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Abstract: Due to technological developments, wearable sensors for monitoring the behavior of farm
animals have become cheaper, have a longer lifespan and are more accessible for small farms and
researchers. In addition, advancements in deep machine learning methods provide new opportunities
for behavior recognition. However, the combination of the new electronics and algorithms are rarely
used in PLF, and their possibilities and limitations are not well-studied. In this study, a CNN-based
model for the feeding behavior classification of dairy cows was trained, and the training process was
analyzed considering a training dataset and the use of transfer learning. Commercial acceleration
measuring tags, which were connected by BLE, were fitted to cow collars in a research barn. Based
on a dataset including 33.7 cow × days (21 cows recorded during 1–3 days) of labeled data and
an additional free-access dataset with similar acceleration data, a classifier with F1 = 93.9% was
developed. The optimal classification window size was 90 s. In addition, the influence of the training
dataset size on the classifier accuracy was analyzed for different neural networks using the transfer
learning technique. While the size of the training dataset was being increased, the rate of the accuracy
improvement decreased. Beginning from a specific point, the use of additional training data can be
impractical. A relatively high accuracy was achieved with few training data when the classifier was
trained using randomly initialized model weights, and a higher accuracy was achieved when transfer
learning was used. These findings can be used for the estimation of the necessary dataset size for
training neural network classifiers intended for other environments and conditions.

Keywords: cow behavior; CNN classifier; acceleration tags; transfer learning; dataset variability;
open-source dataset

1. Introduction

Farm animal activity recognition is important for livestock health and welfare mon-
itoring. Sensors for the behavioral recognition of dairy cows have been developed and
produced for at least two decades [1]. Based on acceleration tags, numerous commercial
systems [2–4] can provide high accuracy in behavior recognition. Nevertheless, the com-
mercial systems usually do not provide access to the raw acceleration data, which is highly
important for researchers studying the animal behavior and developing new methods for
efficient farm management. In addition, the price of the equipment and its maintenance is
impractical for small farms or farms with small ruminants.

New sensors are constantly being developed in this research. This has been inspired by
new technologies that provide a smaller device size [5], better data transfer possibilities, and
a lower energy consumption, such as Bluetooth low energy—BLE [6]. Due to progress made
in data processing methods such as deep neural networks, the accuracy and robustness of
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the algorithms monitoring the animal behavior have been constantly improved [7]. The
machine learning model development process includes data pre-processing (e.g., handling
the records with missing data, filtering the raw time series, calculating additional time
series, and segmenting the time series into time windows), calculating features for some
classifiers, and model training and postprocessing. Riaboff et al. [7] provided an extensive
review of these aspects in livestock applications.

In recent years, methods based on convolutional neural networks (CNN) have been
widely used for recognition applications such as human activity recognition (HAR) [8,9]. In
livestock applications, CNN for acceleration data, which is measured by tags fitted to the
animals, has been used by [10–12]. The design of a neural network (NN)-based behavior
classifier includes a number of factors. In particular, the type and the architecture of the
NN must be fitted to its application. For livestock, CNNs and recurrent NNs (RNNs) with
2–4 convolutional layers have been utilized to process time series data. However, deep
learning models, particularly CNNs, are still not used widely [7].

To train deep neural networks effectively, a large amount of reference data must usually
be collected and labeled [13]. Different sensors are used to achieve labeled references for
the cow behavior and body position: e.g., feeders for estimating the feeding time [14],
or halter sensors to measure rumination and feeding time [10]. Manual labeling can be
performed from direct cow observation [15] or video recorded by cameras installed in
the cow environment [16]; however, this method is highly time-consuming. In cases
where observations of actual behavior cannot be made, unsupervised methods for the
behavior classification are used [17]. To advance the development of HAR, some researchers
published data used for their studies in open access, saving time for reference preparation
and enabling the use of larger datasets for model training [18] (wireless sensors data
mining—WISDM). According to [7], a large variety of collected data for the classifier
training have been used in different studies (from 2 to 200 h), and a recommendation to
collect data from at least from 25 animals for at least 40 h was given. An analysis of required
training data was performed for some data series [19]. However, no analysis of a required
amount of the training data was found for farm animal activity recognition and HAR.

Different types of data augmentation have been used to enlarge the training dataset [12,20]:
rotation, permutation, jittering and scaling performed for the original signal, or local averaging
as a down-sampling technique and shuffling in the feature space [21]. However, the specific
augmentation, as well as the optimization of the classification window length (epoch, time
window, segment, observation) was performed in each study for its specific datasets.

Transfer learning is a method that prepares a classification model for one dataset and
uses this pretrained model as a base for training a model for another similar dataset. For
example, training a pretrained model based on younger population groups and using it as
the initial condition to train a model for older people, as was carried out by [19,20]. The
additional training of pretrained models using data from specific objects and environments
improves their accuracy and decreases the training time relative to newly trained models
or existing models. In HAR, this method was used by [22,23]. According to our review, this
method has not been used for livestock activity recognition.

In this study, we evaluated the minimal amount of data needed to effectively train
an NN classifier and the use of transfer learning based on an openly available dataset.
We used a low-cost, open-source system based on acceleration tags to develop a behavior
classification method according to the best practices taken from the reviewed studies. The
aims of this study were to (a) develop a behavior classification model, (b) evaluate the
impact of the size of training dataset and (c) evaluate the use of transfer learning on the
accuracy of farm animal activity recognition classification using CNNs.

2. Materials and Methods
2.1. Barn Study Area and Monitored Cows

The data used for the development and validation of the system were collected from
dairy cows housed in a free-stall research barn (Luke, Maaninka, Finland) from 4 March till
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15 April 2021. The barn comprised two separated sections with a 10 × 20 m area containing,
in total, 48 lying stalls and 24 feeders (Hokofarm, Marknesse, The Netherlands) as shown
in Figure 1. A group of 48 cows, specifically Ayrshire (n = 18) and Holstein (n = 30) cows,
were housed in the study area during the lactation period (the average parity was 2.3 with
a minimum of 1 and a maximum of 7, the average ± STD days of lactation were 126 ± 82).
The barn was equipped with continuously recording cameras (HDBW5541R, 5M, 3.6 mm,
Dahua, Hangzhou, China). The cameras were installed on the ceiling at a height of 6 m and
covered a major part of the area. Each section of the barn included a 140 m2 free area, winter
natural ventilation, automatic manure scraping (Lely Discovery 90SW, Lely, Maassluis, The
Netherlands), fresh feed delivered six times daily and freely available water.
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in this study. 
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missing samples were concentrated in groups containing multiplication of five samples 

Figure 1. Top-view image of the research barn acquired by one of the cameras.

2.2. System Design

Tags measuring 3D acceleration (RuuviTag, Ruuvi Innovations, Riihimäki, Finland) were
packed in plastic boxes and adjusted by a Velcro belt on the left side of the cow collars or
to one of the legs just above the metatarsal joint (Figure 2). In total, 96 tags were fitted to
both the collars and legs of 48 cows. The tags attached to the legs were used only to test the
reliability of the wireless transmission. The number of transmitting tags was typical for a
commercial barn. The tags broadcasted the data as BLE advertising packets. The acceleration
was sampled at 25 Hz, and the frequency of the message sending was 5 Hz. Each packet
included five samples for three axes, which amounted to 15 acceleration values. The data
from the tags were received by six receiving stations, which were single-board computers
equipped with a Bluetooth antenna (Raspberry Pi 3 B+, Raspberry Pi Foundation, Cambridge,
UK). The stations were packed in hermetic cases with heat sink ribs and installed at 3–5 m
height on the barn structures (Figure 2c). They were evenly distributed in the study area to
minimize the distance from the tags sufficient for receiving the broadcasted signal [24]. The
receiving stations recorded the tag accelerations and the receiving time. The data were stored
on the base station’s storage and were sent via a local network, which was maintained by a
router (EA7500, Linksys), through a message-queuing protocol (ZeroMQ, iMatix Corporation,
Brussels, Belgium). A PC (Intel(R) Core(TM) i7-9750H, CPU 2.6 GHz, RAM 16 GB) received
the messages and stored the raw data in CSV files. The tag and base station software were
written in C++ (version 2020), and the C# language was used (Microsoft, Redmond, WA, USA)
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for the PC. The lifetime of the tag battery was estimated using power profiling, which was
described in [24] as about three years.
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Figure 2. Component of the location and acceleration measuring system installed in a barn: RuuviTag
inside a protecting plastic box (a), tag on the cow collar (b) and receiving station installed on a barn
structure (c) marked by red circles.

2.3. Data Collection and Labeling

Three feeding behavior classes were considered in this study: feeding, ruminating and
other (neither ruminating nor feeding).

The individual feeders were used to collect reference data for the feeding. We assumed
that animals were not ruminating while registered to the feeders. Manual labeling was
used to recognize ruminating and other behaviors. Individual cows were recognized by
their unique coat color patterns; images of cows from both sides, on top and from the head
were captured at the beginning of the experiment to aid in recognition. Only time intervals
during which the cow and its behavior were clearly detected were labeled. The time labels
of the feeders and the cameras were synchronized with the time label of the tag receiving
stations with an accuracy of ±1 s. The labeling was performed by one trained person. An
ethogram of behavior classification for visual observations from [4] was used in this study.

The average rate of the missing data messages was 52.6 ± 6.1% (mean ± STD). The
missing samples were concentrated in groups containing multiplication of five samples
(since the data were transferred in packets including five samples), as is shown in Figure 3.
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The classification models were trained on two datasets (Table 1): data collected in this
study and labeled for 21 cows, as explained above (4–13 March 2021), and open-source
data published by [10]. Different from the current study, [10] used sampling at 10 Hz and
sensors with the ability to download the data, thus preventing data loss. All data labeling



Sensors 2023, 23, 2611 5 of 14

was performed automatically with the help of halters that measured the cows’ feeding
behavior (Rumiwatch, Ettenhausen, Switzerland).

Table 1. Characteristics of datasets used for NN model training (mean ± STD).

N Period, Days Average
Time, Hours

Total Time,
Hours (Days) Fe, % Ru, % Oth, %

Collected
data 21 1–3 38.5 ± 12.4 809 (33.7) 19.7 ± 5.7 36.9 ± 6.1 43.3 ± 6.9

Open-source
data 18 6–18 191.7 ± 87.5 3450.5 (143.7) 17.6 ± 3.8 38.4 ± 3.5 43.9 ± 6.6

N—number of cows, Fe—feeding, Ru—ruminating, Oth—other behaviors.

2.4. Data Processing

Data pre-processing included filtering, amplitude normalization, sampling frequency
normalization, augmentation and balancing. The raw acceleration data from the neck tags
was filtered by a Hamming high-pass filter with a filter order of 511 and a cut-off frequency
of 0.1 Hz. The acceleration values were normalized to ±1. Due to a high rate of missing
samples, the missing data were replaced by zeros to preserve the structure of the time
series. The data were used for the training according to the methods proposed by [25].

A window overlap augmentation of consecutive windows with a 50% overlap was
used to increase the amount of the training data in accordance with the recommendations
of [7] and the review by [8]. Since tags fitted on collars were able to rotate around the
neck, a rotational augmentation was used to simulate a possible rotation around the X axis
parallel to the cows’ neck and to train the model to be insensitive to the tag orientation. The
Y and Z acceleration components were rotated in a 3D space by the transformationaX

aY
aZ

 =

1 0 0
0 cosα −sinα
0 sinα cosα

aX
aY
aZ

, (1)

where aX, aY and aZ are the components of the tag acceleration measured along the X, Y
and Z axes and α is a random rotational angle, as per several authors [12,18,26]. Every
classification window was rotated by a random angle.

To balance data for all behavioral classes, data windows from the minor classes were
randomly taken, rotational augmentation on a random angle was performed and the result
was added to the training set. The balancing was performed for data collected from each
individual cow for one day. An increase in the dataset size due to the balancing depended
on the level of imbalance and was, on average, 41 ± 20%.

Postprocessing of the classified behavior was achieved by a median filter with a
window length equal to five. Both the data collected for this study and the data published
by [10] were processed using the same procedure. Additionally, the sampling frequency of
the Pavlovic [10] dataset was changed, using zero padding, from the original 10 Hz to the
25 Hz used in the current system.

2.5. Tested Classifying Models

Two NN classifiers found in the reviewed literature were compared in this study:
CNN2. Methods for the human activity recognition, described in [27]. The CNN2

consists of two 1D convolutional layers with a kernel size of 3, a dropout layer and a
pooling layer, as presented in Figure 4.
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CNN4. Deep CNN for cow activity recognition, as described in [10]. The CNN4
consists of four 1D convolutional layers with kernel sizes of 52 and 1, a dropout layer and a
pooling layer.

The models’ structures are available in the Supplementary Materials https://github.
com/cowbhave/CowBhave_BehaviorModel (accessed on 2 January 2023).

The size of the classification window was optimized similarly to what found in the
reviewed studies [28,29]. In this study, the optimal classification window size was searched
by a grid search algorithm in the set [5 10 30 60 90 120 180 300] s with the extreme values
5 s and 300 s, which were taken from Table A1 for cows. The total amount of the bouts for
each behavior class in the available labeled dataset with a length less than 300 s was 3.1%
for feeding, 2.7% for rumination and 9% for the other behaviors.

The pretrained classification models for the transfer learning for different window
sizes were trained by the data published by [10]. The transfer learning was achieved by
training the last convolutional layer in the models (the second for the CNN2 and the fourth
for the CNN4 model) and all subsequent layers. The training was performed for 30 epochs
with a 0.001 learning rate. An Adam optimizer was used. The model was implemented in
Python and trained using the Keras library with Tensorflow.

The datasets used for training (which were the dataset collected in this study and
the dataset published by [10]) were acquired from different cows and environments with
different sensors, sampling rates and rates of missing data. Hence, they were used to test
the applicability of the trained models for other cows and environments. The classification
accuracy of models trained on one dataset and validated by another dataset was estimated.

https://github.com/cowbhave/CowBhave_BehaviorModel
https://github.com/cowbhave/CowBhave_BehaviorModel
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2.6. Analysis on the Effect of Training Dataset Size

To evaluate the dependence of the model accuracy on the amount of data used for the
model training, learning using randomly initialized model weights and transfer learning
were performed using different parts of the original dataset. The smallest data amount
which can be used for training is the classification window. For this test, only a 60 s window,
including 60 × 25 = 1500 acceleration samples (for which 25 Hz was the accelerometer
sampling frequency), was used. Each window had its behavior class label; hence, it was
defined as a training sample and the dataset size was measured by the number of training
samples. Small testing datasets were created as parts of the original dataset. The original
acceleration data for one cow for one day was stored in one file, resulting in a total of
56 files. To create the minimal dataset, one training sample for all three classes was taken
from each file, totaling 3 × 56 = 168 training samples (3 × 56 × 60 s = 10,080 s = 2.8 h).
This amount represents 0.34% of the total dataset size of 48,540 training samples. For the
next dataset, including two training samples taken from each file, the dataset size was
3 × 56 × 2 = 336 training samples. Hence, in the analysis, the initial datasets, including
the following dataset sizes, were used: 168, 336 . . . 1680, 4854, 9708 . . . 48,540. In larger
datasets for which an equal amount of training samples for each behavior class could not
be taken, actual data size for the training was increased by resampling. The sizes of the
corresponding datasets enlarged by the augmentation and balancing were: 336, 504 . . .
3192, 13,878, 28,358 . . . 132,762. For each fold in the 10-fold validation, the size of dataset
was multiplied by a factor equal to approximately 9/10.

2.7. Accuracy Evaluation

The accuracy was estimated by the total classification precision and macro F1, confu-
sion matrix, and (micro) Precisioni, Recalli and F1i for each separate behavior class, i, as
follows in Equation (2):

Precisioni =
TPi

TPi+FPi
, Recalli =

TPi
TPi+FNi

, F1i = 2 Precisioni ·Recalli
Precisioni+Recalli

, i = 1, 2, 3;

Precision = TP
TP+FP , F1 = mean(F1i)i=1,2,3,

(2)

where TPi is the number of true positive classifications for the class i, FPi is the number
of false positive classifications for the class i, and FNi is the number of false negative
classifications for the class i. TP is the total number of correct classifications for all classes
and FP is the total number of incorrect classifications for all classes.

3. Results

The performance of the CNN2 model for the 60 s window size, trained using random
weights and by transfer learning for different dataset sizes used for the training, is presented
in Figure 5. The use of transfer learning clearly improved the performance (F1 score) of the
classifier for small dataset sizes, and the average F1-score 87% was obtained with just 336
training samples. The advantage of using transfer learning disappeared when over 24,000
training samples were used.

The training window size had a clear effect on the model performance when training
the models on the whole original dataset. The F1 scores for the classifiers CNN2 and CNN4,
trained using randomly initialized model weights and by the transfer learning for all tested
window sizes, are presented in Figure 6. The highest F1 scores were obtained for the 90 s
window size.

The best accuracy scores of all classifiers trained with the full dataset for a window
size with the highest average F1 score for each model are presented in Table 2. There were
only minor differences in performance between the simpler CNN2 and the more complex
CNN4 and between using transfer learning and training using randomly initialized model
weights. For all the tested models, the clear optima were in the 60–120 s range.
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Figure 5. F1 score of the model CNN2 trained using randomly initialized model weights (CNN2)
and by the transfer learning (CNN2 TL) for the window sizes of 60 s, depending on the training
dataset size measured in training samples taken from the original dataset for the average F1 (a), feeding
(b), rumination (c) and other behavior (d). The corresponding actual data after augmentation and
balancing are: 336, . . . ;3192, 13,878, . . . ;132,762. The error bars represent the STD for 10-fold validation.
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for the average F1 (a), feeding (b), rumination (c) and other behavior (d). The error bars represent the
STD for 10-fold validation.
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Table 2. Comparison of model performance trained by simple training and transfer learning. Pre-
cision, F1 and recall values are given averaged (mean ± STD) for a 10-fold validation for optimal
window sizes (WS), presented in Figure 6a.

CNN2 CNN4 CNN2 TL CNN4 TL

Precision 92.9 ± 2.5 93.3 ± 2.0 93.3 ± 2.5 93.3 ± 1.9
F1 93.3 ± 2.5 93.9 ± 1.9 93.6 ± 2.4 93.8 ± 1.8

Recall 94.2 ± 1.7 94.3 ± 1.5 94.5 ± 2.5 94.4 ± 1.4
WS (s) 60 90 90 120

The accuracy of the models trained on one dataset and validated by another was low:
F1 = 57.3% for the model trained by the dataset published by [10] (the pretrained model
before transfer learning), and F1 = 63.0% for the model trained by the dataset collected in
this study and validated by dataset published by [10].

4. Discussion

Using the transfer learning technique, a relatively high (F1 = 87%) behavioral classi-
fication accuracy was reached with less than 500 training samples, a significantly better
performance (12% higher) compared to the model initialized with random weights. An
even higher classification performance was reached by using more training data. In this
study, the average F1 score reached its maximum level with around 30,000 training samples,
and the use of transfer learning was beneficial up to 24,000 training samples.

The differences in accuracy between the simpler CNN2 and the more complex CNN4
architectures and between the learning model using randomly initialized model weights
and transfer learning were not significant when the full dataset was used. This may suggest
that increasing the number of layers in an NN does not significantly increase the classifier
accuracy for accelerometer data. Additionally, using transfer learning can improve the
model performance when large amounts of training data cannot be collected.

The analysis of different training dataset sizes showed a constantly increasing accuracy
when more training data was used. However, it also shows the limitation of the classifier, as
increasing the dataset size to over 30% did not significantly increase the F1 score from the
level of approximately 94%. Nevertheless, this effect occurred in this specific case for which
the data were collected with specific sensors in the same environment for the same animals
during a short period of time. The influence of the condition diversity on the accuracy of
the models should be further studied.

The feeding behavior classification model with the best performance was CNN4,
which had an average 93.9% F1 score for the 90 s optimal window size; this is close
to the median among the values found in the literature review (Table A1). In practice,
classification models are run on continuously measured data that are not split into windows
containing data from only one behavior. A large window size can therefore create additional
uncertainty in the classification accuracy because sample windows can contain mixed
behavioral classes. The F1 score achieved in this study was high compared to the systems
using an NN for cow behavior classification, such as those by [10] with F1 = 82%, [11]
with F1 = 88.7% and [12] with F1 = 94.4%. Among the systems using machine learning
with the performance reviewed in Table A1 were those by [16] with F1 = 93.3%, by [29]
with F1= 98.51%, and by [15] with a total accuracy of 98%. An exact comparison of
the accuracy scores is impractical due to differences in the research conditions, such as
the experimental environment, sensors and the amount and type of the collected data.
However, the results in the mentioned studies can be applicable in actual conditions.
Having the data openly available would be beneficial for comparison of the developed
methods. Data collected in this study and other freely available datasets are listed at
https://github.com/Animal-Data-Inventory/PLFDataInventory (accessed on 2 January
2023).

The low accuracy (F1 = 57.3% and F1 = 63.0%) of the models trained and validated by
datasets achieved from different cows, different sensors and different reference data and

https://github.com/Animal-Data-Inventory/PLFDataInventory
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environments showed that both models were not applicable to other environments without
additional fitting. However, the high accuracy of the transfer-learned models can mean that
the basic patterns of the cow motions characterizing this class of problem were effectively
learned by the convolutional layers of the models and used regardless the differences in
the sensors and labeling methods.

The development of a machine-learning-based classifier includes a large number
of elements and processes; hence, all model parameters could not be chosen optimally.
Some of them were manually fine-tuned or adopted from previous studies. Among these
parameters are ones related to the data collection (sampling frequency, number of measured
axes, variability of animals and environments), data pre-processing (filter parameters, data
fixing and augmentation methods) and NN architecture (number, type and size of the
layers, number of filters, size of kernels, etc.).

During the experiments, it was found that augmentation simulating the sampling
loss implemented by [25] did not improve the performance of the tested models. Due
to frequent missing data intervals with a length of 10–20 samples, the data imputations
performed by [29,30] were not effective for this system.

The information missing rate during the data transfer from the tags was about 50%,
while it decreased when the number of tags was decreased. The main reason for this
was connected with the large number of sent data messages, which led to hardware
limitations [31]. The number of messages depends on the number of tags fitted to the
cows and the sampling frequency, which was set to 25 Hz. However, the number of cows
enrolled in this study was typical for a commercial barn, and this kind of measuring system
should be able to perform in set conditions. An additional analysis of data redundancy
must be conducted to find out to what extent the sampling frequency can be decreased
in order to diminish the information loss or to increase the number of cows in the same
compartment.

During the development and analysis of the classification model, a large number of
assumptions were made to achieve practical results (e.g., the classification model and the
estimation of a sufficient amount of the training data) in a realistic environment (e.g., low
quality data, different sensors) with limited available data. The analysis of these assump-
tions must be performed in the future research. However, the results achieved in this study
appear promising for practical applications.

In future work, additional uncertainties related to the training of classifiers should be
studied. The limits of the applicability of trained models should be tested by application on
datasets collected in different conditions and environments. To achieve this aim, additional
data collection or the adoption of existing datasets is required. The influence of the data col-
lected from a specific animal [32] on the classification accuracy of the entire herd should be
also tested. The minimal amount of data transferred from the sensors should be evaluated
by reducing the number of measured acceleration axes and the sampling frequency.

5. Conclusions

In this study, we developed a low-cost, open-source system for feeding behavior
classification of dairy cows with an average F1 score equal to 93.9% and analyzed different
methods and amounts of required training data. A dataset of approximately 20 cow × days
for learning using randomly initialized model weights and approximately 10 cow × hours
for the transfer learning were sufficient to achieve F1 = 90%. Despite a relatively high
classification accuracy, additional research is needed to evaluate the applicability of the
classifier to other environments and conditions.

Supplementary Materials: The structure of the CNN classifier models is available in the Supplementary
Materials: https://github.com/cowbhave/CowBhave_BehaviorModel (accessed on 2 January 2023).

https://github.com/cowbhave/CowBhave_BehaviorModel
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Appendix A

To recognize the cow feeding behavior, different machine learning (ML) methods
have been used in research studies, as listed in Table A1. A specific set of features was
used in each study which was extracted from the acceleration samples in time and fre-
quency domains. However, analyses of the feature types and their amount and physical
interpretability have not been found.

Table A1. Review of methods for dairy cow behavior recognition based on acceleration sensors.
Studies using NN-based methods are highlighted in bold.

Publication Behavior Types Interval Length,
Sampling Rate

Number of
Features Method Accuracy

(F1)
Animals, Period,

Barns

Achour, 2019 [33] S, L, transition 3–10 s, 1–4 Hz 2 DT 99% 8, 0.25, 1
Arcidiacono, 2017 [16] F, S 5 s, 4 Hz 1 DT 93.3% 5, 5 h, 1

Barwick, 2018 [34] G, W, S, L 10 s, 12 Hz 12 Quadratic discriminant
analysis 5, 2.5 h, 1

Benaissa, 2017 [35] F, Ru, other
activity 60 s, 10 Hz 9 DT, SVM 94.4% 10, 6 h, 1

Dutta, 2015 [36] G, searching, W,
Ru, Re, scratching 5 s, 10 Hz 9

probabilistic principal
components analysis,

fuzzy C means,
self-organizing map

89%

Eerdekens, 2020
(horses) [37]

S, W, trot, canter,
roll, paw, flank

watching
2.1 s, 25 Hz CNN 97.84%

Kaler, 2019 (sheep) [38] W, S, L 7 s, 16 Hz 16 RF 80% 18, 1.6

Li, C., 2021 [12] F, W, salting, Ru,
Re 10 s, 25 Hz CNN 94.4% 6, 6 h, 1

Pavlovic, 2021 [10] F, Ru, Re 10 Hz, 90 s CNN 82% 18, 6–18 d, 1

Pavlovic, 2022 [39] F, Ru, Re 10 Hz, 90 s

Hidden Markov model,
LDA, partial least

squares discriminant
analysis

83% 18, 6–18 d, 1

Peng, 2019 [11]

F, L, Ru, licking
salt, moving,

social licking and
head butt

3.2–12.8 s, 20 Hz RNN with LSTM, CNN 88.7% 6, ?

Rahman, 2018 [40] G, S, Re, Ru 200 samples,
12 Hz 6 Majority voting, WEKA ?, ?

https://doi.org/10.5281/zenodo.6784671
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Table A1. Cont.

Publication Behavior Types Interval Length,
Sampling Rate

Number of
Features Method Accuracy

(F1)
Animals, Period,

Barns

Rayas-Amor, 2017 [3] G, R 30 s 2 Linear regression 96.1(R2) 7, 9

Riaboff, 2020 [15] G, W, Ru, Re 10 s,
Extreme boosting

algorithm, Adaboost,
SVM, RF

98%
accuracy 86, 57 h, 4

Shen, 2019 [41] F, Ru, O 256 samples, 5 Hz 30 K-nearest neighbor,
SVM, PNN 92.4% 5, ?

Simanungkalit, 2021
[42] Licking, F, S, L 10 s, 25 Hz 8 DT, RF, KNN, SVM 95–99%

accuracy 4, 3.5 d

Tian, 2021 [28]
F, Ru, running,

Re, head-shaking,
drinking, W

?, 12.5 Hz 9 KNN, RF, KNN-RF
fusion 99.34% 20, 3, 1

Vázquez Diosdado,
2015 [43] F, S, L 300 s, 50 Hz DT, SVM 91.7% 6, 1.5

Vázquez Diosdado,
2019 (sheep) [44] W, S, L 7 s, 16 Hz 1 k-means, KNN 60.4% 26, 39

Walton, 2019 (sheep)
[45] 5–7 s, 16–32 Hz 44 RF 91–97%

Wang, 2018 [46] F, L, S, W 5 s, 1 Hz Adaptive boosting
algorithm 75% 5, 25 h

Wang, 2020 [47] Estrus 0.5–1.5 h, 1 Hz

KNN, back-propagation
neural network, LDA,

classification and
regression tree

78.6–
97.5% 12, 12 d

Williams, 2019 [48] G, Re and W 13 ML algorithms 93% 40, 0.25

G—grazing; F—feeding; L—lying; O—other behaviors, excluding those already listed; Re—resting;
Ru—rumination; S—standing; W—walking; SVM—support vector machine; DT—decision tree; LDA—linear
discriminant analysis; KNN—K-nearest neighbor; ? (or empty)—data was not found in the publication.
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