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Abstract: In the field of the muscle–computer interface, the most challenging task is extracting
patterns from complex surface electromyography (sEMG) signals to improve the performance of
myoelectric pattern recognition. To address this problem, a two-stage architecture, consisting of
Gramian angular field (GAF)-based 2D representation and convolutional neural network (CNN)-
based classification (GAF-CNN), is proposed. To explore discriminant channel features from sEMG
signals, sEMG-GAF transformation is proposed for time sequence signal representation and feature
modeling, in which the instantaneous values of multichannel sEMG signals are encoded in image
form. A deep CNN model is introduced to extract high-level semantic features lying in image-form-
based time sequence signals concerning instantaneous values for image classification. An insight
analysis explains the rationale behind the advantages of the proposed method. Extensive experiments
are conducted on benchmark publicly available sEMG datasets, i.e., NinaPro and CagpMyo, whose
experimental results validate that the proposed GAF-CNN method is comparable to the state-of-the-
art methods, as reported by previous work incorporating CNN models.

Keywords: muscle–computer interface; surface electromyography; myoelectric pattern recognition;
Gramian angular field; convolutional neural networks

1. Introduction

Electromyographic signals (EMGs), which provide representations of electrical po-
tential fields, are crucial biomedical signals produced by membrane depolarization of the
muscle fibers. The well-established surface electromyography (sEMG) is a kind of EMG
signal acquired from the skin surface [1]. Traditionally, sEMG signals are used to analyze
muscle activities and assess functional diagnosis in clinical settings [2]. Recent studies have
pointed out that sEMG can be exploited as a feasible input modality for a computer to
generate a muscle–computer interface (MCI) with a wide range of applications, such as
controlling prosthetics [3], human–computer interfaces [4,5], and sign language recogni-
tion [6]. Saponas et al. achieved an accuracy of 78.0% when classifying wrist and finger
flexion via forearm sEMG sensing [7]. Huang et al. used an sEMG wristband to detect
hand–smartphone interaction, obtaining an accuracy of 82.9% for classifying fine-grained
thumb gestures such as left swipe, right swipe, tap, and long press [5]. The above studies
have demonstrated the feasibility of using forearm electromyography for MCI. As the per-
formance of traditional vision-based human–computer interaction (HCI) methods depend
on the constrained environment, e.g., indoor environment, stable lighting conditions, and
simple backgrounds [8], myoelectric pattern recognition is a ubiquitous HCI method that
has strong robustness to the environment.
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The identification of sEMG signals with regard to various motion patterns is the most
important task for MCI. Meanwhile, conventional machine learning techniques have shown
promising performance in a variety of applications [9]. However, difficulties in extracting
the meaningful handcrafted and domain-dependent features still exist in the application of
sEMG signal analysis. Recent studies in deep learning (DL) [10] show that deep networks
are able to intrinsically extract important features and better performances on large-scale
datasets [11–13] can be achieved. With advances in DL, many studies have explored the
possibility of myoelectric pattern recognition without handcraft features, which overcomes
the drawbacks of conventional machine learning methods by allowing the transformation
of data to a more abstract representation [14–16]. The main popular DL architectures that
are applied to myoelectric pattern recognition include deep neural networks (DNNs), deep
recurrent networks (DRNNs), convolutional neural networks (CNNs), autoencoders (AEs),
and deep belief networks (DBNs) [17]. Park et al. [15] built a CNN-based classification
model that obtained promising results for six common gestures, which were 12–18% higher
than the conventional machine learning techniques. Most of the approaches are data-
driven and employ the sEMG data directly as input [17]. However, sEMG is a kind of
nonstationary micro-electrical signal, which makes it hard to extract the patterns when
directly using the raw sEMG signals as the model input in deep learning. Therefore, it is
especially important to adjust the input of the deep model appropriately according to the
characteristics of electromyographic signals.

To address the problem caused by using sEMG data as the direct input for CNN learn-
ing [18,19], we propose conducting sEMG signal feature extraction after signal morphology
conversion under a DL framework.

Gramian angular field (GAF) encodes one-dimensional data into a two-dimensional
symmetrical matrix with the matrix elements defined in polar coordinates [20]. Existing
works exploited the potential of using GAF encoding time-series data into 2D images
for CNN classification in many applications, such as multivariate time-series image fore-
casting [21], fiber Gragg grating sensing [22], and electromagnetic modulation signal
classification [23]. Inspired by these works, we found that the GAF method can reflect
the combination of signals at different positions of one-dimensional data in the form of
two-dimensional data. Therefore, it would be feasible to use the GAF method to encode
multichannel sEMG signals as images, which can make the feature space more expressive
by representing relationships between the values in different sensor channels rather than
treating each channel independently. Based on the GAF method and a CNN-based model,
we designed a two-stage architecture, GAF-CNN, consisting of a 2D representation stage
and a CNN-based classification stage, to improve the accuracy of myoelectric pattern
recognition. GAF-CNN employs the GAF method to encode the instantaneous values of
multichannel sEMG signals to generate sEMG-GAF images. A deep convolutional neural
network (DCNN) model is proposed for automatic sEMG-GAF image feature extraction and
classification. It is well known that DCNN can preserve the neighborhood connection and
spatial characteristics among local regions [24]. Considering the small scale of the dataset, a
DCNN framework is constructed using an input layer, five convolutional layers, and three
fully connected layers. Batch normalization is employed instead of using max-pooling
layers after convolution to optimize the network. A dropout strategy is adopted on the two
fully connected layers to avoid overfitting. This work makes the following contributions:

1. A two-stage architecture consisting of a 2D presentation stage and a CNN-based clas-
sification stage is proposed for myoelectric pattern recognition, where the raw sEMG
signal is converted to a suitable 2D representation for better CNN feature extraction.

2. A 2D presentation method employing GAF is proposed to encode instantaneous
multichannel sEMG signals in image form, and the rationale of the proposed method
is given.

3. Evaluations on four benchmark sEMG datasets show that GAF-CNN has outstanding
classification performance compared with the state-of-the-art CNN-based myoelectric
pattern recognition methods.
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The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 describes the GAF-CNN method for gesture recognition and explains its
rationale. Section 4 presents our experimental results. Section 5 states our conclusions.

2. Related Work

Recent studies show the promise of machine learning in feature extraction, which
has frequently been used in myoelectric pattern recognition for human movement iden-
tification [17]. Conventional machine learning pipelines include data acquisition, feature
extraction, mathematical modeling, and inference. Frequently used feature extraction
methods for myoelectric pattern recognition fall into three categories: (1) time-domain
(TD) features, such as mean absolute value (MAV), root mean square (RMS), and zero
crossings (ZCs); (2) frequency domain (FD) features, such as power spectrum (PS) and
autoregressive coefficients; and (3) time–frequency domain (TFD) features, such as dis-
crete wavelet transform (DWT) and wavelet packet transform (WPT) [25]. These features
have been well explored and proved effective in myoelectric pattern recognition [26]. For
example, Fan et al. employed 12 types of commonly used EMG features to represent
object interaction and investigated their classification performance [27]. New features for
gesture recognition have been proposed to improve the classification performance, such as
active muscle regions based on the mapping relationship between hand movements and
forearm active muscle regions [11]. Conventional classification algorithms such as support
vector machine (SVM), k-nearest neighbors (k-NNs), hidden Markov models (HMMs),
decision trees, random forest, linear discriminant analysis, and artificial neural networks
(ANNs) have been explored to improve the performance of gesture recognition [12,13].
However, these methods cannot achieve high accuracy in real-world applications due
to their poor generalization ability and complex parameter adjustment process, which
depends on artificially designed extractors and professional knowledge.

In the past decade, the DL technique has undergone significant development. The deep
network can intrinsically extract effective features, enabling competitive performance on
challenging datasets [28,29]. With the advancements of deep learning, the in-depth features
of sEMG signals have been explored and are well-studied for gesture recognition [17,26].
To use the advantages of sEMG signals and deep architecture, Zhang et al. proposed a long
short-term memory (LSTM) algorithm to recognize hand gestures through multimodal
sEMG data and obtain competitive classification performance [16]. Considering the pros
and cons of CNN and LSTM, LSTM-CNN (LCNN) models were proposed to construct
autoencoders for automatic feature extraction [30]. Notably, deep convolutional neural
networks (DCNNs) can automatically extract crucial features from signals and have been
used for myoelectric pattern recognition without handcraft features. Atzori et al. [18]
proposed a concise CNN architecture based on five blocks of convolutional and pooling
layers with better classification accuracy than classical methods. Geng et al. [19] used
instantaneous sEMG images for gesture classification with 89.3% accuracy on eight types
of movements.

To further explore the correlation between specific gestures and the related sEMG
signals of muscular activities, Wei et al. proposed a multi-stream CNN architecture, which
divides the input data into small-size images and extracts effective features by convolutional
layers before further processing with fully connected layers [31]. Considering that two-
dimensional (2D) CNNs with 2D kernels cannot handle a sequence of images that carries
signals over time, Chen et al. presented a three-dimensional (3D) CNN with 3D kernels to
capture both spatial and temporal structures from sequential sEMG images. Experiments
showed that the accuracies of 3D CNN were 18.6% higher than those of 2D CNN when the
time window duration was 150 ms on a high-density sEMG dataset [32].

Recently, novel DL frameworks have been designed for myoelectric pattern recog-
nition. Demir et al. [33] proposed a deep-transfer-learning-based approach with sEMG
signals for human action classification, obtaining 98.65% accuracy, better than conventional
methods, by fine-tuning the AlexNet model. Most of the above methods focus on improv-
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ing DL models, achieving significant improvements in classification accuracy. Nevertheless,
they usually use raw sEMG signals as image input directly, lacking the exploration of a
good representation of the raw sEMG signals [17].

3. GAF-CNN

We propose a GAF-CNN method that formulates the sEMG-based gesture recognition
as the 2D data representation and CNN-based classification problems. The pipeline includes
two stages: sEMG-GAF image encoding and CNN-based classification. In the first stage,
the multi-channel sEMG values at instant sampling moments are encoded in image form
based on GAF features. Hence, the value of each point in the sEMG-GAF image indicates
the correlation between signals from two sEMG sensors. In the classification stage, a deep
CNN model is adopted to classify the sEMG-GAF images. Figure 1 shows the pipeline of
the proposed GAF-CNN method.
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3.1. Transformation from sEMG Signals to sEMG-GAF Image

After the sEMG signals have been divided into small segments with an overlapped
time window, building suitable network inputs is essential and is highly dependent on
the preferred DL architecture. The CNN-based method traditionally requires an M × N
gray image or an M × N × 3 RGB image as input. To this end, the sEMG signals must be
reshaped as 2D or 3D matrix form. Intuitively, reshaping the sEMG signals as an image
could be a solution, where a pixel of the image can be regarded as one instantaneous
value from the sEMG sensor electrode [31]. This works when high-density sEMG signals
are employed, since the construction of an sEMG image requires an adequate number of
instantaneous values acquired by high-density sEMG sensors. On the other hand, sparse
multichannel sEMG signals can be reshaped as an image form with the dimensionality
of N × L, where N is the number of electrodes and L is the duration of the sliding time
window [34]. Those mentioned works provide a method to generate sEMG images as input
for the CNN-based method. However, the construction of an appropriate sEMG-based
image that can be suitable for both high-density sEMG signals and sparse sEMG signals
remains an unsolved problem.

We present an effective approach to encode sEMG signals as images via the GAF
method [20]. Unlike the use of the GAF method to convert time-series data to images, we
use it for imaging instantaneous sEMG signals on sensor channels, i.e., at each sampling
moment. The sEMG signals of C sensor channels are converted to an image with the size
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of C × C, which we call an sEMG-GAF image. In the sEMG-GAF encoding stage, one
segment of sEMG signals is given by

X = [

x1
1 x1

2 . . . x1
L

x2
1 x2

2 . . . x2
L

...
...

. . .
...

xC
1 xC

2 . . . xC
L

], (1)

where C is the number of sEMG sensor channels and L is the length of sEMG segments.
We rescaled X into the interval [−1, 1]:

x̃c
i =

(xc
i −max(X) +

(
xc

i −min(X)
)

max(X)−min(X)
, (2)

where c is the channel index and i is the sampling moment. Figure 2a demonstrates the
radar map of the normalized 10-channel sEMG values at the selected moment.
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Figure 2. The proposed encoding procedure of GAF conversion on a selected moment: (a) normalized
10-channel sEMG values in radar map; (b) represented angular values in the polar coordinate system;
and (c) demonstration of sEMG-GAF image after signal conversion. The different colors in (c) indicate
relationships between the instant values in different sensors.

In this way, the rescaled sEMG signals X can be represented in polar coordinates by
encoding x̃c

i as the angular cosine:

{θ
c
i = arccos

(
x̃c

i
)
,−1 ≤ x̃c

i ≤ 1, x̃c
i ∈ X̃

r = c
C , 1 ≤ c ≤ C

, (3)

where r is the radius that regularizes the span of the polar coordinate system. As c increases,
θc

i , which can be considered a novel representation of multichannel sEMG signals at moment
i, warps among different angular points on the spanning circles in the polar coordinate.
Figure 2b demonstrates the represented angular values in the polar coordinate system at
a selected moment. Each angular point indicates the represented angular value of one
sEMG sensor. The increment of the angular value can be used to present the relationship
between two instant sEMG values. It is clear that the angular increment is bijective, as
cos
(
φc

i
)

is monotonic when φc
i ⊆ [0, π], which means that the proposed mapping produces

only one result in the polar coordinate system and has a unique inverse mapping at a
given channel and moment. Additionally, unlike Cartesian coordinates, polar coordinates
preserve absolute temporal relationships. Hence, polar coordinates are a good choice for
the 2D representation of sEMG values.
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After transforming the rescaled sEMG signal to polar coordinates, the angular incre-
ment can be calculated by the trigonometric sum between each point to identify the channel
correlation of different values in sensor channels. Therefore, we define the inner product as
cos
(

θ
p
i + θ

q
j

)
, where p and q are the channel indices. In this way, the sEMG-GAF image at

moment i can be defined using a Gram matrix:

sEMG−GAFi =


cos
(
θ1

i + θ1
i
)

. . . cos
(
θC

i + θ1
i
)

cos
(
θ1

i + θ2
i
)

. . . cos
(
θC

i + θ2
i
)

...
. . .

...
cos
(
θ1

i + θC
i
)

. . . cos
(
θC

i + θC
i
)
. (4)

Figure 2c demonstrates a sEMG-GAF image and different colors in the image indicate
relationships between the instant values in different sensors.

To fulfill the data preprocessing requirement at the training and classification stages,
the sEMG signals are formed into segments by a sliding time window. One segment of
sEMG signals X with duration time L can be represented as the sequence

sEMG−GAFs = {sEMG−GAF1, . . . , sEMG−GAFi, . . . , GAFL}. (5)

Figures 3 and 4 demonstrate sequential sEMG-GAF images from the NinaPro DB1
and CagpMyo DB-a datasets, respectively. Slight changes between adjacent frames of the
sEMG image represent changes in the sEMG signal over time.
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3.2. Construction of ConvNet Architecture

DCNN can effectively extract crucial spatial features from the data and has shown ex-
emplary performance in several computer vision and pattern recognition competitions [35].
It is also a competitive classifier in many applications. A CNN-based architecture is es-
sential to achieve good classification accuracy. Krizhevsky et al. [36] proposed AlexNet,
which can enhance the learning capacity of a CNN by making the network deeper through
various parameter learning strategies. The AlexNet architecture includes five convolution
layers and three fully connected layers, which make a CNN applicable to classification
tasks with diverse categories of images [37].

To design a classification network for the sEMG-GAF image, an AlexNet architecture is
introduced to the proposed framework to construct an appropriate DL model for extracting
crucial features from sEMG-GAF images. As shown in Figure 5, the proposed network
consists of an input layer, five convolutional layers, and three fully connected layers. The
size of the input layer should be adjusted according to the size of the input data. In our
work, the input data size is C × C × L, where C is the number of sEMG sensor channels
and L is the length of the sliding time window. The kernel size and stride applied on the
input layer are resized to adapt to the following convolutional layers. For example, the size
of the input is 10 × 10 × 20 under a sliding time window with a length of 200 ms from
a dataset with 10 channels and a sampling rate of 100 Hz. Therefore, the convolutional
kernel size will be set to 3 × 3 with a zero-padding size of 1 × 1, and the stride should be
set to 1. In addition, a dropout strategy with a probability of 0.5 on the two fully connected
layers is adopted to prevent overfitting. With AlexNet, we employ batch normalization
instead of using max-pooling layers after the convolution operation on each convolutional
layer to optimize the network. Batch normalization can enhance the model’s generalization
ability to reduce the dependence on parameter initialization, accelerate network training,
and reduce the computational cost.
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Figure 5. The architecture of the proposed five-layer convolutional neural network consists of an
input layer, five convolutional layers, and three fully connected layers. The network’s input is a
clip of a sequence of sEMG images with size C × C × L, where C is the number of sEMG sensor
channels, and L is the duration of the sliding time window. Outputs of network are class labels of
hand gestures. The dotted line between the input layer and the first convolutional layer denotes the
kernel size. Therefore, the stride applied to the input layer should differ according to the size of an
input image.

3.3. Rationale of the GAF-CNN Method

We discuss the rationale of the GAF-CNN method. It is well known that CNNs
can not only preserve the neighborhood relations and spatial locality of an input im-
age in latent higher-level feature representations but also can scale well to realistic-sized
high-dimensional images in terms of computational complexity, since the number of free
parameters that describe their shared weights does not depend on the input dimension-
ality [20]. Although some works [18,19,31] have shown the effectiveness of CNN models
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on myoelectric pattern recognition, those methods directly rearrange the sEMG signals
in an image form. However, they are not able to fully leverage the advantages of CNNs.
Consequently, how to construct an excellent 2D representation of multichannel sEMG
signals for CNN learning is the essential point.

We propose a GAF-CNN method to formulate sEMG-based gesture recognition as
a multichannel sEMG image CNN-based classification problem. The GAF method is in-
troduced for the 2D representation of multichannel sEMG signals. Unlike conventional
GAF-based applications that encode time-series signals as images, we encode the multi-
channel sEMG signals on the channel dimension for two reasons. On one hand, the raw
sEMG signals in each channel are nonstationary, nonlinear, stochastic, and unpredictable,
making the correlations of time stamps during the process of raw sEMG signals not un-
suitable for CNN-based gesture recognition. Our preliminary experimental results show
that the performance of the CNN model is extremely poor and even cannot converge in
most cases while applying the GAF method to convert sEMG signals on time series. On
the other hand, the activation levels of different muscles will maintain relatively stable
values while keeping the same hand gesture. Patterns of multichannel sEMG signals
between instant values in different sensor channels should be easier to extract compared
to the case in time series. Encoding multichannel signals as images can make the feature
space more expressive by representing relationships between the values in different sensor
channels rather than treating each channel independently. Figure 6 shows sEMG-GAF
images obtained from different gestures at a specified moment. Different image texture
patterns in sEMG images can be extracted easily. Therefore, encoding the instantaneous
values as the image could be a good 2D representation of multichannel sEMG signals for
CNN-based classification.
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Figure 6. Demonstration of sEMG-GAF images of different gestures from NinaPro DB1 dataset (a–h)
and CapgMyo DB-a dataset (i–p) on the specified moment. The gestures include thumb up as shown
in (a) and (i), extension of index and middle, flexion of the others as shown in (b) and (j), flexion of
ring and little finger, extension of the others as shown in (c) and (k), thumb opposing base of little
finger as shown in (d) and (l), abduction of all fingers as shown in (e) and (m), fingers flexed together
in a fist as shown in (f) and (n), pointing index as shown in (g) and (o), and adduction of extended
fingers as shown in (h) and (p). The different colors in sEMG-GAF images indicate relationships
between the instant values in different sensors. The color difference between the images of different
gestures indicates the degree of differentiation of gestures.

In addition, we consider sEMG-GAF image construction from a mathematical rationale.
As described in Section 3.1, we use the Gram matrix to construct the sEMG-GAF image. This
is a helpful tool in linear algebra and geometry, which has been frequently used to compute
the linear dependence of a set of vectors [20]. The mathematics of this method is intrinsically
linked to the inner product and the corresponding Gram matrix. The inner product is an
operation between two vectors to measure their similarity. In this work, the Gram matrix is
an sEMG-GAF image. Since the channel index increases as the position moves from top-left
to bottom-right, the correlation patterns between global channel information are encoded
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in the geometry of the matrix. As a result, patterns between gestures and the related
muscles in sEMG-GAF images can be well extracted and represented by CNN models. It is
noteworthy that the geometric characters of the sEMG-GAF image meet the classification
capability of a CNN, which enables it to easily extract the patterns in the image.

To summarize, GAF-CNN employs the GAF method to exploit a 2D representation
of multichannel sEMG signals for CNN-based classification. Compared with existing
work [18,19,31] that directly rearranges the values of sEMG signals for classification, GAF
representation has several advantages. First, it provides a 2D representation and makes the
multichannel sEMG signals suitable as input for the CNN model. Second, it encodes the
global channel correlations of sensors into local relationships and preserves the temporal
dependency of the input image, so as to facilitate extraction by the CNN of gesture patterns
in sEMG-GAF images. Finally, it is worth noting that instant values in the sensor channels
are highly correlated with the collaboration of muscles, which are used for gesture control.

4. Experiments
4.1. Dataset Description

We discuss the four publicly available benchmark datasets used in the experiment:
NinaPro DB1 [2], NinaPro DB2 [2], CapgMyo DB-a [38], and CSL-HDEMG [39]. For all
datasets, the sEMG sensors were placed on various muscle locations on the upper limbs.
We describe each dataset as follows:

1. NinaPro DB1 [2] consists of sEMG signals extracted from 27 intact subjects, captured
with 10 sEMG electrodes (8 placed around the forearm, and 1 each on the main activity
spots of the large flexor and extensor muscles of the forearm) at a 100 Hz sampling
rate. The dataset has 52 gestures, each executed in 10 trials for 3–4 s.

2. NinaPro DB2 [2] consists of sEMG signals extracted from 40 intact subjects while
performing finger gestures and grasping objects. The signals were sampled at a rate
of 2000 Hz. During acquisition, subjects were asked to repeat movements with the
right hand, each repetition lasting 5 s, followed by 3 s of rest. The protocol included
six repetitions of 49 different movements (plus rest).

3. CapgMyo Db-a [38] is a frequently used high-density sEMG dataset, which was
recorded with an 8 × 16 electrode grid wrapped around the right forearm, including
eight isometric and isotonic finger gestures acquired from 18 healthy subjects. The
128-channel signals were band-pass filtered at 20–380 Hz with a sampling rate of 1000
Hz. Each subject performed 10 trials of each gesture, holding each for 3–5 s.

4. CSL-HDEMG [39] consists of high-density sEMG signals recorded at a sampling rate
of 2048 Hz using an electrode array arranged in an 8 × 24 grid. The dataset includes
27 finger gestures performed by five subjects in five recording sessions, recording
each gesture 10 times in each session.

4.2. Data sEMG-GAF Transformation

As discussed in Section 3.1, instantaneous sEMG signals with C sensor channels on
each sampling moment were converted to an sEMG-GAF image with a size of C × C before
training and prediction. Table 1 shows the sizes of the converted sEMG-GAF image for each
dataset. Taking one instance, sEMG signals in NinaPro DB1 were captured with 10-channel
sEMG electrodes. Therefore, each converted sEMG-GAF image had a size of 10 × 10, and
the input size for the proposed model was 10 × 10 × 1. For sequential sEMG-GAF images,
the interval of each frame was equal to the time segmentation of the sEMG signal series.
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Table 1. Size specification of the converted sEMG-GAF image for each dataset.

Datasets Sensor Channels sEMG-GAF Image Sizes Frame Interval

NinaPro DB1 10 10 × 10 10 ms
NinaPro DB2 12 12 × 12 0.5 ms

CapgMyo Db-a 128 128 × 128 1 ms
CSL-HDEMG 192 192 × 192 0.49 ms

4.3. Experimental Setup

For each subject, we evaluated inter-session classification accuracies, where the pro-
posed model was trained on 70% of the samples and evaluated on the remaining 30%.
For the training samples, we used a data augmentation strategy that replaces 10% of each
sample with data from other samples with a probability of 50%. In this way, random
disturbance could be added to the training data to prevent overfitting. Moreover, since the
network training requires a large-scale labeled dataset, we executed the data augmentation
strategy three times.

To evaluate the performance of the GAF-CNN method, we followed the accuracy
calculation rule applied in [29] and [30], i.e., using the instantaneous sEMG images for
training and classification first, and then employing a majority voting strategy to calculate
classification accuracies over the specified length time window, e.g., 150 ms and 300 ms.
Therefore, the input sizes of NinaPro DB1, NinaPro DB2, CapgMyo Db-a, and CSL-HDEMG
were 10 × 10 × 1, 12 × 12 × 1, 128 × 128 × 1, and 192 × 192 × 1, respectively.

Since the GAF-CNN method can handle the input size of sEMG signals with different
sensor channel amounts and various sliding windows as presented in Section 3.2, we
also conducted experiments both using a sliding window strategy and a voting strategy
for classification accuracy calculation on datasets captured with low sampling rates, i.e.,
NinaPro DB1. For NinaPro DB1, we used an input size of 10 × 10 × L, where the amount
of the sensor channel is 10 and the L is the length of the sliding window of 10 ms, 100
ms, and 200 ms, corresponding to a single frame, 10 frames, and 20 frames of sEMG-GAF
images, respectively.

Based on the experimental results, the classification accuracy was calculated for each
dataset as

Classification Accuracy =
Numbers of correct classifications

Total number of classifications
× 100. (6)

The proposed GAF-CNN method was implemented based on the Keras 1.18.5 plat-
form, written in Python and capable of running on top of TensorFlow. Experiments were
conducted on a computer equipped with one Nvidia GPU GTX 3090 with 64 GB RAM, and
an Intel CPU i9 9900 k.

5. Results and Discussion
5.1. Role of Input Sizes

The proposed GAF-CNN method was analyzed with respect to the performance using
sliding window and voting strategies.

For the low-density dataset, we tried both sliding windows and voting strategies.
Figure 7 shows the recognition accuracy comparison between using sliding windows and
voting strategies in NinaPro DB1. When using sliding windows of 10 ms, 50 ms, 100 ms,
150 ms, and 200 ms, the recognition accuracies of 71.2%, 83.9%, 84.0%, 84.6%, and 85.5%
were achieved. Since the sampling frequency is 100 Hz, the recognition accuracy of 71.2%
on a sliding window of 10 ms can be considered as instantaneous recognition accuracy.
Based on the instantaneous recognition accuracy, we employed a majority voting strategy
to re-calculate the accuracies over time windows of 50 ms, 100 ms, 150 ms, and 200 ms, by
which we achieved accuracies of 75.3%, 79.6%, 80.7%, and 82.2%, respectively. Figure 8
further compares the accuracy of each subject when using a single frame, a majority voting
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time window of 200 ms, and a sliding segmented time window of 200 ms in NinaPro DB1.
The average classification accuracy of 71.2% was achieved when using every single frame
as one sample. Based on this result, we applied a majority voting strategy over 200 ms to
calculate the accuracy for each subject, and an average accuracy of 80.1% was obtained.
As a comparison, the classification accuracy achieved by the sliding segmentation time
window of 200 ms was 85.5%, which is significantly higher than the case calculated by
a voting time window of 200 ms using a single frame. As a result, we believe that the
majority voting strategy based on a single frame could lose information on the time domain
of the myoelectric pattern. Therefore, we only report the recognition accuracies based on
the sliding window strategy for NinaPro DB1.
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For the high-density datasets, we employed a voting strategy for recognition accuracy
calculation as in the existing works [19,31], since there are too many frames for the input of
a CNN model even in a small sliding window. For instance, the window length of 100 ms
contains 100 frames of sEMG-GAF images in the CapgMyo DB-a dataset, which could be
an unbearable burden for the input of the CNN model.

5.2. Training Process

The CNN model was initialized with randomized weights and trained using stochastic
gradient descent (SGD) with a data batch size of 512 for all experiments. For fine-tuning
the CNN model, the initial learning rate was assigned as 0.05 with a decay rate of 0.5.
The initial learning rate was chosen large enough to accelerate the learning process in the
beginning. The epoch number was set to 60 for dataset NinaPro DB1, and 30 for other
datasets. Figures 9 and 10 show the training progress of the fine-tuned CNN model for the
low-density dataset NinaPro DB1 and the high-density dataset CapgMyo DB-a, respectively.
The left shows the deviation i the accuracies on different training epochs, and the right
shows the loss deviations in different training epochs. It is worth mentioning that 70% data
were used for fine-tuning the AlexNet model, and the remaining 30% was used for testing
the fine-tuned CNN model.
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5.3. Evaluation on Recognition Accuracy

We evaluated the proposed GAF-CNN method on four publicly available datasets. The
classification accuracies on a single frame of an instantaneous sEMG image were 71.0% on
NinaPro DB1, 77.8% on NinaPro DB2, 45.0% on CSL-HDEMG, and 90.2% on CapgMyo DB-
a, respectively. We found that data augmentation could significantly improve classification
accuracies, achieving 71.2% on NinaPro DB1, 79.8% on NinaPro DB2, 46.3% on CSL-
HDEMG, and 93.3% on CapgMyo Db-a, respectively, as well as an average improvement
of 1.7%.

Based on the instantaneous classification results, the recognition accuracies could
be improved with a majority voting strategy. Figure 11 shows the recognition accuracies
over different voting windows on high-density datasets of NinaPro DB2, CSL-HDEMG,
and CapgMyo DB-a. It is clear that the recognition accuracies grew when larger voting
windows were applied. For example, a classification accuracy of 93.3% was achieved on an
instantaneous sEMG image on CapgMyo Db-a, and 99.5%, 99.7%, and 99.8% by majority
voting over 40 ms, 150 ms, and 300 ms, respectively.
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Figure 11. The recognition accuracies over different voting windows on high-density datasets
NinaPro DB2, CSL-HDEMG, and CapgMyo DB-a. The recognition accuracies grow up when larger
voting windows are applied.

5.4. Performance Comparison

To evaluate the performance of the proposed GAF-CNN method, we compared the
experimental results with the state of the art as reported by previous work incorporating
CNN models, which include a benchmark classifier with a handcrafted feature set, single-
stream CNN by Atzori et al. [2], multi-stream CNN by Wei et al. [31], and 3D CNN by Chen
et al. [32]. Single-stream CNN by Atzori et al. [2] and multi-stream CNN by Wei et al. [31]
are popular 2D feature-based CNN methods, which employ the sEMG data as the direct
input for the 2D CNN model. Table 2 presents the classification accuracies obtained by
training and subsequently using the majority voting strategy to calculate the accuracies of
the specified lengths of time windows on different sources of sEMG data.
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Table 2. Classification accuracies achieved by GAF-CNN when evaluated on publicly available sEMG
datasets, along with the state of the art as reported by previous work incorporating CNN models.
The first row indicates the in-use datasets, and the second row indicates the experimental conditions
for sliding window lengths. The bold font indicates the best result under the same conditions
in comparisons.

NinaPro DB1 NinaPro DB2 CSL-HDEMG CapgMyo DB-a

100 ms 200 ms 100 ms 200 ms 150 ms 300 ms 150 ms 300 ms

Benchmark classifier
with handcrafted
feature set

- 75.3% from [2] - 75.2% from [2] - - 99.0% from [40] -

Single-stream CNN
by Atzori et al. [2] - 66.6% - 60.3% - - 99.5% -

Multi-stream CNN
by Wei et al. [31] 83.4% 85.0% - - 93.6% 95.4% 99.7% 99.8%

3D CNN by Chen
et al. [32] - - - - 90.7% - 98.6% -

Proposed GAF-CNN 83.9% 85.5% 79.0% 80.2% 94.8% 95.9% 99.7% 99.8%

Evaluations were also performed on the sparse sEMG datasets. The proposed GAF-
CNN achieved classification accuracies of 83.9% over the window size of 100 ms and 85.5%
over the window size of 200 ms, respectively, on NinaPro DB1. For NinaPro DB2, GAF-CNN
achieved the classification accuracies of 79.0% and 80.2%, respectively. The experimental
results show that the GAF-CNN method outperformed the CNN-based methods, including
single-stream CNN [2] and multi-stream CNN by Wei et al. [31].

Regarding the evaluations performed on the high-density sEMG datasets, GAF-CNN
showed comparable performances to all compared methods. Classification accuracies of
95.0% and 96.1% were achieved on CSL-HDEMG over window sizes of 150 ms and 300 ms,
respectively. For CapgMyo DB-a, corresponding classification accuracies of 99.7% and
99.8% were achieved.

We also compared the proposed method with a 3D CNN-based method [32] on CSL-
HDEMG and CapgMyo DB-a. The 3D CNN-based method [28] exploited the raw sEMG
data with a cube size of l × 8 × 16 as the model input, where l was the sliding window
length. Therefore, it could not identify the instantaneous sEMG signals, and it used
significantly more computation when the sliding window became longer, while GAF-CNN
achieved higher classification accuracy on the reported voting windows. For example,
while using a sliding window length of 150 ms, GAF-CNN achieved a 4.3% (95.0% vs.
90.7%) higher accuracy on CSL-HDEMG, 1.1% (98.6% vs. 99.7%) higher on CSL-HDEMG,
and 1.1% (98.6% vs. 99.7%) higher on CapgMyo DB-a, respectively, than those reported by
Chen et al. [32].

6. Conclusions

We present a two-stage CNN-based architecture to effectively extract patterns from
complex sEMG signals to improve the accuracy of myoelectric pattern recognition. Mul-
tichannel sEMG signals are encoded to sEMG-GAF image series by the GAF method so
as to map the relationship between hand movements and active forearm muscle regions.
Thus, the correlation patterns between individual muscles of specified hand movements
could be thoroughly learned by the defined CNN model. To evaluate the effectiveness of
the proposed method, we conducted extensive experiments on sparse and high-density
sEMG datasets under sliding time windows and majority voting time windows, which
showed that GAF-CNN achieves great performance on classification accuracy. Evaluation
results on four publicly available sEMG datasets show that GAF-CNN outperforms the
state-of-the-art CNN-based myoelectric pattern recognition methods.

In the future, we will improve the GAF-CNN-based myoelectric pattern recognition
method in two ways: (1) A concise and practical deep CNN model for training and
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classification can be employed. We believe the classification accuracy can be improved
by advanced DL techniques, such as deep transfer learning. (2) A CNN-based model
can be employed to focus on the processing of sEMG data, which are temporal signals.
Novel temporal models, such as R-CNN and LSTM [41], can be employed to exploit more
time-domain features in myoelectric pattern recognition.
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33. Demir, F.; Bajaj, V.; Ince, M.C.; Taran, S.; Şengür, A. Surface EMG signals and deep transfer learning-based physical action

classification. Neural Comput. Appl. 2019, 31, 8455–8462. [CrossRef]
34. Asif, A.R.; Waris, A.; Gilani, S.O.; Jamil, M.; Ashraf, H.; Shafique, M.; Niazi, I.K. Performance evaluation of convolutional neural

network for hand gesture recognition using EMG. Sensors 2020, 20, 1642. [CrossRef]
35. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.

Intell. Rev. 2020, 53, 5455–5516. [CrossRef]
36. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2017, 60, 84–89. [CrossRef]
37. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.; Awwal, A.S.; Asari, V.K. The history

began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164.
38. Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Geng, W. Surface EMG-based inter-session gesture recognition enhanced by deep domain

adaptation. Sensors 2017, 17, 458. [CrossRef] [PubMed]
39. Amma, C.; Krings, T.; Böer, J.; Schultz, T. Advancing muscle-computer interfaces with high-density electromyography. In

Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of China, 18–23
April 2015; pp. 929–938.

40. Khushaba, R.N.; Al-Timemy, A.H.; Al-Ani, A.; Al-Jumaily, A. A framework of temporal-spatial descriptors-based feature
extraction for improved myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1821–1831. [CrossRef]
[PubMed]

41. Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN-RNN architecture for
sEMG-based gesture recognition. PLoS ONE 2018, 13, e0206049. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fnbot.2016.00009
http://doi.org/10.1038/srep36571
http://doi.org/10.1109/JSEN.2022.3193920
http://doi.org/10.3390/e24050700
http://doi.org/10.1109/TBME.2008.919734
http://doi.org/10.1016/j.eswa.2013.02.023
http://doi.org/10.1145/3287039
http://doi.org/10.1016/j.neucom.2015.09.116
http://doi.org/10.1093/bib/bbw068
http://www.ncbi.nlm.nih.gov/pubmed/27473064
http://doi.org/10.1016/j.patrec.2017.12.005
http://doi.org/10.3390/s20041201
http://doi.org/10.1007/s00521-019-04553-7
http://doi.org/10.3390/s20061642
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1145/3065386
http://doi.org/10.3390/s17030458
http://www.ncbi.nlm.nih.gov/pubmed/28245586
http://doi.org/10.1109/TNSRE.2017.2687520
http://www.ncbi.nlm.nih.gov/pubmed/28358690
http://doi.org/10.1371/journal.pone.0206049
http://www.ncbi.nlm.nih.gov/pubmed/30376567

	Introduction 
	Related Work 
	GAF-CNN 
	Transformation from sEMG Signals to sEMG-GAF Image 
	Construction of ConvNet Architecture 
	Rationale of the GAF-CNN Method 

	Experiments 
	Dataset Description 
	Data sEMG-GAF Transformation 
	Experimental Setup 

	Results and Discussion 
	Role of Input Sizes 
	Training Process 
	Evaluation on Recognition Accuracy 
	Performance Comparison 

	Conclusions 
	References

