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Abstract: Wireless sensor networks (WSNs) are becoming a significant technology for ubiquitous
living and continue to be involved in active research because of their varied applications. Energy
awareness will be a critical design problem in WSNs. Clustering is a widespread energy-efficient
method and grants several benefits such as scalability, energy efficiency, less delay, and lifetime, but
it results in hotspot issues. To solve this, unequal clustering (UC) has been presented. In UC, the
size of the cluster differs with the distance to the base station (BS). This paper devises an improved
tuna-swarm-algorithm-based unequal clustering for hotspot elimination (ITSA-UCHSE) technique
in an energy-aware WSN. The ITSA-UCHSE technique intends to resolve the hotspot problem and
uneven energy dissipation in the WSN. In this study, the ITSA is derived from the use of a tent chaotic
map with the traditional TSA. In addition, the ITSA-UCHSE technique computes a fitness value
based on energy and distance metrics. Moreover, the cluster size determination via the ITSA-UCHSE
technique helps to address the hotspot issue. To demonstrate the enhanced performance of the
ITSA-UCHSE approach, a series of simulation analyses were conducted. The simulation values stated
that the ITSA-UCHSE algorithm has reached improved results over other models.

Keywords: energy dissipation; load balancing; wireless sensor network; hotspot problem; unequal
clustering; tuna swarm algorithm

1. Introduction

Wireless sensor networks (WSNs) have developed into one of the auspicious tech-
nologies utilized in the modern era [1]. WSNs monitor the environments in which they
are placed to gather data and can identify changes in monitoring sound, temperature,
vibration and motion intensity, pressure, humidity, etc. [2,3]. WSN applications are com-
monly utilized in the smart home monitoring system, environmental observing systems,
natural disaster monitoring systems, habitat monitoring systems, traffic monitoring sys-
tems, bridges or building operational monitoring systems, military solicitations, inventory
management systems, bio-medical applications, health monitoring systems and industrial
robotics systems [4]. WSNs can be either dynamic or static sensor nodes (SNs) or a combi-
nation of both. Certainly, SNs are energy-limited since they depend on batteries for energy
sources. Owing to energy limitations, the lifespan of a WSN was also limited [5,6]. Due
to the nature of applications where WSNs were leveraged, it was generally very tough to
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reach all nodes and replace their sensor battery. Hence, numerous protocols and techniques
are being modeled to minimalize power utilization in all sensor nodes and to extend the
network lifespan [7]. Numerous hole issues are detected in the WSN such as sink holes,
energy holes, jamming holes, coverage holes and routing holes. The energy hole problems
have a huge impact on the sensor network at the time of data transmission from source to
destination [8,9].

To prevent the network from experiencing hotspot problems, unequal clustering (UC)
methods are used for load balancing among cluster heads (CHs) [10]. UC diminishes the
cluster size which is nearer to the base station (BS) and the cluster size rises since the distance
between CH and BS increases [11]. Metaheuristic and classical methods were two broad
areas of clustering techniques. Traditional clustering is split into five types: density-based,
area-based, model-based, hierarchical and grid-based [12]. One difficulty of such techniques
was to get stuck in local optimum effortlessly. Previously, several metaheuristic algorithms
were leveraged to solve this weakness. Metaheuristic approaches can offer near-optimum
solutions in less time compared to traditional techniques. Metaheuristic optimizers were
found to be potential ways of solving complicated optimization issues [8]. The flexibility
of metaheuristics illustrates the usage of such techniques in several ways without making
any particular changes to the algorithm structure. As problems are black boxes in the
metaheuristic technique, they are simply implemented to different problems [13]. In other
words, only the outputs and inputs of a system were significant in a metaheuristic approach;
therefore the only significant problem for the designer was how to implement the solution
to the approach [14]. Actually, in metaheuristic techniques, optimization is performed by
utilizing a set of solutions (population).

This paper devises an improved tuna-swarm-algorithm-based unequal clustering
for hotspot elimination (ITSA-UCHSE) technique in an energy-aware WSN. The ITSA-
UCHSE technique intends to resolve the hotspot problem and uneven energy dissipation
in the WSN. In this study, the ITSA is derived from the use of a tent chaotic map via the
traditional TSA. In addition, the ITSA-UCHSE technique computes a fitness value based on
energy and distance metrics. Moreover, the cluster size determination via the ITSA-UCHSE
technique helps to address the hotspot issue. To exhibit the enhanced performance of the
ITSA-UCHSE algorithm, a series of simulation analyses were conducted.

2. Literature Review

In [15], a hybrid-optimization-based unequal clustering with mobile sink (HOUCMS)
technique was modeled as HOUCMS incorporated mobile sink, hybrid optimized methods,
and UC. Firstly, for selecting CH, a method called butterfly optimization was utilized after
the nodes were allocated to CHs depending on the competition radius principle in the
UC approach. Furthermore, the route to sink could be determined by the ACO and, at
last, the mobile sink utilized in HOUCMS collected the collected dataset from every CH.
Agrawal et al. [16] designed an unequal clustering method that chooses probationary CH
using FL, and the optimization of probationary CHs is achieved by leveraging the harmony
search algorithm (HSA). The devised technique displays the dynamic ability of high search
efficiency and the FL of HSA that expands the network lifetime.

Maheswari and Karthika [17] formulated a new secure UC protocol with IDS for
attaining QoS parameters such as security, energy and lifetime. First of all, the devised
method utilizes an adaptive neuro-fuzzy-related clustering method for choosing tentative
CHs (TCH) utilizing three input variables such as distance to neighbors, residual energy
and distance to BS. After, TCHs strive for the last CH and the best CH is chosen to utilize the
deer hunting optimization (DHO) technique. Revanesh et al. [18] introduced a technique
called directed acyclic graph-related trust aware load-balanced routing (DAG-BTLBR). At
first, the SNs were clustered unequally in an energy-efficient way to minimalize hotspot
issues through the emperor penguin colony (EPC) approach. After clustering, the packet is
transferred using load-balanced routes, securely utilizing the adaptive neuro-based dual
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fuzzy (ANDual Fuzzy) mechanism that minimizes the power utilization by choosing the
best secure routes.

Arjunan and Sujatha [19] presented a method called FL-related UC and ACO-oriented
routing, a hybrid protocol for the WSN for extending the network lifetime and eliminating
hotspot issues. This protocol has cluster maintenance, CH selection and inter-cluster
routing. FL chooses CHs effectually and splits the network into UC depending on node
degree, RE, node centrality and distance to BS. In [20], a hybrid of the FL technique and
HAS were designed to extend the lifespan of the network. UC was a method projected
by the researchers for managing the hotspot problem; later, it was added. The devised
technique forms an unequal cluster. To prove the efficacy of the presented technique, certain
renowned UC methods and harmony search-based techniques were utilized for comparing
the presented technique under distinct network settings.

Ref. [21] presents a Bayesian sequential sensor placement method, which depends
on the robust information entropy for multi-type sensors. This technique has two salient
features. In [22], a novel cluster-tree routing technique for gathering data (CTRS-DG) was
devised that has two layers: one is aggregation and reconstruction and another one is
routing. A dynamic and self-organizing entropy-oriented clustering technique for select-
ing CH and cluster formation is presented in the aggregation and reconstruction layer.
Wu et al. [23] devised a new technique named the event boundary detection algorithm
(EEBD) which is based on lightweight entropy in the WSN. The EEBD can be independently
executed on all wireless sensors for determining whether it is a boundary sensor node, by
making a comparison of the entropy values against the threshold which relies upon the
boundary width.

Anuradha et al. [24] introduced a new seagull optimization (SGO)-based unequal
clustering (SGOBUC) method for accomplishing energy efficiency in WSNs. The SGOBUC
method has derived a good fitness including various parameters so that energy efficiency
can be executed. Sivakumar et al. [25] developed a technique named EAOGSO-UCP
(energy-aware oppositional group search-optimizer-based unequal clustering protocol) for
WSNs. The core objective of the EAOGSO-UCP method is to organize the network into
a set of unequal clusters by making a proper selection of the unequal cluster sizes and
CHs. Muthukkumar et al. [26] proposed a GA-based energy-aware multihop clustering
(GA-EMC) method for heterogeneous WSNs (HWSNs). In HWSNs, each node has different
initial energy and commonly has an energy consumption limitation. A GA determined
the optimum CHs and their locations in the network. Chauhan and Soni [27] projected
an EAUCA method (energy-aware unequal clustering algorithm) to enhance the lifetime
of a network and diminish the energy holes. This EAUCA constitutes unequal-sized
clusters so that clusters in the base station vicinity are smaller than the farthest. Though
several unequal clustering techniques are available in the literature, the energy-efficient
performance still needs to improve.

3. The Proposed Model

This paper has developed a novel ITSA-UCHSE method for hotspot elimination in
energy-aware WSNs. The ITSA-UCHSE technique is intended to resolve hotspot problems
and uneven energy dissipation in the WSN. Additionally, the ITSA is derived from the use
of a tent chaotic map with the traditional TSA. In addition, the ITSA-UCHSE technique
computes a fitness value based on energy and distance metrics. Figure 1 exhibits the overall
procedure of the ITSA-UCHSE approach.

3.1. Energy Model

In this work, the WSN was adapted as follows: N node was installed at random in a
square area whose side length was S. The node energy was limited and every node was
immovable. A node might have changed the communication power. A receiver could
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notice the received signal intensity for estimating the distance to the sender. The energy
consumption could be evaluated by using the following expression.

ETx(l, d) =
{

1× Eelec + 1× εtsd2, d < dcorssover

1× Eelec + 1× εtsd2, d ≥ dcorssover
(1)

In Equation (1), l represents data whose unit was a bit and indicates the transmission
distance. EElec, εfs, εmp and dcorssover denote the constants.

Figure 1. Overall procedure of ITSA-UCHSE system.

3.2. Design of ITSA

The TSA can be established as a new metaheuristic optimized system. Generating
the place upgrade approach which makes procedure optimization searching feasible, sim-
ulations can be conducted of the foraging performance of tuna schools [28]. During this
approach, the tuna schools pinpoint the food location that connects the global optimum
solution with problems. Let N be individuals from the tuna school; the mathematical
process utilized for replicating the foraging performance of schools of tuna is as follows:
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ω1 = a + (1− a) · t
tmax

, (3)

ω2 = (1− a)− (1− a) · t
tmax

, (4)

β = ebl · cos (2πb), (5)

l = e3 cos (((tmax+
1
t )−1)π), (6)

where Xt+1
i stands for the position of the ith individual at t+ 1 iteration, t denotes the present

iteration count, ω1 and ω2 imply the weighted parameters which lead the individual to
move near the position of the optimum individuals and prior individuals, Xt

rand signifies
the position of arbitrarily sampled individuals in the population and implies the arbitrary
vector with [0–1] values, Xt

best signifies the position of the optimum individual (food) at t
iterations, tmax stands for the maximal count of iterations, a signifies the constant which
closely controls the individual that follows the optimum food and prior food from the
primary stage, and b indicates the uniformly distributed arbitrary number betwixt zero
and one.

Besides the spiral-shaped position upgrade process, the tuna also ensures a parabolic-
type position upgrade employing the food as a reference point for improving this tech-
nique’s global search abilities. Considering that these two approaches are conducted
concurrently, the selective probability is fixed at 0.5. The mathematical process was defined
as follows.

Xt+1
i =

{
Xt

best + rand ·
(
Xt

besi − Xt
i
)
+ TF · p2 ·

(
Xt

besi − Xt
i
)
, rand < 0.5

TF · p2 · Xt
i , rand ≥ 0.5 ′

(7)

Chaos is a mathematical approach which is often utilized for enhancing exploration
as well as improvement. In 2017, Suresh and Lal integrated a logistic chaotic map using
Darwin PSO (DPSO) for producing a robust, dependable and quick approach to segment
satellite images while continuing to improve the quality of pictures. Kohli and Arora
related several variations in GWO and selective Chebyshev chaotic mapping to adapt
the crucial parameter of GWO. The chaotic GWO considerably enhanced the reliability of
global optimality and outcome quality. In 2020, simulated by the individual intelligence
and sexual stimulation of chimpanzee group hunting, Khishe and Mosavi projected a
chimp-optimized algorithm (Choa), whereas the semi-deterministic features of the chaotic
map, respectively, boosted the improved ability of the Choa.

By initializing the TSA, one can primarily contain and arbitrarily create the location
of tuna individuals in upper as well as lower bounds. This initialization can result in an
unequal distribution of tuna throughout space, causing this technique for maturing to
create a locally optimum solution prematurely. During this case, an initialized procedure
dependent upon the tent chaotic sequence was provided as a solution to this problem.
The segmentation linear mapping creates a tent chaotic sequence. Tent mapping with
uniform distribution purpose and higher correlation allows this technique to readily escape
in the optimum local solution, preserve the variation in populations and improve their
capacity for global searching. Employing the sequence mapped in the range of zero and
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one, dependent upon the chaotic map, the tuna population was then initialized based on
the chaotic feature. The mathematical equation of tent mapping is as follows:

xn+1 =

{
xn
α , 0 ≤ xn < α

1−xn
(1−α)

,α < xn < 1, (8)

whereas the value range α in this article is 0.5. This method of initializing via the tent
map is

xint
i = xmin + Chaos∗(xmax − xmin), (9)

in which xmax and xmin denote the lower as well as upper limits of values of the independent
variable, correspondingly as explained in Algorithm 1.

Algorithm 1: Pseudocode for ITSA

Initializing the random population of individuals xi
Allocate free parameters a and z

While (t < t max )
Compute the fitness values of individuals
Upgrade Xt

best
For (each individual) do

Updateω1,ω2, p using Equations (3) and (4).
If (and < z) then

Update the position Xt+1
i

Else if (r and ≥ z) then
If (and < 0.5) then

If (t/t max and <r) then
Update the position Xt+1

i
Else if (t/t max and ≥r) then

Update the position Xt+1
i

Else if (r and ≥ 0.5) then
Update the position Xt+1

i
End for

t = t + 1
End while

Return the optimal individual Xbest and the optimal fitness value F(Xbest)

3.3. Process Involved in Unequal Clustering

The ITSA-UCHSE technique computes a fitness value based on energy and distance
metrics. Initially, the node sends primary energy at a particular signal intensity and the
node receives this message and computes the distance to every node [29]. Additionally, BS
receive this message, and later calculates and broadcasts Eave·Eave denotes the average RE
of a living node. CH is designated by reject radius

(
Rj
)

and competition radius (Rc).
The formulation Rc is presented as follows

Rt =

(
1− 0.3× dmax − d(i, BS)

dmax − dnin

)
× Rmax (10)

where Rmax denotes the maximal Rc which is defined in advance. dmax and dmin show the
maximal and minimal of d(i, BS). Rc reflects the effect of d(i, BS) clustering. node(i, BS)e
is smaller; then, the inter-cluster transmission load becomes heavy.

Rj = α× β× Rc (11)

Now, α and β are variables. α reflects the effect of RE. The node has a large RE and is
small in α. Ei shows the RE of i-th nodes.
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α =

max
[

1
2 ,
(

1 + Eave−Ei
Eave

)]
, Ei ≥ Eave

min
[

3
2 ,
(

1 + Eave−Ei
Eave

)]
, Ei < Eave

(12)

β reflects the effect of the amount of ANs. The node with additional ANs can be small
in β.

β =

max
[

1
2 ,
(

1 + Nave−Ni
Eave

)]
, Ni ≥ Nave

min
[

3
2 ,
(

1 + Nave−Ni
Nave

)]
, Ni < Nave

(13)

Nave indicates the average amount of nodes within the circle of which the radius is Rc
which is evaluated as follows. Ni indicates the number of nodes within the circle whereby
the center is i and the radius is Rcd(i, RNs) and represents the average distance from i to
this node.

Nave =
π×N× R2

c

S2 (14)

ti reflects the effect of d(i, RNs). A node having a lesser d(i, RNs) is small in it.

ti =
d(i, ·RNs)

Rs
× t0 (15)

where t0 denotes a time constant. The node that has the opportunity of being a CH is called
a CH candidate (CHC). Initially, every node waits for ti. While waiting, a node continually
receives messages. If node i-th receives a cluster-built message from q-th nodes, it estimates
the distance to q. If the distance is less than the sum of q′Rci′Rj, then i becomes non-CHC.
After waiting, if i has remained as a CHC, then it turns out to be a CH and transmits the
cluster-built messages with the Rc of i. The smaller the Rj is, the greater the chance that
the node becomes CH. k indicates the optimal amount of CHs. When k CH is selected or
waiting hours are over t0, then CH selection can be completed. A non-CH node chooses a
neighboring CH to join its cluster.

4. Experimental Validation

The unequal clustering results of the ITSA-UCHSE methodology are tested under
diverse nodes in this section.

Table 1 and Figure 2 exhibit the energy consumption (ECON) inspection of the ITSA-
UCHSE technique with existing models [30]. The experimental outcome highlighted that
the ITSA-UCHSE technique showed improved ECON values under every node. With
50 nodes, the ITSA-UCHSE technique obtained a reduced ECON value of 0.6666 J while
the HHDAP, Q-DAEER and IPSO techniques reached increased ECON values of 0.7294 J,
0.7811 J and 0.8439 J, respectively. Additionally, with 400 nodes, the ITSA-UCHSE method
gained a reduced ECON value of 1.1690 J while the HHDAP, Q-DAEER and IPSO ap-
proaches reached increased ECON values of 1.3611 J, 1.7379 J and 1.9337 J, correspondingly.

Table 1. ECON analysis of ITSA-UCHSE system with existing approaches under distinct nodes.

Energy Consumption (J)

No. of Nodes ITSA-UCHSE HHDAP Q-DAEER IPSO

50 0.6666 0.7294 0.7811 0.8439
100 0.8402 0.9621 1.0545 1.1690
200 0.9621 1.1616 1.4387 1.5753
300 1.1173 1.3094 1.6936 1.8303
400 1.1690 1.3611 1.7379 1.9337
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Figure 2. ECON analysis of ITSA-UCHSE system under distinct nodes.

In Table 2 and Figure 3, the study of the number of alive nodes (NOAN) of the
ITSA-UCHSE method using current methods is given. The results implied that the ITSA-
UCHSE technique reached increased values of NOAN under all rounds. For example,
with 500 rounds, the ITSA-UCHSE algorithm reached a higher NOAN of 100 but the
HHDAP, Q-DAEER and IPSO techniques resulted in a minimum NOAN of 95, 92 and 93,
correspondingly. Additionally, with 600 rounds, the ITSA-UCHSE method acquired an
increased NOAN of 100 while the HHDAP, Q-DAEER and IPSO methods had a reduced
NOAN of 90, 74 and 91, respectively. Furthermore, with 700 rounds, the ITSA-UCHSE
method reached a higher NOAN of 97 whereas the HHDAP, Q-DAEER and IPSO methods
had a minimum NOAN of 63, 19 and 65, correspondingly.

Table 2. NOAN analysis of ITSA-UCHSE system with current methods under different rounds.

Number of Alive Nodes

No. of Rounds ITSA-UCHSE HHDAP Q-DAEER IPSO

0 100 100 100 100
100 100 100 100 100
200 100 100 100 100
300 100 100 100 100
400 100 100 100 95
500 100 95 92 93
600 100 90 74 91
700 97 63 19 65
800 93 40 12 0
900 77 27 0 0

1000 52 0 0 0
1100 31 0 0 0
1200 0 0 0 0

Table 3 and Figure 4 exhibit the number of dead rounds (NODN) review of the ITSA-
UCHSE method with existing techniques. The outcome exhibited that the ITSA-UCHSE
algorithm has shown improved NODN values under every round. With 700 rounds, the
ITSA-UCHSE technique attained a reduced NODN value of 3 while the HHDAP, Q-DAEER
and IPSO techniques reached increased NODN values of 37, 81 and 35, correspondingly.
Similarly, with 800 rounds, the ITSA-UCHSE algorithms gained a reduced NODN value of
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7 while the HHDAP, Q-DAEER and IPSO methods reached increased NODN values of 60,
88 and 100, correspondingly.

Figure 3. NOAN analysis of ITSA-UCHSE system under different rounds.

Table 3. NODN analysis of ITSA-UCHSE system with current methods under different rounds.

Number of Dead Nodes

No. of Rounds ITSA-UCHSE HHDAP Q-DAEER IPSO

0 0 0 0 0
100 0 0 0 0
200 0 0 0 0
300 0 0 0 0
400 0 0 0 5
500 0 5 8 7
600 0 10 26 9
700 3 37 81 35
800 7 60 88 100
900 23 73 100 100

1000 48 100 100 100
1100 69 100 100 100
1200 100 100 100 100

Figure 4. NODN analysis of ITSA-UCHSE system under distinct rounds.
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The average LFT assessment of the ITSA-UCHSE technique is demonstrated in Ta-
ble 4 and Figure 5. Based on FND, the ITSA-UCHSE technique gained a higher FND of
668 rounds while the HHDAP, Q-DAEER and IPSO algorithms obtained a lower FND of
472, 448 and 359 rounds, respectively. Similarly, based on HND, the ITSA-UCHSE method
attained a higher HND of 1041 rounds while the HHDAP, Q-DAEER and IPSO approaches
obtained a lower HND of 768, 639 and 712 rounds, correspondingly. Furthermore, based on
LND, the ITSA-UCHSE algorithm gained a higher LND of 1200 rounds while the HHDAP,
Q-DAEER and IPSO methods gained a lower LND of 100, 900 and 800 rounds, respectively.

Table 4. Average lifetime analysis of ITSA-UCHSE system with other approaches.

Avg. Lifetime in Rounds

ITSA-UCHSE HHDAP Q-DAEER IPSO

FND 668 472 448 359
HND 1041 768 639 712
LND 1200 100 900 800

Figure 5. Average LFT analysis of ITSA-UCHSE system with other methods.

In Table 5 and Figure 6, the average throughput (ATHRO) study of the ITSA-UCHSE
method with recent models is given. The outcomes implied that the ITSA-UCHSE approach
reached increased values of ATHRO in several nodes. For example, with 50 nodes, the
ITSA-UCHSE method reached a higher ATHRO of 34.66 while the HHDAP, Q-DAEER and
IPSO methods had a reduced ATHRO of 33.99, 32.56 and 31.04, correspondingly. Moreover,
with 100 nodes, the ITSA-UCHSE method reached an increased ATHRO of 31.54, while the
HHDAP, Q-DAEER and IPSO approaches resulted in a reduced ATHRO of 27.25, 23.29 and
21.27, correspondingly. Additionally, with 400 nodes, the ITSA-UCHSE technique reached
an increased ATHRO of 14.86, while the HHDAP, Q-DAEER and IPSO methods resulted in
a reduced ATHRO of 10.06, 8.46 and 6.36, correspondingly.

Table 5. ATHRO analysis of ITSA-UCHSE system with existing approaches under distinct nodes.

Avg. Throughput

No. of Nodes ITSA-UCHSE HHDAP Q-DAEER IPSO

50 34.66 33.99 32.56 31.04
100 31.54 27.25 23.29 21.27
200 26.41 23.20 20.26 18.40
300 21.27 17.81 14.78 13.35
400 14.86 10.06 8.46 6.36
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Figure 6. ATHRO analysis of ITSA-UCHSE system under distinct nodes.

In Table 6, the total remaining energy (TRE) study of the ITSA-UCHSE method with
recent methods is given. The outcomes exhibited that the ITSA-UCHSE technique reached
increased values of TRE under all rounds. For example, with 100 rounds, the ITSA-UCHSE
method reached a higher TRE of 98.14 while the HHDAP, Q-DAEER and IPSO techniques
resulted in a reduced TRE of 97.09, 89.96 and 87.59, correspondingly. Furthermore, with
600 rounds, the ITSA-UCHSE approach had a higher TRE of 67.80, while the HHDAP,
Q-DAEER and IPSO methods resulted in a reduced TRE of 59.89, 53.56 and 48.81, corre-
spondingly. Additionally, with 1000 rounds, the ITSA-UCHSE method reached an increased
TRE of 50.13, while the HHDAP, Q-DAEER and IPSO techniques resulted in a reduced TRE
of 38.52, 19.26 and 17.15, correspondingly.

Table 6. TRE analysis of ITSA-UCHSE system with current methods under distinct rounds.

Total Remaining Energy (%)

No. of Rounds ITSA-UCHSE HHDAP Q-DAEER IPSO

0 100.00 100.00 100.00 100.00
100 98.14 97.09 89.96 87.59
200 97.61 95.50 79.67 76.25
300 90.75 84.42 70.18 63.85
400 81.52 76.51 63.32 59.89
500 70.18 64.90 58.04 53.03
600 67.80 59.89 53.56 48.81
700 63.85 54.61 48.02 43.01
800 61.21 52.77 41.42 34.30
900 58.04 49.07 31.66 27.44

1000 50.13 38.52 19.26 17.15
1100 43.27 28.76 15.04 10.03
1200 37.20 26.39 13.46 6.34

From the above-mentioned results and discussion, it is evident that the proposed
model achieves reduced ECON values and increased lifetime, which assures one that the
nodes with higher energy and lower distance can be chosen as CHs with proper cluster
sizes. The effectual selection of cluster sizes balances the load among the clusters, which
in turn increases reliability and reduces the risk of failure. In addition, the mitigation
of hotspots can also reduce the cost of maintenance and repair. Moreover, the proposed
model can help to extend the lifespan of the system and delay the need for replacement or
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upgrading. Therefore, the proposed model can be employed for accomplishing maximum
energy efficiency and lifetime in the WSN.

5. Conclusions

This paper has developed a novel ITSA-UCHSE method for hotspot elimination in
energy-aware WSNs. The ITSA-UCHSE technique is intended to resolve the hotspot prob-
lem and uneven energy dissipation in the WSN. Additionally, the ITSA is derived from the
use of a tent chaotic map with the traditional TSA. In addition, the ITSA-UCHSE technique
computes a fitness value based on energy and distance metrics. Moreover, the cluster
size determination via the ITSA-UCHSE technique helps to address the hotspot issue.
To demonstrate the enhanced performance of the ITSA-UCHSE methodology, a series of
simulation analyses were conducted. The simulation values stated that the ITSA-UCHSE al-
gorithm has acquired improved results over other models with maximum energy efficiency,
increased network lifetime and enhanced throughput. As a part of future extension, the
efficiency of the ITSA-UCHSE algorithm will be enriched via data aggregation techniques.
In addition, the computation complexity of the proposed model can be examined in future.
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