.
In addition, we shift the windows partitioning into consecutive layers. Overlapping of the
shifted and preceding layer windows causes neighboring patches to gradually merge, and
thus modeling power is significantly enhanced. Overall, the transformer-based module can
efficiently extract and encode distant dependencies needed for dense tasks such as SR.

In addition, motivated by [54], we employ global and local skip connections. By
using long skip connections, low-frequency information can be transmitted directly to the
upsampling module, helping the CAGM focus on high-frequency information and stabilize
training [51]. Furthermore, it allows the aggregation of features from different blocks by
using such identity-based connections.

Besides deep feature extraction, a practical guidance module is also required to en-
hance the deep features extracted from LR depth and exploit the inter-modality information
from the available HR color image. Traditionally, CNN-based methods extract features
from the color image and concatenate them with features extracted from the depth image
in a separate branch to obtain guidance from the color image. All features handled via this
guidance scheme are treated equally in both the spatial and channel domains. Furthermore,
CNN-derived feature maps have a limited receptive field, affecting guidance quality. In
comparison, we propose providing guidance from the HR color image by incorporating a
cross-attention mechanism to the aforementioned feature extraction transformer module.
Cross-attention is a novel and intuitive fusion method in which attention masks from one
modality highlight the extracted features in another. In this manner, both the inter-modality
and intra-modality relationships are learned and optimized in a unified model. Thus, in
the proposed CAGM, the feature extraction process from the LR depth and guidance from
the HR image are seamlessly integrated into a single branch. Guidance from the HR image
is injected into every block in the feature extraction module, providing multi-stage guid-
ance. In particular, guidance provided to the lower-level features passed through the long
skip connections ensures that high-resolution information is preserved and passed to the
upsampling module. Lastly, by incorporating the guidance in the form of cross-attention,
long-range dependencies between the LR depth patches and the guidance image patches
can be exploited for better feature extraction.

To exploit the HR information further, we feed the HR intensity image to a second
cascaded transformer module termed color feature guidance (CFG) to extract even more
valuable HR information. The CFG is based on self-attention only and aims to encode
distant dependencies in the HR image. These features are then used to scale the features
extracted from the CAGM by element-wise multiplication before feeding them to the
upsampling module.

We note that contrary to common practice in vision tasks, no downsampling of the
input is done throughout the network. This way, our architecture preserves as much
high-resolution information as possible, albeit at a higher computational cost.

Formally, given I0 and D0, provided by the shallow feature extraction module as input,
the CAGM applies K cross-attention transformer blocks (CATB). Every CATB is constructed
from L cross-attention transformer layers (CATL), and a convolutional layer and residual
skip connection are inserted at the end of every such block. Finally, a 3× 3 convolutional
layer is applied to the output of the last CATB. This last convolutional layer improves
the later aggregation of shallow and deep features by bringing the inductive bias of the
convolution operation into the transformer-based network. Furthermore, the translational
equivariance of the network is enhanced. In addition, I0 is fed to the CFG comprised of L̂
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transformer layers with self-attention. The CFG output is scaled to [0, 1] using a sigmoid
function and then used to scale the CAGM output before the upsampling module

The CFG module is formulated as

Îi = TLi(Îi−1) , i = 1 . . . L̂ (6)

FCFG = Conv3(ÎL̂) + I0 (7)

where Î0 = I0 and TL stands for a vanilla transformer layer with self-attention. Finally, the
entire CAGM can be formulated as

(Ii, Di) = CATBi(Ii−1, Di−1) , i = 1 . . . K (8)

FCAGM = Conv3(CATBK)⊗ σ̂(FCFG) + D0 (9)

where⊗ is element-wise multiplication, Conv3(·) is a convolution layer with a 3× 3 kernel
and σ̂ is a sigmoid function.

3.2.3. Cross-Attention Transformer Layer

The proposed cross-attention transformer layer (CATL) is modified from the standard
MSA block presented in [13]. The two significant differences are; First, we use a cross-
attention mechanism instead of self-attention. We demonstrate the effectiveness of using a
cross-attention mechanism in Section 4.4. Second, cross-attention is computed locally for
each window, ensuring linear complexity with image size, which makes it feasible for large
inputs to be handled, as is often the case in SR.

Given as input feature map F ∈ RĤ×Ŵ×d extracted from either color or depth images,
we first construct Fwin ∈ RĤŴ/M2×M2×d by partitioning F into M×M non-overlapping
windows. Zero padding is applied during the partitioning process if necessary. Similarly
to [55], relative position embeddings are added to Fwin so that positional information can
be retained. In a similar manner, the process is performed for both color and depth feature
maps; we refer to this joint embedding as Z0

I and Z0
D for the color and depth, respectively.

In each CATL, the MSA module is replaced with a windows-based cross-attention
MSA (MSAca), while the other layers remain unchanged. By applying Equation (2) locally
within each M×M window, we avoid global attention computations. Moreover, keys and
values are calculated from the depth feature map, while the queries are calculated from the
color feature map. Specifically, as illustrated in Figure 2b, our modified CATL consists of
MSAca followed by a 2-layer MLP with GELU nonlinearity. Every MLP and MSAca module
is preceded by an LN layer, and each module is followed by a residual connection.
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Figure 2. (a) Cross-Attention Transformer Block. (b) Cross-Attention Transformer Layer.

To enable cross-window connections in consecutive layers, regular and shifted window
partitionings are used alternately. In shifted window partitioning, features are shifted by
M/2, M/2 pixels. Finally, the CATL can be formalized as
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Ẑ = MSAca(LN(Z0
I , Z0

D)) + Z0
D (10)

Z = MLP(LN(Ẑ1)) + Ẑ1 (11)

where Ẑ and Z denote the output features of the MSAca and MLP modules, respectively.

3.2.4. Upsampling Module

The upsampling module operates on the CAGM output, scaled via the CFG module,
as elaborated in Section 3.2.2. It aims to recover high-frequency details and reconstruct
the HR depth successfully. The CAGM output is first passed through a convolution layer
followed by a ReLU activation function to aggregate shallow and deep features from the
CAGM. Then, we use a pixel shuffle module [56] to upsample the feature map to the HR
resolution. Each pixel shuffle module can perform upsampling by a factor of two or three,
and we concatenate such modules according to the desired scaling factor. Finally, the
upsampled feature maps are passed through another convolution layer that outputs the
reconstructed depth. The parameters of the entire upsampling module are learned in the
training process to improve model representation.

Formally, given the output of the CAGM module FCAGM ∈ RH/s×W/s, where s is the
scaling factor, the upsampling module performs an upsampling by a factor s to reconstruct
DHR ∈ RH×W . The upsampling process for a given s can be formulated as follows:

FUS,0 = Conv3(FCAGM)

FUS,i = PixellShufflei(FUS,i−1) , i = 1 . . . log2(s)

DHR = Conv3(FUS,i) .

(12)

where Conv3(·) is a convolution layer with a 3× 3 kernel. More implementation details
are given in Section 4.1.

4. Experiments
4.1. Training Details

We constructed train and test data similarly to [3,4,23,25] using 92 pairs of depth
and color images from the MPI Sintel depth dataset [57] and the Middlebury depth
dataset [58–60]. The training and validation pairs used in this study are similar to the
ones used in [4,23]. We refer the reader to [57,58] for further information on the data
included in the aforementioned datasets.

During training, we randomly extracted patches from the full-resolution images and
used these as input to the network. We used an LR patch size of 96× 96 pixels to reduce
memory requirements and computation time since using larger patches had no significant
impact on training accuracy. Consequently, we used HR patches of 192× 192 and 384× 384
for upsampling factors of 2 and 4, respectively. Given that some full-scale images had a full
resolution of < 400, we used LR patch sizes of 48× 48 and 24× 24 for upsampling factors 8
and 16, respectively. In order to generate the LR patches, each HR patch was downsampled
with bicubic interpolation. As an augmentation method, we used a random horizontal flip
while training.

4.2. Implementation Details

We construct the CAGM module in the proposed architecture by stacking K = 6
CATBs. Each CATB is constructed from L = 6 CATL modules as described in Section 3.2.2.
These values for K and L provided the best performance to network size trade-off in the
experiments, and Section 4.4, we report results with other configurations. All convolution
layers have a stride of one with zero padding, so the features’ size remains fixed. Through-
out the network, in convolution and transformer blocks, we use a feature (embedding)
dimension size of d = 64. We output depth values from the final convolution layer, which
has only one filter. For window partitioning in the CATL, we use M = 12, and each MSA
module has six attention heads.
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We used the PyTorch framework [61] to train a dedicated network for each upsampling
factor s ∈ 2, 4, 8, 16. Each network was trained for 3× 105 iterations and optimized using
the L1 loss and the ADAM optimizer [62] with β1 = 0.9, β2 = 0.999 and ε = 10−8. We
used a learning rate of 10−4, dividing the learning rate by 2 for every 1× 105 iteration. All
the models were trained on a PC with an i9-10940x CPU, 128GB RAM, and two Quadro
RTX6000 GPUs.

4.3. Results

This section provides quantitative and qualitative evaluations of the proposed archi-
tecture for guided DSR. Our proposed architecture was evaluated on both the noise-free
and the noisy Middlebury datasets. Further, we conduct experiments on the NYU Depth v2
dataset in order to demonstrate the generalization capabilities of the proposed architecture.
We compare the results to other state-of-the-art methods, including global optimization-
based methods [10,32], a sparse representation-based method [14], and mainly state-of-the-
art deep learning-based methods [3,4,7,17,19–23,25,37,39,43,44]. We also report the results
of naive bicubic interpolation as a baseline.

4.3.1. Noise-Free Middlebury Dataset

The Middlebury dataset provides high-quality depth and color image pairs from
several challenging scenes. First, we evaluate the different methods for the noise-free
Middlebury RGB-D datasets for different scaling factors. In Table 1, we report the obtained
RMSE values. Boldface indicates the best RMSE for each evaluation, while the underline
indicates the second best. In Table 1, all results are calculated from upsampled depth maps
provided by the authors or generated by their code.

Clearly, from Table 1 we conclude that deep learning-based methods [3,4,7,17,19–23,25,37]
outperform the more classic methods for DSR. In terms of RMSE values, the proposed
architecture provides the best performance across almost all scaling factors. For large
scaling factors, e.g., 8, 16, which are difficult for most methods, our method provides
good reconstruction with the lowest RMSE error across all datasets. For scaling factors
x4/x8/x16, our method obtained 0.48/0.99/1.55 as the average RMSE for the entire test
set, respectively. Our results outperform the second-best results in terms of average RMSE
values by 0.01/0.09/0.16, respectively.

In Figures 3 and 4, we provide upsampled depth maps on the “Art” and “Moebius”
datasets and a scale factor of 8 for qualitative evaluation. Upsampled depth maps are gener-
ated from 5 state-of-the-art methods, which are MSG [4], DSR [3], RDGE [32], RDN [7] and
CTG [23]. We also provide bicubic interpolation as a baseline for comparison. Compared
with competing methods, the proposed architecture provides more detailed HR depth
boundaries. Additionally, our approach mitigates the texture-copying effect evident in
some other methods, as shown by the red arrow. A significant factor contributing to
these results is the attention mechanism built into the transformer model. This atten-
tion mechanism transfers HR information from the guidance image to the upsampling
process in a sophisticated manner. Moreover, the transformer’s ability to consider both
local and global information is key to improved performance at large scaling factors.
Finally, these evaluations indicate that our CAGM contributes significantly to the success
of depth map SR and enables accurate reconstruction even in complex scenarios with
various degradations.
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Table 1. An analysis of RMSE Values for different scaling factors on the noise-free Middlebury dataset.
Boldface indicates the best RMSE for each evaluation, while the underline indicates the second best.

Method
Art Books Laundry Dolls Moebius Reindeer

x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16

Bicubic 3.88 5.60 8.58 1.56 2.24 3.36 2.11 3.10 4.47 1.21 1.78 2.57 1.40 2.05 2.95 2.51 3.92 5.72

TGV [10] 4.06 5.08 7.61 2.21 2.47 3.54 2.20 3.92 6.75 1.42 2.05 4.44 2.03 2.58 3.50 2.67 4.29 8.80

JID [14] 1.92 2.76 5.74 0.71 1.01 1.93 1.10 1.83 3.62 0.92 1.26 1.74 0.89 1.27 2.13 1.41 2.12 4.64

RDGE [32] 3.26 4.31 6.78 1.53 2.18 2.92 2.06 2.87 4.22 1.49 1.94 2.45 1.44 2.21 2.79 2.58 3.24 4.90

MSG [4] 1.49 2.79 5.95 0.66 1.09 1.87 1.02 1.35 2.03 0.72 0.99 1.59 0.68 1.14 2.07 1.33 1.72 2.99

DSR [3] 1.21 2.23 3.95 0.60 0.89 1.51 0.75 1.21 1.89 0.81 1.10 1.60 0.67 0.96 1.57 0.96 1.57 2.54

PSR [25] 1.59 2.57 4.83 0.83 1.19 1.70 0.92 1.52 2.97 0.91 1.31 1.88 0.86 1.21 1.87 1.11 1.80 3.11

MFR [37] 1.54 2.71 4.35 0.63 1.05 1.78 1.11 1.75 3.01 0.89 1.22 1.74 0.72 1.10 1.73 1.23 2.06 3.74

RDN [7] 1.47 2.60 4.16 0.62 1.00 1.68 0.96 1.63 2.86 0.88 1.21 1.71 0.69 1.06 1.65 1.17 1.60 3.58

PMBA [21] 1.19 2.47 4.37 0.53 1.10 1.51 0.80 1.54 2.72 0.66 1.08 1.75 0.55 1.13 1.62 0.92 1.76 2.86

RYN [20] 0.98 2.04 3.37 0.36 0.73 1.37 0.64 1.21 2.01 0.59 0.97 1.37 0.50 0.81 1.37 0.74 1.41 2.22

CUN [22] 1.05 2.27 3.67 0.35 0.73 1.45 0.59 1.15 2.25 0.61 0.97 1.43 0.48 0.77 1.31 0.82 1.51 2.38

GDC [19] 1.09 2.04 3.58 0.38 0.68 1.41 0.64 1.13 2.13 0.63 0.97 1.44 0.49 0.79 1.37 0.84 1.51 2.43

TDTN [39] 1.24 2.45 – 0.48 0.86 – 0.68 1.29 – 0.76 1.15 – 0.61 0.91 – 0.95 1.75 –

MIG [43] 1.46 2.74 4.26 0.58 0.95 1.67 0.93 1.57 2.85 0.87 1.21 1.75 0.66 1.04 1.66 1.17 2.11 3.81

PDR [44] 1.59 2.57 4.83 0.83 1.19 1.70 0.92 1.52 2.97 0.91 1.31 1.88 0.86 1.21 1.87 1.11 1.80 3.11

CTG [23] 0.73 1.89 2.76 0.35 0.66 1.22 0.43 0.87 1.62 0.50 0.90 1.49 0.46 0.76 1.31 0.43 1.19 1.84

FCTN (Proposed) 0.71 1.71 2.56 0.34 0.68 1.12 0.47 0.79 1.43 0.45 0.81 1.40 0.46 0.68 1.18 0.47 1.12 1.64

Figure 3. A visual quality comparison for depth map SR at a scale factor of 8 on the noise-free “art”
dataset. (a) HR depth image, (f) HR color image, (b) extracted ground truth patch (marked by a red
square), and upsampled patches by (c) Bicubic, (d) MSG [4], (e) DSR [3], (g) RDGE [32], (h) RDN [7],
(i) CTG [23], (j) the proposed FCTN method (best viewed on the enlarged electronic version).
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Figure 4. A visual quality comparison for depth map SR at a scale factor of 8 on the noise-free
“Moebius” dataset. (a) HR depth image, (f) HR color image, (b) extracted ground truth patch (marked
by a red square, and upsampled patches by (c) Bicubic, (d) MSG [4], (e) DSR [3], (g) RDGE [32], (h)
RDN [7], (i) CTG [23], (j) the proposed FCTN method (best viewed on the enlarged electronic version).

4.3.2. Noisy Middlebury Dataset

We further demonstrate the robustness of the proposed architecture on the noisy
Middlebury dataset. We added Gaussian noise to the LR training data, simulating the case
where depth maps are corrupted during acquisition, in the same way as [3,7,23,37]. All the
models were retrained and evaluated on a test set corrupted with the same Gaussian noise.
For the noisy dataset, we report the RMSE values in Table 2.

Table 2. An analysis of RMSE values for different scaling factors on the noisy Middlebury dataset.
Boldface indicates the best RMSE for each evaluation, while the underline indicates the second best.

Method
Art Books Laundry Dolls Moebius Reindeer

x8 x16 x8 x16 x8 x16 x8 x16 x8 x16 x8 x16

Bicubic 6.74 9.04 4.68 5.30 5.35 6.53 4.51 4.90 4.54 5.02 5.71 7.12

TGV [10] 7.26 12.05 2.88 4.73 4.45 8.06 2.82 5.14 3.01 6.11 4.65 9.03

MSG [4] 4.24 7.42 2.48 4.19 3.31 4.88 2.53 3.41 2.47 3.76 3.36 4.95

MFR [37] 3.97 6.14 2.13 3.17 2.82 4.57 2.25 3.30 2.13 3.33 3.01 4.86

RDN [7] 4.09 6.62 2.11 3.36 2.88 5.11 2.33 3.59 2.18 3.69 3.09 4.93

DSR [3] – 6.96 – 5.66 – 7.54 – 4.28 – 3.39 – 5.25

RYN [20] 3.47 – 1.88 – 2.47 – 1.97 – 1.87 – 2.68 –

GDC [19] 3.31 4.77 1.69 2.46 2.20 3.36 1.89 2.59 1.72 2.68 2.57 3.44

JIIF [40] 3.87 7.14 1.75 2.47 – – – – 2.03 3.18 – –

MIG [43] 3.95 6.15 2.10 3.17 3.00 4.88 2.21 3.51 2.12 3.51 3.04 4.97

CTG [23] 3.26 4.72 1.61 2.96 1.63 3.47 1.64 2.16 1.63 2.24 1.79 3.59

FCTN (Proposed) 3.01 4.55 1.54 2.66 1.61 3.15 1.59 2.32 1.27 2.09 1.81 3.17

Our first observation is that noise added to the LR depth maps significantly affects the
reconstructed HR depth maps regardless of the method or scaling factor used. However,
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the proposed architecture still generates clean and sharp reconstructions and outperforms
competing methods in terms of RMSE.

An even more realistic scenario is that data acquired by both the depth and color
sensors are corrupted by noise. Our method was further tested by adding Gaussian noise
with a mean of 0 and a standard deviation of 5 to the HR guidance images. This was done
both in training and in testing. We again retrained the models and report the obtained
average RMSE values in Table 3. In Table 3, we observe that the added noise in the HR
guidance image did not significantly affect the performance of our method, compared to
only adding noise to LR depth. According to our results, the proposed CAGM is somewhat
insensitive to noise added to the guidance image.

Table 3. An Analysis of the average RMSE values for different noise schemes.

Middlebury Dataset Version x4 x8 x16

Noise-Free 0.48 0.99 1.55
Depth Noise 1.17 1.80 2.99

Depth and Color Noise 1.35 2.01 3.19

4.3.3. NYU Depth v2 Dataset

In this section, the proposed architecture is tested on the challenging public NYU
Depth v2 [63] dataset as a means of demonstrating its generalization ability. There are
1449 high-quality RGB-D images of natural indoor scenes in this dataset, with apparent
misalignments between depth maps and color images. We note that data from NYU Depth
v2 are very different from the Middlebury Dataset and were not included in the training
data of our models.

We report the average RMSE value across the entire dataset in Table 4. Boldface
indicates the best RMSE value. As a baseline, we report the results of Bicubic interpolation
as well as the results of competing guided SR approaches; ATGV-Net [5], MSG [4], DSR [3],
RDN [7], RYN [20], PMBA [21], DEAF [42], JIIF [40], DCT [17], and CTG [23]. The proposed
architecture achieves the lowest average RMSE, demonstrating the proposed method’s
generalization ability and robustness.

Table 4. Quantitative comparisons of the ablation experiments. Reported results are average RMSE
on the noise-free Middlebury dataset for scaling factors 4, 8, and 16. Boldface indicates the best RMSE
for each evaluation, while the underline indicates the second best.

Method Average RMSE on NYU Depth v2 Dataset

Bicubic 2.36
ATGV-Net [5] 1.28

MSG [4] 1.31
RDN [7] 1.21
DSR [3] 1.34

RYN [20] 1.06
PMBA [21] 1.06
DEAF [42] 1.12

JIIF [40] 1.37
DCT [17] 1.59
CTG [23] 0.95

FCTN (Proposed) 0.91

4.3.4. Inference Time

For a DSR method to applyto real-world applications, it is often required to work
in a close-to-real-time performance. Thus, we report the inference time of the proposed
architecture compared to other competing approaches. Inference times were measured
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using an image of size 1320× 1080 pixels and the setup described in Section 4.2. We report
our results in milliseconds in Table 5

Table 5 shows that compared to traditional methods, the proposed architecture, as well
as other deep learning-based methods, provide significantly faster inference times. Moreover,
the proposed method is comparable to competing methods and achieves lower RMSE values.
In contrast, References [10,12,32] require multiple optimization iterations to obtain accurate
reconstructions, leading to slower inference times. Some methods, such as [3,32], upsample the
LR depth as an initial preprocessing step before the image is fed to the model. As a result, they
show very similar inference times regardless of the scaling factor.

Table 5. Average inference times (milliseconds) for different scaling factors.

Method x2 x4 x8 x16

Bicubic 10 10 10 10
TGV [10] 45,730 49,780 46,340 46,200
AR [12] 158,010 157,730 157,950 158,770

RDGE [32] 68,070 67,690 68,450 68,170
MSG [4] 260 300 380 420
DSR [3] 220 230 230 230

RYN [20] 460 630 720 880
CTG [23] 150 380 480 530

FCTN (Proposed) [23] 140 304 420 490

4.4. Ablation Study

In the ablation study, we test the effects of the CATB number in the CAGM and
CATL number in each CATB on model performance. Results are shown in Figure 5a,b,
respectively. It is observed that the RMSE of the reconstructed depth is positively correlated
with both hyperparameters until it becomes eventually saturated. As we increase either
hyperparameter, model size becomes increasingly prominent, and training\inference time
and memory requirements are negatively impacted. Thus, to balance the performance
and model size, we choose 6 for both hyperparameters as described in Section 4.2. CATL
numbers were evaluated with a configuration of K = 6 CATBs.

(b)(a)

Figure 5. Ablation study on different configurations of the proposed CAGM. Results are the average
RMSE on the noise-free Middlebury dataset for scaling factor 8. (a) The effect of the CATB number in
the CAGM, and (b) the effect of CATL number in each CATB.

The impact of each component in our design is evaluated via the following exper-
iments: (1) Our architecture without any guidance from the color image, denoted as
“Depth-Only”. (2) Our architecture without shifted windows in the CATL, denoted “w/o
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shift”. (3) Our architecture without the CFG module, denoted “w/o CFG”. (4) Our architec-
ture without the use of cross-attention for guidance. In this setting, we replaced the CATL
with a similar design using only self-attention with depth features as input. Features from
the color image were concatenated after every modified CATL to provide guidance. We
denote this setting as “w/o cross-attention”.

We evaluate the different designs on the Middlebury test set at scaling factors 4, 8,
and 16. We use the same CATB and CATL configuration as described in Section 4.2 in
these experiments. We summarize the results in Table 6 and observe that: (1) As expected,
using only the LR depth for DSR without guidance from a color image provides inferior
results. (2) As also observed in [47], incorporating shifted window partitioning into our
CATL improves the performance. Using shifted windows partitioning enables connections
among windows in the preceding layers, improving the representation capability of each
CATL. (3) Our CFG module provides additional high-frequency information directly to the
upsampling module. As a result, the upsampling module can reconstruct a higher quality
HR depth, and we observe that performance improves slightly. (4) We observe that using a
simple concatenation of features instead of the proposed cross-attention guidance leads to
inferior results. Incorporating the guidance from the color image via cross-attention allows
the color feature to interact elaborately with the depth features and to encode long-distant
dependencies between the two modalities.

Table 6. An analysis of the average RMSE values for different ablation experiments on the noise-free
Middlebury dataset. Boldface indicates the best RMSE for each evaluation.

Design Depth-Only w/o Shift w/o CFG w/o Cross-Attention FCTN (Proposed)

Scale Factor x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16 x4 x8 x16

RMSE 0.65 1.39 3.01 0.52 1.14 1.90 0.51 1.06 1.79 0.59 1.28 2.17 0.48 0.99 1.55

5. Conclusions

We introduce a novel transformer-based architecture with cross-attention for guided
DSR. First, a shallow feature extraction module extracts meaningful features from LR
depth and HR color images. These features are fed to a cascaded transformer module
with cross-attention, which extracts more elaborate features while simultaneously incorpo-
rates guidance from the color features via the cross-attention mechanism. The cascaded
transformer module is constructed by stacking transformer layers with shifted window
partitioning, which enables interactions between windows in consecutive layers. Using
such a design, the proposed architecture achieves state-of-the-art results on the DSR bench-
marks. At the same time, model size and inference time remain comparably small, making
our architecture usable for real-world applications.

Our future work will explore more realistic depth artifacts (e.g., sparse depth values,
misalignment between guidance and depth images, etc.). Moreover, we will examine the
proposed architecture on additional real-world continuous data acquired from sensors
mounted, e.g., on an autonomous robot.

Author Contributions: Conceptualization, I.A.; Methodology, I.A. and I.C.; Writing—original draft,
I.A.; Writing—review & editing, I.C.; Supervision, I.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the PMRI—Peter Munk Research Institute-Technion.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: MPI Sintel Dataset—[http://sintel.is.tue.mpg.de/, accessed on 15 February
2023]. Middlebury Stereo Datasets—[https://vision.middlebury.edu/stereo/data/, accessed on 15
February 2023].

Conflicts of Interest: The authors declare no conflict of interest.

http://sintel.is.tue.mpg.de/
https://vision.middlebury.edu/stereo/data/


Sensors 2023, 23, 2723 15 of 17

References
1. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al.

KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568.

2. Schamm, T.; Strand, M.; Gumpp, T.; Kohlhaas, R.; Zollner, J.M.; Dillmann, R. Vision and ToF-based driving assistance for a
personal transporter. In Proceedings of the 2009 International Conference on Advanced Robotics, Munich, Germany, 22–26 June
2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6.

3. Guo, C.; Li, C.; Guo, J.; Cong, R.; Fu, H.; Han, P. Hierarchical features driven residual learning for depth map super-resolution.
IEEE Trans. Image Process. 2018, 28, 2545–2557. [CrossRef]

4. Hui, T.W.; Loy, C.C.; Tang, X. Depth map super-resolution by deep multi-scale guidance. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 353–369.

5. Riegler, G.; Rüther, M.; Bischof, H. Atgv-net: Accurate depth super-resolution. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 268–284.

6. Song, X.; Dai, Y.; Qin, X. Deeply supervised depth map super-resolution as novel view synthesis. IEEE Trans. Circuits Syst. Video
Technol. 2018, 29, 2323–2336. [CrossRef]

7. Zuo, Y.; Fang, Y.; Yang, Y.; Shang, X.; Wang, B. Residual dense network for intensity-guided depth map enhancement. Inf. Sci.
2019, 495, 52–64. [CrossRef]

8. He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [CrossRef] [PubMed]
9. Yang, Q.; Yang, R.; Davis, J.; Nistér, D. Spatial-depth super resolution for range images. In Proceedings of the 2007 IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007;
pp. 1–8.

10. Ferstl, D.; Reinbacher, C.; Ranftl, R.; Rüther, M.; Bischof, H. Image guided depth upsampling using anisotropic total generalized
variation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013;
pp. 993–1000.

11. Jiang, Z.; Hou, Y.; Yue, H.; Yang, J.; Hou, C. Depth super-resolution from RGB-D pairs with transform and spatial domain
regularization. IEEE Trans. Image Process. 2018, 27, 2587–2602. [CrossRef]

12. Yang, J.; Ye, X.; Li, K.; Hou, C.; Wang, Y. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model.
IEEE Trans. Image Process. 2014, 23, 3443–3458. [CrossRef]

13. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

14. Kiechle, M.; Hawe, S.; Kleinsteuber, M. A joint intensity and depth co-sparse analysis model for depth map super-resolution. In
Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1545–1552.

15. Kwon, H.; Tai, Y.W.; Lin, S. Data-driven depth map refinement via multi-scale sparse representation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 159–167.

16. Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I. High quality depth map upsampling for 3d-tof cameras. In Proceedings of the
2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011;
pp. 1623–1630.

17. Zhao, Z.; Zhang, J.; Xu, S.; Lin, Z.; Pfister, H. Discrete cosine transform network for guided depth map super-resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 5697–5707.

18. Lutio, R.d.; D’aronco, S.; Wegner, J.D.; Schindler, K. Guided super-resolution as pixel-to-pixel transformation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 8829–8837.

19. Kim, J.Y.; Ji, S.; Baek, S.J.; Jung, S.W.; Ko, S.J. Depth Map Super-Resolution Using Guided Deformable Convolution. IEEE Access
2021, 9, 66626–66635. [CrossRef]

20. Li, T.; Dong, X.; Lin, H. Guided depth map super-resolution using recumbent y network. IEEE Access 2020, 8, 122695–122708.
[CrossRef]

21. Ye, X.; Sun, B.; Wang, Z.; Yang, J.; Xu, R.; Li, H.; Li, B. Pmbanet: Progressive multi-branch aggregation network for scene depth
super-resolution. IEEE Trans. Image Process. 2020, 29, 7427–7442. [CrossRef]

22. Cui, Y.; Liao, Q.; Yang, W.; Xue, J.H. RGB Guided Depth Map Super-Resolution with Coupled U-Net. In Proceedings of the 2021
IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 1–6.

23. Ariav, I.; Cohen, I. Depth Map Super-Resolution via Cascaded Transformers Guidance. Front. Signal Process. 2022, 3.. [CrossRef]
24. Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938.
25. Huang, L.; Zhang, J.; Zuo, Y.; Wu, Q. Pyramid-Structured Depth Map Super-Resolution Based on Deep Dense-Residual Network.

IEEE Signal Process. Lett. 2019, 26, 1723–1727. [CrossRef]

http://doi.org/10.1109/TIP.2018.2887029
http://dx.doi.org/10.1109/TCSVT.2018.2866399
http://dx.doi.org/10.1016/j.ins.2019.05.003
http://dx.doi.org/10.1109/TPAMI.2012.213
http://www.ncbi.nlm.nih.gov/pubmed/23599054
http://dx.doi.org/10.1109/TIP.2018.2806089
http://dx.doi.org/10.1109/TIP.2014.2329776
http://dx.doi.org/10.1109/ACCESS.2021.3076853
http://dx.doi.org/10.1109/ACCESS.2020.3007667
http://dx.doi.org/10.1109/TIP.2020.3002664
http://dx.doi.org/10.3389/frsip.2022.847890
http://dx.doi.org/10.1109/LSP.2019.2944646


Sensors 2023, 23, 2723 16 of 17

26. He, K.; Sun, J.; Tang, X. Guided image filtering. In Proceedings of the European Conference on Computer Vision, Heraklion,
Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14.

27. Liu, M.Y.; Tuzel, O.; Taguchi, Y. Joint geodesic upsampling of depth images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 169–176.

28. Lu, J.; Forsyth, D. Sparse depth super resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2245–2253.

29. Dong, W.; Shi, G.; Li, X.; Peng, K.; Wu, J.; Guo, Z. Color-guided depth recovery via joint local structural and nonlocal low-rank
regularization. IEEE Trans. Multimed. 2016, 19, 293–301. [CrossRef]

30. Ham, B.; Cho, M.; Ponce, J. Robust image filtering using joint static and dynamic guidance. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4823–4831.

31. Ham, B.; Min, D.; Sohn, K. Depth superresolution by transduction. IEEE Trans. Image Process. 2015, 24, 1524–1535. [CrossRef]
[PubMed]

32. Liu, W.; Chen, X.; Yang, J.; Wu, Q. Robust color guided depth map restoration. IEEE Trans. Image Process. 2016, 26, 315–327.
[CrossRef] [PubMed]

33. Park, J.; Kim, H.; Tai, Y.W.; Brown, M.S.; Kweon, I.S. High-quality depth map upsampling and completion for RGB-D cameras.
IEEE Trans. Image Process. 2014, 23, 5559–5572. [CrossRef]

34. Yang, J.; Ye, X.; Li, K.; Hou, C. Depth recovery using an adaptive color-guided auto-regressive model. In Proceedings of the
European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 158–171.

35. Riegler, G.; Ferstl, D.; Rüther, M.; Bischof, H. A deep primal-dual network for guided depth super-resolution. arXiv 2016,
arXiv:1607.08569.

36. Zhou, W.; Li, X.; Reynolds, D. Guided deep network for depth map super-resolution: How much can color help? In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1457–1461.

37. Zuo, Y.; Wu, Q.; Fang, Y.; An, P.; Huang, L.; Chen, Z. Multi-scale frequency reconstruction for guided depth map super-resolution
via deep residual network. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 297–306. [CrossRef]

38. de Lutio, R.; Becker, A.; D’Aronco, S.; Russo, S.; Wegner, J.D.; Schindler, K. Learning Graph Regularisation for Guided Super-
Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 1979–1988.

39. Yao, C.; Zhang, S.; Yang, M.; Liu, M.; Qi, J. Depth super-resolution by texture-depth transformer. In Proceedings of the 2021 IEEE
International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–6.

40. Tang, J.; Chen, X.; Zeng, G. Joint implicit image function for guided depth super-resolution. In Proceedings of the 29th ACM
International Conference on Multimedia, Virtual Event, China, 20–24 October 2021; pp. 4390–4399.

41. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

42. Liu, P.; Zhang, Z.; Meng, Z.; Gao, N. Deformable Enhancement and Adaptive Fusion for Depth Map Super-Resolution. IEEE
Signal Process. Lett. 2021, 29, 204–208. [CrossRef]

43. Zuo, Y.; Wang, H.; Fang, Y.; Huang, X.; Shang, X.; Wu, Q. MIG-net: Multi-scale Network Alternatively Guided by Intensity and
Gradient Features for Depth Map Super-resolution. IEEE Trans. Multimed. 2021, 24, 3506–3519. [CrossRef]

44. Liu, P.; Zhang, Z.; Meng, Z.; Gao, N.; Wang, C. PDR-Net: Progressive depth reconstruction network for color guided depth map
super-resolution. Neurocomputing 2022, 479, 75–88. [CrossRef]

45. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

46. Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. arXiv 2021, arXiv:2102.12122.

47. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021.

48. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, Nashville, TN, USA, 19–25 June 2021; pp. 6881–6890.

49. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

50. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 213–229.

51. Haris, M.; Shakhnarovich, G.; Ukita, N. Deep back-projection networks for super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1664–1673.

http://dx.doi.org/10.1109/TMM.2016.2613824
http://dx.doi.org/10.1109/TIP.2015.2405342
http://www.ncbi.nlm.nih.gov/pubmed/25769140
http://dx.doi.org/10.1109/TIP.2016.2612826
http://www.ncbi.nlm.nih.gov/pubmed/27893373
http://dx.doi.org/10.1109/TIP.2014.2361034
http://dx.doi.org/10.1109/TCSVT.2018.2890271
http://dx.doi.org/10.1109/LSP.2021.3132552
http://dx.doi.org/10.1109/TMM.2021.3100766
http://dx.doi.org/10.1016/j.neucom.2022.01.050


Sensors 2023, 23, 2723 17 of 17

52. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481.

53. Xiao, T.; Singh, M.; Mintun, E.; Darrell, T.; Dollár, P.; Girshick, R. Early convolutions help transformers see better. Adv. Neural Inf.
Process. Syst. 2021, 34, 30392–30400.

54. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301.

55. Hu, H.; Zhang, Z.; Xie, Z.; Lin, S. Local relation networks for image recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3464–3473.

56. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

57. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A naturalistic open source movie for optical flow evaluation. In Proceedings of
the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 611–625.

58. Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-resolution stereo datasets
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