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Abstract: The first years of an infant’s life represent a sensitive period for neurodevelopment where
one can see the emergence of nascent forms of executive function (EF), which are required to support
complex cognition. Few tests exist for measuring EF during infancy, and the available tests require
painstaking manual coding of infant behaviour. In modern clinical and research practice, human
coders collect data on EF performance by manually labelling video recordings of infant behaviour
during toy or social interaction. Besides being extremely time-consuming, video annotation is
known to be rater-dependent and subjective. To address these issues, starting from existing cognitive
flexibility research protocols, we developed a set of instrumented toys to serve as a new type of task
instrumentation and data collection tool suitable for infant use. A commercially available device
comprising a barometer and an inertial measurement unit (IMU) embedded in a 3D-printed lattice
structure was used to detect when and how the infant interacts with the toy. The data collected
using the instrumented toys provided a rich dataset that described the sequence of toy interaction
and individual toy interaction patterns, from which EF-relevant aspects of infant cognition can be
inferred. Such a tool could provide an objective, reliable, and scalable method of collecting early
developmental data in socially interactive contexts.

Keywords: instrumented toys; ecological behavioural assessment; executive function development;
inertial motion detection; barometric force sensing; 3D printing

1. Introduction

Executive functions (EFs) are higher-order cognitive control mechanisms that are
commonly conceptualised as a triad of mental skills comprising inhibitory control, working
memory, and cognitive flexibility [1]. These mental abilities support complex thinking
skills, such as reasoning and creative problem-solving [2], and influence the development
of socioemotional competencies, such as the Theory of Mind [3]. They are considered
essential for mental and physical health [4–6].

Cognitive flexibility refers to switching between tasks, rules or dimensions and adapt-
ing one’s behaviour to a changing environment [7,8]. Categorisation tasks test an infant’s
ability to flexibly categorise objects based on different dimensional features (or attentional
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sets), such as shape versus material [9,10]. An infant’s mental categorisation of objects
can be inferred from a behavioural measure of sequential touching. If infants sequentially
touch objects from the same category (e.g., balls) more often than expected by chance, it is
inferred that they are doing so because they perceive these objects to belong to the same cat-
egory [11–13]. Horst and colleagues (2009) [14] found that 14–18-month-old infants could
flexibly adapt their categorisation of objects by either a perceptually salient dimension of
taxonomic distinction (e.g., shape) or a less salient dimension (e.g., deformability). An
example study protocol for this task is available at this URL: https://psyarxiv.com/dejns.

Changes in the pattern of an infant’s object touch sequences can index mental set-
shifting, i.e., shifts in the mental dimensional set that infants use for categorisation, such as
shape or compressibility. One common performance measure is mean run length (MRL),
where run lengths are the number of touches in a row to objects from the same category
(i.e., shape). MRLs are calculated by dividing the total number of touches by the total
number of runs across all categories [15]. The calculated MRLs are then compared against
a Monte Carlo simulation’s average “random” sequence lengths to assess performance
against chance [14]. In addition to these classic measures, newer indices based on the
conditional probability of infant touch sequences may provide further insight into the
cognitive strategies adopted by infants during this task.

However, to detect sequences of object touches made by infants, these events must
first be manually extracted and coded from video footage by a trained human experimenter.
Furthermore, it is possible to measure the effect of maternal scaffolding on infant mental
set-shifting via the introduction of a brief period of maternal social interaction during which
the mother demonstrates object compressibility to the infant. The quantification of maternal
behaviour during this period of social interaction similarly relies on the hand-coding of
relevant behaviour.

Accordingly, this paper presents the design and validation of a set of instrumented
toys as an objective, reliable, and scalable form of cognitive flexibility task instrumentation
and a behaviour measurement tool that can complement and accelerate manual means
of data coding (Figure 1). It can extract typically coded measures, such as when a toy
is touched, how long the infant interacts with it, and the overall touching sequence. We
can additionally measure squeezing patterns that the infants exhibit to validate mental
set-shifting from shape-based to material-based categorisation. Such instrumented toys
may, in the future, inform the development of scalable quantitative measurement tools and
screening methods for the assessment of the early development of executive function skills
in young children.

Figure 1. Set of instrumented toy prototypes.

2. Functional, Technical, and Physical Specifications
2.1. Requirements and Existing Setup

To evaluate mental set-shifting in infants during the object categorisation task, the
number and sequence of touches of each object by the infant need to be identified. The
current methodology relies on human coders manually extracting these touch sequences
by watching video recordings of infants playing with toys. The set of eight toys comprises
two hard balls (79 g), two soft balls (23 g), two hard cubes (80 g), and two soft cubes (5 g)
(Figure 2). All the cubes have sides measuring 50 mm, and all the spheres have diameters
measuring 55 mm and are all different colours. A latent factor currently not measured,

https://psyarxiv.com/dejns
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which could be useful in reinforcing the identification of mental set-shifting in infants
based on the less salient dimension of deformability, would be the squeezing patterns of
the infant’s grasp on the toys.

Figure 2. Results of human pose tracking and object detection in object categorisation task videos.
(Image used with specific parental consent).

2.2. Detecting Toy Interaction

To scale up the object categorisation task for lab-based and ecological environments,
we need to automatically detect when and how an infant interacts with the toys. Motion
tracking enables the desired automatic extraction of interaction and motion patterns. This
can be implemented using various technological solutions, as shown in [16]; however, not
all solutions are suitable for use in ecological environments. We also need to keep costs low
and ensure the system is easy to set up and manage. Based on technological assessments to
identify suitable techniques for motion tracking, optical and inertial sensing seem to be the
most favourable and widely used [17,18].

Optical markerless methods can be used on recorded videos that are part of the existing
object categorisation task paradigm. Combining human pose detection, object detection,
and multi-object tracking algorithms, key points can be detected and tracked throughout
the video (Figure 2) [18–20]. However, the accuracy of the underlying detection algorithms
determines the performance, which suffers from the issue of occlusions. It also requires a
structured environment restricted to the area within the camera’s field of view.

Alternatively, inertial measurement unit (IMU)-based motion and orientation tracking
eliminate line of sight problems and structured environment requirements, making it more
appealing from an ecological perspective. These methods are a compact, low-cost, and
robust way to detect the motion and orientation of objects. They have been extensively
used in lab-based and ecological studies of infant motor development [21–23] and are the
ideal method to detect motion and interaction for our application.

2.3. Detecting Toy Squeezing

To detect the squeezing of the toys, we need to detect the forces applied to them using
force, pressure, or tactile sensors. Several different working principles for such sensors were
explored by [24–26] and have been used in previous infant-related research. A sensorised
ball designed by Campolo et al. [27] used quantum tunnelling composites (QTC), which
change its electrical resistance based on changes in applied force [28] in order to detect
grasping patterns during manipulation. Cecchi et al. [29] incorporated piezoresistive
pressure sensors and flexible force sensing resistor (FSR) sensors in sensorised toys to
measure infants’ reaching and grasping. Serio et al. [30] used pressure sensors connected
to air chambers to measure the amplitude of the force applied for quantitative monitoring
and measuring infants’ motor development.

Tenzer and Jentfot [31,32] developed a versatile, low-cost, and sensitive tactile sen-
sor using commercial off-the-shelf MEMS barometers, and they commercialized it as
TakkTile [33]. It has been used in robotics by Ades et al. [34] and Koiva et al. [35] to sense
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grasping events using robotic grippers. The working principle of the MEMS barometer-
based tactile sensor is the communication of surface contact pressure within a layer of
rubber to the ventilation hole of the sensor and, thus, to the MEMS transducer. Similarly,
Takada et al. [36] and Quinn et al. [37] have used a waterproof mobile device’s built-in
barometer to measure touch force, which works on a similar principle. When an airtight
or waterproof device is touched, the distorted surface changes the air pressure inside that
device and, thus, changes the built-in barometer value [36,37]. This ability to detect forces
through changes in internal pressure makes barometric tactile sensing suit our requirements
for a low-cost, versatile, and sensitive way to detect squeezing forces on the toys.

2.4. Proposed Platform

For the object categorisation task, balls and cubes help assess an infant’s cognitive flexibil-
ity. The selected sensors need to be integrated into a platform that can be used with minimal
alterations to existing paradigms. We proposed using instrumented toys to measure the
development of EF in infants in a scalable manner in lab-based and ecological environments.

Campolo et al. [27] designed a sensorised ball to analyse the development of percep-
tual and motor skills in ecological environments. IMUs have been embedded in toys to
assess spatial cognition [21,22,38] and detect possible autism spectrum disorders (ASD)
at an early stage [23]. Pressure and force sensors were used to study infants’ grasping
actions [29,30,39]. A whole suite of instrumented toys was developed to provide early
intervention for infants at risk for neurodevelopmental disorders and reduce parental
stress [40,41].

These examples demonstrate the viability of instrumented toys for integrating sensors
to assess infant development. However, instrumented toys targeted explicitly at measuring
the development of EF in infants are yet to be developed, and a need exists for such tools.

3. Instrumented Toy Design and Fabrication
3.1. Sensor Core

Using commercially available sensors, particularly in infant behavioural research
tool development, has the advantage of being certificated for public use while ensuring
high quality and safety standards are met. These certifications reduce the potential risk
of harm when using instrumented toys that contain sensors and batteries in particular. It
allows us to leverage existing expertise in sensor development while focusing on designing,
developing, and deploying instrumented toys at scale without compromising accuracy.

We used Physilog 6® (P6), a commercial off-the-shelf sixth-generation wearable motion
sensor platform produced by MindMaze Assessments (Figure 3). It comprises an inertial
measurement unit (IMU) with nine degrees of freedom (DoF) and a barometer that is
typically used for human motion and gait analysis [42,43]. Its versatility allowed us to
capture, measure, and analyse the necessary parameters for detecting the touching and
squeezing of the toys during the object categorisation task.

Figure 3. MindMaze Physilog 6® (P6) Sensor.
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Each instrumented toy had a P6 sensor embedded into it to detect the touching and
squeezing of the toys. The specifications of the P6 sensor are summarised in the user manual
document provided by the manufacturer [44]. The IMU and barometer were configured to
sample at 64 Hz for easy data synchronisation and maximising battery life while striking a
suitable temporal resolution. The P6 sensor has an internal clock that can be synchronised
to a PC’s clock, which allows for easy synchronisation with other sensors, opening up the
possibility of multi-modal data analysis for studying EF development. Multiple P6 sensors
can communicate and synchronise with each other using the built-in BLE communication
protocol. One sensor acts as the master, wirelessly broadcasting the clock signal on a
particular channel, and the others act as the client listening to this signal. Data stored
onboard as “.BIN” files are sorted into timestamped folders accessed by connecting the
sensor to a PC via the USB-C interface and downloading it.

Dragon Skin™ 20, a high-performance platinum-cured liquid silicone compound, was
used to seal the hole of the P6 sensor’s barometer to use it as a tactile sensor. The silicone
will transduce the squeezing forces on the surface to changes in internal pressure that
the barometer can detect. A custom 3D-printed mould (Figure 4a) was used to enclose
the sensor and shape the silicone layer surrounding it. The silicone was cured overnight
(Figure 4b,c) and unmoulded to create the final sensor core for the instrumented toys
(Figure 4d). The manufacturer, Smooth-On, Inc., Macungie, PA, USA, provides a detailed
material safety data sheet and skin-safe certification, making Dragon Skin™ 20 a suitable
nontoxic silicone material for use in our application where infants might come in direct
contact with the material [45,46].

Figure 4. (a) 3D Printed mould. (b,c) P6 sensor enclosed in silicon. (d) Fully cured sensor core.

3.2. Physical Structure

The physical structure of the instrumented toy encloses the sensors, creates the final
shape, and controls the rigidity. The weight and dimensions of the physical structures of
the instrumented toys were defined by the anthropometry of an infant’s hand, the existing
regular toys used, and the physical dimensions of the sensor (44 mm × 36 mm × 17 mm)
to be embedded. The cube has a length of 60 mm, and the sphere has a diameter of 65 mm.

Modern 3D printing technologies and advances in material science have enabled
the fabrication of complex structures using materials of varying rigidity [47–50]. Ansys
SpaceClaim’s Faceted Shell and Infill tool was used to design an octahedral lattice that
minimises mass, ensures uniform stiffness, and avoids needing a support structure during
fabrication. The lattice structure was designed with a wall thickness of 1 mm, a unit cell size
of 10 mm, and a strut thickness of 1 mm, which translates to 11% infill density (Figure 5).
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Figure 5. Lattice structure with different outer geometries: (a) sphere (b) cube.

Fused deposition modelling (FDM) 3D printing using thermoplastic polyurethane
(TPU) filament was used to fabricate the octahedral lattice physical structure (Figure 6).
The hard toys were printed using a 95A shore hardness TPU filament, while the soft toys
were printed using an 85A shore hardness TPU filament. The print parameters used to
print the lattice structure were as shown in Table 1. The 3D-printed TPU parts are inert
and nontoxic, making them suitable for use in our application where infants will come into
direct contact with the material [51,52].

Figure 6. 3D printed lattice structure (left) and instrumented toy assembly (right).

Table 1. Print parameters for the fabrication of lattice structures.

Nozzle
Temperature

Bed
Temperature Print Speed Layer

Thickness

TPU (85A/95A) 235 ◦C 50 ◦C 30 mm/s 0.2 mm

3.3. Integration

The instrumented toys were designed using a modular multilayered approach to
decouple the sensing capabilities from the physical properties. The sensing core determines
the modality of the data that can be captured, while the physical structure determines the
real and perceived affordances of the toy by the infant. The risk of harm and injury to the
infant is further minimised by placing the sensors and battery at the toy’s core. The physical
structure, fabricated using nontoxic and noncombustible materials, acts as a barrier. This
instrumented toy design paradigm can be expanded to utilise other sensors within the
sensing core that can be enclosed by different physical structures based on the desired play
and interaction style. For the set of instrumented toys to be used in the object categorisation
task to assess cognitive flexibility in infants, the sensor core records motion and pressure
data from which we infer the toys’ sequence of touching and squeezing. The 3D-printed
lattice structure defines the toy’s affordance by varying the ball and cubes’ colour, size,
and rigidity.
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4. Squeezing Detection
4.1. Experimental Setup

A preliminary quantitative experiment to verify if the barometer of the P6 sensor
embedded in each toy could detect squeezing was performed using a Kinova Gen3 7
DoF robotic arm (Figure 7) to repeatedly and consistently squeeze each toy ten times. An
ATI Industrial Automation Net Force/Torque Sensor Mini40 measured the reaction forces
(Fsensed). A 3D-printed holder was fastened to the robot end effector and force sensor to
hold the toys in place and control the toy’s contact area. The cubes had a contact area of
72.00 cm2, and the balls had a contact area of 64.84 cm2 between the robot end effector and
the force sensor. It was noted that studies on infant grip force within the first 12 months
had measured the range to be between 5 to 35 kPa [29,30,39,40,53]. As such, to validate
performance in a minimal force application condition, the robot was programmed in
position control mode to move 10 mm vertically from z0 to z1 with a velocity of 65 mm/s
to apply a force Frobot = 20 N on the toys. The expected pressure applied on the cubes was
2.77 kPa and on the balls it was 3.08 kPa, well under the typical grip strength range. Before
beginning the experiment, each object was placed on the force sensor and its weight was
zeroed out. Data from the robot and the force sensor were timestamped and logged to a
PC. The internal time of the P6 sensor was synchronised with the PC clock.

Figure 7. Kinova Gen3 7 DoF Robot applying a squeezing force on instrumented toys.

4.2. Results and Discussion

The robot consistently moved 10 mm to squeeze the toys 10 times with a regular
force of Frobot (Figure 8). The compliance of the instrumented toy’s structure produced
a difference between the force applied by the robot and the force measured by the force
sensor (Table 2). The soft cube absorbed 12%, the hard cube absorbed 10%, the soft ball
absorbed 18%, and the hard ball absorbed 14% of the applied force. Based on the force
applied by the robot and the area of contact of the 3D-printed holders, we estimated the
pressure applied to each toy when squeezing. As expected, the pressure exerted ranges
from 2.77 to 3.39 kPa. This did not saturate the barometer as its specified dynamic range is
100 kPa (26 to 260 kPa).
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Figure 8. Barometric squeezing detection: (a) soft cube, (b) soft ball, (c) hard cube, (d) hard ball.

Table 2. Squeezing Results.

Toy
Robot

Applied
Force (N)

Applied
Pressure (Pa)

Measured
Force (N)

Barometer
Pressure (Pa)

% Pressure
Detected

Soft cube. 20.0 2777.78 17.5 (88%) 16.04 ± 2.64 0.58%
Hard cube. 21.0 2916.67 19.0 (90%) 324.60 ± 3.62 11.13%

Soft ball. 22.0 3392.97 18.0 (82%) 51.75 ± 4.53 1.53%
Hard ball. 21.0 3238.74 18.0 (86%) 371.25 ± 5.12 11.46%

In Table 2, we can see the summary of the barometer readings across 10 squeezes for
all the different toys. Noise in the barometer signal is smoothed out using a 5 Hz low-pass
filter. The squeezing force applied to the toys produced a change in internal pressure that
was successfully recorded by the barometer (Figure 8). The soft toys recorded a smaller
change in pressure than the hard ones due to the compliance of the physical structure
absorbing some of the force applied.

A drift in the baseline pressure reading of the barometer in the soft cube (Figure 8c) was
observed. A drift of approximately ±20 Pa was present across all sensors either due to
air leaking or getting trapped within the 3D-printed structure or the sensor core through
the USB-C connector port. This drift was not of particular concern as the sensor could still
consistently pick up on the dynamic changes in pressure caused by the actual squeezing of
the toy. However, applying a 0.5 Hz high-pass filter helped filter out such a drift and the
baseline offset of the ambient room pressure as well (Figure 9).
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Figure 9. Filtered barometric signals.

Furthermore, our barometric squeezing detection validation was based on 10% of a
typical infant’s grip pressure. The softer toys detected approximately 1% of the applied
pressure, and the hard toys detected approximately 11% of the applied pressure. Therefore,
we can be confident that under more representative conditions, where infants may apply
5 to 35 kPa of grip pressure, our novel implementation of detecting squeezing using a
barometric tactile sensor will be able to detect the squeezing of the toys.

5. Sequence of Touching
5.1. Experimental Setup

A preliminary quantitative experiment was performed using the instrumented toys to
detect the sequence of touching. A participant was presented with 4 instrumented toys on
a table and asked to touch and play with them (Figure 10). The IMU onboard the P6 sensor
embedded in each toy recorded the motion, while a camera simultaneously filmed the toy
interaction from an overhead angle to minimise occlusions. The 4 IMUs and the camera
were synchronised using the timestamped data from both sensors.

The signals from the IMUs were processed as in Figure 11 to obtain the sequence of
touching. First, the signal from the 3-channel accelerometer was combined by calculating

the Euclidean norm ‖a‖2 =
√

a2
x + a2

y + a2
z . Then, the DC-offset and noise were filtered

using a band-pass filter ( fL,1 and fH), and the signal was passed through a full-wave
rectifier to obtain only the positive magnitude of the signal. Finally, the linear envelope was
calculated using a low-pass filter ( fL,2). Similarly, the signal from the 3-channel gyroscope

was combined by calculating the Euclidean norm ‖ω‖2 =
√

ω2
x + ω2

y + ω2
z , and the linear

envelope was calculated using a low-pass filter ( fL,3).
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Figure 10. Sequential touching experiment.

Figure 11. Accelerometer and gyroscope signal processing.

5.2. Results and Discussion

From the video, an independent rater manually coded for the sequence of touches of
each toy. These results were our ground truth data for evaluating the performance of the
instrumented toys (Table 3). The soft and hard cubes were touched two times, and the soft
and hard balls were touched three times.

Table 3. Ground truth touch timing and sequence from video coded by a human rater.

Instrumented Toy Touch Timing (s)

Soft cube. 1.60
Hard cube. 5.30
Hard ball. 9.30
Soft ball. 12.20

Hard ball. 16.50
Hard cube. 16.60

Soft ball. 20.10
Soft cube. 20.30
Hard ball. 23.70
Soft ball. 28.20

For the accelerometer, the DC-offset and noise were filtered using fL,1 = 0.5 Hz and
fH = 10 Hz band-pass filters. The linear envelope for the accelerometer and gyroscope were
calculated using fL,2 = 0.3 Hz and fL,3 = 0.2 Hz low-pass filters, respectively. Threshold
values of 0.046 g for the accelerometer and 65 deg/s for the gyroscope were used to identify
the initial instance of touching.

From the IMU data (Figure 12), the touching sequence corresponded with the video’s
sequence. The timings of the touch from the video were extracted by interpolating from
the frame timings, as touch sometimes occurs between frames. In contrast, the timing for
the IMU came directly from the data logged with precise discrete timestamping at a high
sampling frequency of 64 Hz.
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Figure 12. Accelerometer and gyroscope data indicating the sequence of touches.

To quantify the accuracy of the IMU results, we computed the timing error and root
mean squared error (RMSE) (Table 4). The accelerometer tended to estimate the touch time
to be earlier than it was and had an RMSE of 0.32 s, and the gyroscope did a better job at
estimating the touch timing with an RMSE of 0.23 s. We could further improve the IMU-
based touch detection accuracy by taking the average touch time from the accelerometer
and gyroscope, resulting in an RMSE of just 0.19 s.

Table 4. Touch sequence timing comparison.

Toy Ground
Truth (s)

Accelerometer
(s)

Accelerometer
Error

Gyroscope
(s)

Gyroscope
Error

Average
(s)

Average
Error

Soft cube. 1.60 1.50 −0.10 1.67 0.07 1.59 −0.01
Hard cube. 5.30 5.16 −0.14 5.42 0.12 5.29 −0.01
Hard ball. 9.30 9.06 −0.24 8.87 −0.43 8.97 −0.33
Soft ball. 12.20 12.20 0.00 11.91 −0.29 12.06 −0.14

Hard ball. 16.50 16.25 −0.25 16.35 −0.15 16.3 −0.20
Hard cube. 16.60 16.30 −0.30 16.50 −0.10 16.4 −0.20

Soft ball. 20.10 19.75 −0.35 20.18 0.08 19.97 −0.13
Soft cube. 20.30 19.92 −0.38 20.35 0.05 20.14 −0.16
Hard ball. 23.70 23.30 −0.40 23.50 −0.20 23.4 −0.30
Soft ball. 28.20 28.80 0.60 27.83 −0.37 28.32 0.12

RMSE — — 0.32 — 0.23 — 0.19
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Therefore, IMU-based touch detection is an accurate way to detect touching and
interacting with toys, removing the subjectivity of manual human coders. However, to
ensure maximum accuracy and robustness, rather than entirely replacing manually coded
data with IMU-based touch detection, the human coders can leverage the IMU data to
speed up the manual coding process. In a video recorded at 30 frames per second (fps), the
instrumented toys could help narrow the video to a segment spanning approximately 6 to
10 frames to confirm the exact touch time rather than go through the entire video.

6. Future Work and Conclusions

In this paper, we presented the initial design and validation of the sensing capabilities
of instrumented toys that can be used in lab-based and ecological environments, allowing
for a more robust and naturalistic assessment of the development of cognitive flexibility, an
aspect of EF, in infants. The results of our study suggested that the instrumented toys were
effective at detecting cognitively relevant aspects of infants’ behaviour.

The toy can detect periods of motion to determine when they are touched. From this,
the overall sequence of touching can be inferred to calculate MRL and the conditional
probability of infant touch sequence to identify mental set-shifting. The toys can also detect
when and how much they have been squeezed to further validate infants’ change in mental
classification from shape-based to material-based classification.

Such results confirmed the hypothesis that these instrumented toys could enable more
quantitative monitoring and measurement of an infant’s EF development. The next step of
our iterative design philosophy is to evaluate the instrumented toy’s performance while
considering factors such as robustness, reliability, practicality, and ease of use through
appropriate studies with mothers and infants in lab-based and home-based environments.
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