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Abstract: In the fourth industrial revolution, the scale of execution for interactive applications
increased substantially. These interactive and animated applications are human-centric, and the
representation of human motion is unavoidable, making the representation of human motions
ubiquitous. Animators strive to computationally process human motion in a way that the motions
appear realistic in animated applications. Motion style transfer is an attractive technique that is
widely used to create realistic motions in near real-time. motion style transfer approach employs
existing captured motion data to generate realistic samples automatically and updates the motion
data accordingly. This approach eliminates the need for handcrafted motions from scratch for every
frame. The popularity of deep learning (DL) algorithms reshapes motion style transfer approaches,
as such algorithms can predict subsequent motion styles. The majority of motion style transfer
approaches use different variants of deep neural networks (DNNs) to accomplish motion style
transfer approaches. This paper provides a comprehensive comparative analysis of existing state-of-
the-art DL-based motion style transfer approaches. The enabling technologies that facilitate motion
style transfer approaches are briefly presented in this paper. When employing DL-based methods
for motion style transfer, the selection of the training dataset plays a key role in the performance.
By anticipating this vital aspect, this paper provides a detailed summary of existing well-known
motion datasets. As an outcome of the extensive overview of the domain, this paper highlights the
contemporary challenges faced by motion style transfer approaches.

Keywords: deep learning; deep neural networks; human motions; motions style transfer; motion datasets

1. Introduction

In the fourth industrial revolution, the use of interactive applications has increased
substantially. These applications play a vital role in several domains, such as video games,
robotics, virtual reality (VR), and animated films, among others. The proliferation of
portable devices and the advent of 5G communication technologies further accelerate the
usage of interactive applications. The interactive and animated applications extensively
use human motion modeling. The movement of human-like characters is a core aspect
of these applications, and it is highly desirable that the movements of characters look
natural. The motion styles lead to the addition of realism to the character movements in
these applications.

One of the key challenges in interactive applications is bringing life to animated
characters and making them behave naturally. The addition of styles makes the motion
more meaningful, and significant research efforts are being carried out in this aspect. The
definition of the concept of motion style is not precise, and several researchers describe it
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differently [1]. The motion of a character is determined by its actions, whereas the style is
determined by how those actions are performed. For instance, a character may perform a
walk from one location to another in a variety of ways, such as fast, slow, happy, sad, etc.
The action itself, i.e., walking, is referred to as motion, and the manner of performing the
action, i.e., fast or slow, is known as style.

Defining the concept of style is not an easy task due to the lack of consensus. We
summarize the existing interpretations and illustrate this term in the graphics industry.
Generally, the style of human body motion is referred to as an essential component for
executing the complete motion of a character. Another option is to decompose motion
into primary and secondary themes and treat actions as primary motions and the style
corresponding to the motion as a secondary theme [1]. Massih et al. [2] describe style as a
function of age, gender, and health.

Several researchers [3,4] mention style as part of the motion and consider it an add-on
to motion. Rose et al. [3] describe style as an adverb and parameterized motion as a verb.
For example, walk is a verb; quick, slow, and happy are some of its adverbs. Another way
to define style is to consider style as a variation of motion [5]. Other researchers refer to
style as a person-dependent feature that may depend on the age, gender, or emotion of the
individual [1,2]. In conclusion, style is associated with the personality of the human and
reflects the spatiotemporal variations of a movement that supports adding value [1,6].

Styles in human motion may be perceived as a large collection of motion parameters
that depict the mood of a character. Style variations have the ability to portray a character’s
emotions, such as happiness or sadness, through their posture and walking style. Generally,
one can easily tell whether a person is angry or not from the way they walk. Such style
predictions are crucial in games and movies based on expressive and realistic character
animation. However, generating all the required motions with a diverse set of styles is
impractical. The generation of heterogeneous stylized motion is an active area of interest
for researchers.

To perform human body motion and style that is analogous to natural motion and to
deploy the mapping in animations, researchers use several approaches. The most straight-
forward approach is manually creating motion data from scratch by some 3D animators;
however, such a manual method may be extremely time-consuming and inefficient. An-
other approach is to use motion capture technologies and map the human body motion
data in 3D. However, such motion-capturing technologies may consume more resources
since these approaches need large numbers of motion and style combinations and, thus,
may become costly [7].

Furthermore, several data-driven techniques [7] were published; they were trained
via regression by employing a large motion database and matching motion sequences and
styles [8]. Obtaining a comprehensive training dataset for heterogeneous motion sequences
and styles is indeed a challenging task. Additionally, several motion-matching methods
have been proposed by researchers, based on the optimization theory, which can update the
real-time performance of motion matching [9]. However, retraining for new transformations
and keeping the motion dataset updated pose challenges for such approaches.

Interactive animation applications require processing a large amount of motion data
to ensure that the animated characters look realistic. Bringing animated characters to life
is not an easy task, as thousands of motion attributes need to be triggered in the desired
sequence for the movement to look realistic. As the demand for animation applications
increases, the need for more scalable methods to generate realistic animations with a higher
degree of responsiveness also increases. An alternative option is to update the styles of
current motion into one extracted from another. This approach is often referred to as motion
style transfer in the literature.

Motion style transfer is an effective solution for mapping input motion into various
styles. Generally, motion style transfer approaches employ existing motion data, automati-
cally generate realistic samples, and update motion data [10,11]. Transferring motion styles
across various characters has the potential to save time for animators as it avoids the need
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to generate different motion variations for each animation frame. A single set of motions
can be adopted for different characters automatically.

The majority of existing works focus on data-driven motion style transfer techniques [1,7,8],
which require motion dataset examples for neutral and derived styles. These motion
datasets need to be aligned for the generation and transfer of associated poses. The
efficiency and performance of such data-driven schemes depend on the datasets and,
therefore, the datasets need to be comprehensive enough to cope with all potential motions.
However, creating such a dataset is a challenging task.

Motion style transfer techniques face two fundamental challenges. Firstly, they require
paired and registered motion data [11]. To build such data, each character needs to perform
specific actions in different styles, e.g., the character needs to perform a walk in several
different styles and all such styles need to be paired and registered together. This is a tedious
and difficult task to achieve. Secondly, since it is challenging to have a comprehensive
dataset consisting of all possible style variations, motion style transfer techniques need to
extract and transfer styles from fewer motion samples.

With the increase in the popularity of DL based algorithms, these are being successfully
applied in various domains [12–14]. In the animation industry, animators have shown great
interest in applying DL-based algorithms to animation. Deep neural networks (DNNs) and
its variants, such as GNN [15–17], CNN [18–20], etc., are popular in interactive applica-
tions [21]. The reason for adopting neural network-based models for animation is that they
use less memory, have faster runtime, and are more scalable. Several researchers [1,7,11]
have shown that neural networks can be applied to generate natural motion in various
interactive applications.

This paper summarizes the existing state-of-the-art DL-based motion style transfer
approaches. We present the contributions as follows:

• We present a brief overview of the existing state-of-the-art motion style transfer
techniques. In the overview, we focus on their architecture, contributions, datasets,
and implementation details.

• We present a comprehensive review of the key enabling technologies for motion style
transfer techniques.

• We present a review of various motion capture datasets. The review of the dataset
focuses on the size of the dataset, motions included, frame rate, availability, and
several other parameters.

• As an outcome of the comprehensive review of motion style transfer techniques,
existing challenges that preclude the popularity of motion style transfer techniques,
are also presented.

The rest of the paper is organized as follows. Section 2 describes the existing popular
state-of-the-art motion style transfer techniques. Section 3 briefly describes the tools
and technologies for motion style transfer. Section 4 presents well-known datasets for
skeleton motion; research challenges are focused on in Section 5. Lastly, Section 6 concludes
the paper.

2. State-of-the-Art Literature on Motion Style Transfer

Over the years, several techniques have been proposed to generate stylized human
motions. Motion style transfer approaches, in which the style of one animation clip is
transferred to another while preserving the contents of the latter, have gained considerable
popularity over the last decade [22]. Several data-driven and AI-based approaches [23,24]
have accomplished motion style transfer for animation. However, the lack of paired
and labeled motion data precludes the popularity of such approaches. To address these
challenges, DL-based motion style transfer approaches have achieved remarkable success
in this domain. This section briefly describes the existing state-of-the-art motion style
transfer techniques.

In the animation domain, motion style is a key aspect. Motion style describes how an
action is likely to be executed. For human motion, the motion style can portray the mood,
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personality, identity, and feelings of the human. By revealing information about a human’s
internal state, the motion style can provide insight into the character itself. Motion style
transfer has the potential to substantially reduce the workload by enabling users to reuse
already captured motions. It allows modification of existing motion data and generates
new styles without compromising the original contents.

The authors of [1] presented a motion transfer scheme based on a meta-network, which
transfers the style of input motion to the output motion while retaining the behavior of
primitive motion. The goal of Pan et al. [1] was to establish a generative model that could
extract and transfer human motion styles across different frames. The model is divided into
three sub-tasks that use fully connected layers to establish the linkage between extracted
styles and the input motion. This three-layered fully connected network is known as the
meta-network. Establishing a mapping between extracted styles and the input motion is a
key operation that enables obtaining the matching transformation for every character in a
diverse motion style. Afterward, to transfer the motion style, a convolutional feed-forward
network was trained for the transformation function.

The model by Pan et al. [1] does not require data labeling and employs convolutional
layers in an unsupervised fashion. The meta-network obtains style attributes extracted
from the motion style at run time and establishes a link transformation network for motion
style transfer. The calculation of style attributes of motion is performed in conjunction with
the loss network and output values. A meta network-based motion style transfer from
motion-captured datasets is shown in Figure 1.

Loss network Style code

Transformation 

network

Meta network

OutputContent input

Style input

Figure 1. Meta network-based motion style transfer from motion-captured datasets.

Four different publicly available motion datasets were used by Pan et al. [1] for the
implementation of their proposed motion transfer model and to generate results. The
validation of the results was carried out by comparing them with existing work. The
comparison shows that Pan et al.’s model outperforms the existing models.

Holden et al. [7] proposed a neural network method for motion style transfer that
consists of two components, i.e., a convolutional auto-encoder and a feed-forward con-
volutional network. The former is used as a loss network, while the latter is responsible
for the style transformations. The convolutional auto-encoder models human motion and
calculates the loss during style transfer. Figure 2 presents an overview of Holden et al.’s [7]
method for motion style transfer.
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Figure 2. A typical architecture of style transfer from motion-captured datasets.

The authors of [7] used the motion dataset created by combining several freely avail-
able datasets and adding their own capture motions. The data are converted to the 3D joint
position format; foot contact labels are detected by observing the toe and heel of the charac-
ter. The joint position representation is very effective at computing the Euclidean distance
between two poses to determine the similarity of the poses. The data representations are
fed in a fixed-size window for the training. The training phase took 6 h on an NVIDIA
GeForce GTX 660 GPU.

Holden et al. [7] generated results via 10 different locomotion and style types. The
results were evaluated by comparing them with the existing style-transfer method and
using the runtime as the baseline for the evaluation. The evaluation concluded that
Holden et al.’s [7] model produces a better runtime.

Smith et al. [8] propose a method that uses neural networks for motion style transfer
and generates stylized motion. To implement this, Smith et al. prepare a set of networks
that take diverse motion sequences as input and produce the same sequence with a specific
style as output. As long as the joint positions can be determined, any exciting motion can
be effectively streamed into the networks as input for transfer. Thus, there is no need for
retargeting or input action labels.

The proposed method primarily divides the different components of the task for
motion style transfer and trains each task separately. The style transfer tasks are divided
into three sub-tasks: (i) a pose network, (ii) a timing network, and (iii) a foot contact
network. All of these sub-tasks are separately trained to accomplish their respective
predictions. Specifically, pose networks and timing networks are used to predict the spatial
and temporal style variations, respectively. The foot contact network is trained for the
removal of foot skates so that realism in style transfer may be achieved. These three sub-
tasks are collaboratively executed in a pipeline to accomplish motion style transfer. A brief
overview of Smith et al.’s [8] method for motion transfer is presented in Figure 3.

The proposed method by Smith et al. [8] takes heterogeneous motion sequences from
the 3D motion data as input and it outputs the same motion sequence but in the desired
target style. The input motion data captured by Xia et al. [25] was used for this purpose.
Furthermore, the existing 3D motion dataset was augmented by adding seven more style
variations. The poses from the input dataset were annotated with foot contacts and similar
poses with different styles were registered together. The pose and timing networks were
trained by observing the positions and velocities of the joints and fed as input through
window-based pose inputs. Furthermore, a window-based pose input was fed to the foot
stake network for the removal of foot staking.
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Figure 3. Real-time motion style transfer from motion-captured datasets.

The training phase for the proposed model took 3 h on an i7 3.5 GHz (four-core) GPU-
based machine with a GeForce GTX 1070 graphics card. Once the training was complete,
the dataset could be discarded. Once the output was achieved from all three networks,
the outputs were combined for the target style. The final output was validated in three
different ways: (i) by comparing the speed and memory usage with the existing work,
(ii) by comparing the visual results, and (iii) through a user study. The comparison of
speed and memory footprints shows that the Smith et al. [8] model outperforms the other
competitors. The visual results of seven different motion actions are provided and show
reasonably better visual results than the other models. The user study for the validation
contains two different experiments and concludes that, except for the style, which needs
significant variations in limb positions (proud or sexy walk), the model can effectively
extrapolate the different styles.

Aberman et al. [11] propose a framework for motion style transfer capable of extracting
styles from video clips directly. Furthermore, the framework can extract styles from 3D-
animated characters, and 2D projection of 3D motions. The proposed framework trains
by unpaired motions with style labels and can transfer the styles from motion, even if
the styles are not observed during the training phase. The framework employs a deep
convolutional neural network that trains a universal style extractor. This universal style
extractor is capable of extracting styles from 3D and 2D motions (video clips). Motion style
transfer from video clips proposed by Aberman et al. [11] is shown in Figure 4.

Content Input

Output

Style Input

Style Code

Content Code

Generator

Figure 4. Motion style transfer from video clips.

The proposed framework uses two different motion clips as input: a content input
with source style and a style motion with the target style. The content motion and style
motion are treated differently. Content motions are represented by joint rotations, whereas
style motion is presented by joint positions. The output of the framework is the motion
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content with a target style. Both input motions are encoded into separate latent codes by
employing two different encoders. The style encoder further uses 2D or 3D encoders based
on the joint coordinates in either 3D or 2D (extracted by video clip) for style extraction. The
latent code for style is obtained from only one encoder (either 3D or 2D), depending on the
source of the input style.

Considering the dissimilarity of the contents for input motions, the translation of global
velocity needs to be performed so that motion style transfer looks realistic. Aberman et al. [11]
present a heuristic solution and perform the temporal average for the velocity of the maxi-
mal local joint in each motion sequence. For realistic style transfer, foot stacking also needs
to be addressed. The proposed framework extracts the foot contact label from the content
input and performs inverse kinematics to the corresponding output style.

To implement the style extraction framework, Aberman et al. [11] utilized two differ-
ent datasets. Firstly, they used the dataset of Xia et al. [25], which contains eight different
style labels for various motion sequences. Additionally, they captured a dataset containing
several motions performed by a character in 16 different styles. The experiments for vali-
dating the proposed framework utilized both of these datasets, with a total of 1500 motion
sequences from the first dataset and 10,500 motion sequences from the second dataset. The
motion samples were represented as fixed-size windows. The training phase for the first
dataset took 8 h, while for the second dataset, the training time was 16 h. Moreover, 10% of
the total motion sequences were used as test data for the experiments.

The effectiveness of the proposed framework is validated by comparison with Holden
et al.’s approach [9]. Holden et al. extract style from 3D motion; however, Aberman et al.
use a state-of-the-art pose estimation algorithm to extract style from videos for a fair
comparison. Validation is achieved through a case study in which both approaches are
evaluated based on realism, repulsiveness, and content preservation. For the case study,
22 subjects were shown the results and asked for their responses. 132 responses were
received, and about 75% of the respondents endorsed Aberman et al.’s results [11].

Xia et al. [25] proposed an online learning method for motion style transfer. The goal
of the proposed method is to transfer the input motion data into a series of output-style
frames. The method establishes a set of local collections of auto-regressive models and
focuses on the deviations in the input and output styles. The regressive models match the
identical examples of every input pose from the training data. Afterward, the input pose
is extracted from the output style via linear transformations. For every successive pose, a
new local model is built and performs the transformation.

The proposed model in [25] is a data-driven method that consists of three major compo-
nents: (i) motion registration and annotation, (ii) stylistic motion modeling and generation,
and (iii) post-processing. In the motion registration and annotation phase, all actions in
the input database are registered against motion examples. After the registration process,
the motion examples are annotated in terms of actions, styles, and contact information of
the motion. The stylistic motion modeling and generation phase uses the input motion
database to model the spatial–temporal relationship between the styles. In this phase, an
online learning approach is used to automatically build a set of regressive models. These
local regressive models help approximate the spatial–temporal transformations and are
built by the motion examples corresponding to every input style in the database. The
local regressive models can handle the unlabeled input motions. The synthesized motion
sometimes violates kinematic constraints enforced by the environment due to environmen-
tal contact. Thus, the post-processing phase is performed to automatically annotate such
constraints in motion data. An overview of Xia et al. ’s [25] method for motion transfer is
presented in Figure 5.
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Figure 5. Regression-based motion style transfer from motion-captured datasets.

The authors of [25] created a motion dataset by capturing heterogeneous stylistic mo-
tions. They captured a wide variety of motion actions and styles to create a comprehensive
dataset and then registered structurally identical motions with corresponding styles, anno-
tating all motions, actions, and styles. To make the motions more realistic, post-processing
was performed to remove foot stakes. Binary footprint annotations were defined for each
pose, and a K-nearest neighbors algorithm was used to identify the likelihood of a foot
stake artifact. Inverse kinematics was used to identify the contact plane of the contact point.

Xia et al. [25] implemented their model on a machine equipped with an Intel(R)
Xeon(R) processor E3-1240 with a speed of 3.40 GHz and an NVIDIA graphics card GTX
780T with 3 GB of memory. The validation of results was achieved by comparing them with
existing models. A number of parameters were used for evaluations using different datasets.
The comparison results show that the Xia et al. [25] model consistently outperforms
its competitors.

Zhang et al. [26] present a neural network-based model named Mode-Adaptive Neural
Networks (MANN) to control quadruped characters. MANN is a time series prediction
system that predicts the character’s state by learning from its state in the previous frame.
The architecture of MANN mainly consists of two components: (i) a motion prediction
network and (ii) a gating network. The weights of the motion prediction network are
dynamically computed with the help of the gating network. The gating network uses
motion features from the input and computes the expert weights for the motion prediction
network. MANN architecture for motion style transfer is shown in Figure 6.

The input and output data of MANN include body joint transformations, ground
trajectories, and velocities of the character in the previous and following frames, respec-
tively. Specifically, the input contains the trajectory positions, trajectory velocities, joint
positions, rotations, velocities, trajectory forward-facing directions, and one-hot vectors for
action types relative to the current state. The output contains the predicted values for the
character in the next frame.
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Figure 6. An architecture of MANN for motion style transfer.

Zhang et al. [26] created a motion dataset for quadrupeds by capturing 30 min of
motion from a dog in different locomotions, including idle lying, standing, walking, sitting,
jumping, and trotting. The data was captured on flat terrain and mirrored to increase its
size. The network was trained with the captured quadruped motion data so that for a
given input feature matrix, the corresponding output can be generated with minimal error.
Considering time-series prediction, the training objective was to reduce the mean square
error between the input and the predicted value. The training was performed using 4 and
8 expert weights for the prediction networks and took 20 and 30 h on an NVIDIA GeForce
GTX 970 GPU, respectively.

Zhang et al. [26] evaluated the proposed model by comparing it with existing neural
network-based models using performance metrics such as motion quality, foot sliding
artifacts, leg stiffness, and responsiveness. The comparison study concludes that MANN
produces better results than the other models.

Mason et al. [27] proposed a transfer learning method that learns neural networks for
motion style transfer. The goal of the proposed model is to leverage the already trained
models for transforming the new styles. The proposed model limits the amount of required
data by using few-shot learning from existing, limited data to generate new motion styles.
The model is trained on a few styles using a phase-functioned neural network (PFNN), from
which several style-agnostic attributes are extracted. Such style-agnostic attributes along
with other particular style attributes combine to produce the output. Few-shot learning for
motion style transfer from motion-captured datasets is shown in Figure 7.

The proposed model is required to process style-dependent as well as style-independent
components. The proposed model uses PFNN to process motion components that are
independent of any style, and several residual adapters to process style-dependent compo-
nents. The weights of the residual adapters are split into three tensors using a canonical
polyadic (CP) decomposition, which aims to limit the attributes needed to learn new styles,
enabling few-shot learning. The PFNN and residual adapters are initially trained using a
large set of motion data and corresponding styles, with several shot motion clips used for
further training.

To implement the proposed approach, Mason et al. [27] captured their own motion
dataset analogous to the one captured by Xia et al. [25], and mirrored it to increase the
volume of unaligned stylized motions. To achieve an identical skeleton structure (as in
the CMU dataset and Holden dataset [7]), velocities, joint positions, and rotations were re-
calculated and normalized for every frame. The model was trained on an NVIDIA GTX 1080
Ti GPU, taking 6 h for the training. The generated results were compared to existing work
for effectiveness, and the comparison shows that the proposed model of Mason et al. [27]
can learn new styles with less training time than other algorithms. Furthermore, the results
were validated by visually inspecting the quality of videos generated by different models.
The visual evaluation shows that the model by Mason et al. [27] produces better-quality
videos than the others.
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Figure 7. Transfer learning for motion style transfer from motion-captured datasets.

Dong et al. [28] present a motion style transfer algorithm named adult-to-child
(Audlt2child). Motion style transfer for children is different from adult motion transfer
due to differences in skeleton size, limb dimensions, and movement speeds. Therefore,
motion style transfers from adult examples cannot be directly applied to child motion data.
Furthermore, motion-capturing for children is not easy, as a child’s level of understanding
differs from an adult’s; children lack patience and are confused with instructions.

The goal of the proposed approach is to divide the motion sequences into smaller
movements, which can then be translated into images using image translation algorithms.
These smaller temporal windows are capable of carrying the temporal and spatial properties
of motions, including temporal evolution, and can also be used to capture the essence and
stylistic behaviors of those motions. The audlt2child motion transfer algorithm proposed
by Dong et al. [28] is based on generative adversarial networks (GANs). GANs have the
potential to build a mapping between two different data sources. The adult and child have
distinct motion attributes and both lack motion alignments. Thus, in this situation, GANs
are the preferred choices for the style transfer from the adult to the child. The audlt2child
uses architecture based on CycleGAN so that timing of motion can be altered through the
neural network. The useful attributes from input motions are extracted by redesigning
the generators.

Typically, CycleGAN-based architectures employ unpaired data of two domains,
such as images of zebras and horses. In audlt2child architecture, Dong et al. [28] use the
same motion types (such as adult and child jump) and train the network accordingly.
The architecture is composed of two separate GANs, one is for adult2child motion style
extraction and the second one is for child2adult motion style translation. Both are executed
cyclically. The reason for having two separate GANs with cyclic formation is that this
arrangement avoids the need for paired data for training purposes.

Dong et al. [28] built their own motion dataset to address the lack of existing datasets
for children’s motions. They captured similar motions for children and adults to populate
the dataset with a variety of movements. The model was implemented using Google
Colab Pro with an NVIDIA P100 graphics card, and the training phase lasted for 7 h.
Dong et al. [28] employed different methods to evaluate the generated results, including
comparing them with existing work, conducting an ablation study, and performing a
perceptual study. The evaluation of results concluded that Dong et al.’s [28] model generates
more realistic results.

Tao et al. [29] proposed a style encoder–recurrent–decoder (ERD) framework for online
motion style transfer in real-time. The proposed style-ERD framework considers styles as
input streams and processes them online in a streaming fashion. The style-ERD framework
generates high-quality motion style transfer in real time by embedding the knowledge
of prior frames in the memory of the style transfer module. The proposed framework is
based on the ERD model, which consists of several hidden layers forming several recurrent
residual connections. These recurrent layers help store the context (content and style) of
the current frame, which is used for style extraction.

The style transfer module of the proposed style-ERD framework consists of three
components: (i) an encoder, (ii) a recurrent module, and (iii) a decoder. The encoder in the
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style transfer module compresses the input frame from the motion data, and the recurrent
module uses the residual connections for learning motion styles. The decoder maps the
latent codes back to the extracted motion frame. Tao et al. [29] use motion capture data as
input for their proposed framework and extract styles for the targeted motion. They use
the Mocap dataset captured by Xia et al. [25] for this purpose.

The training process of style ERD is performed analogously to the standard generative
adversarial network (GAN). Tao et al. [29] evaluated its effectiveness in a variety of
ways. Firstly, style transfer results were compared with the existing style transfer models;
secondly, qualitative evaluation was performed by considering three parameters, i.e., style
expressiveness, temporal consistency, and content preservation; thirdly, a user study was
performed to evaluate the quality of results and run-time efficiency of the framework.
Tao et al. [29] measured the runtime efficiency with a machine equipped with NVIDIA
GeForce GTX 1060 GPU with 6 GB of memory. The evaluation results show that the style
ERD framework outperforms the existing models in all evaluation scenarios.

Chang et al. [30] propose a probabilistic model called denoising diffusion probabilistic
model (DDPM) for styled motion synthesis. The proposed model is a diffusion-based
solution used for combing motion synthesis and style transfer. Furthermore, it models the
content and style in a shared representation. The multi-task architecture of the proposed
DDPM models various aspects of motion, such as joint angles, foot contact patterns, and
global movements. Furthermore, it employs adversarial training for harmonizing the
predictions performed by multiple tasks so that the synthesized motions may be perceived
globally in a natural way.

The architecture of DDPM uses three inputs (i) a motion clip, (ii) motion content, and
(iii) motion style. It models the motion as joint angles and the motion content and motion
style are altered into a ’one-hot embedding’. The architecture utilizes the three inputs
and estimates the noise, global movement, and corresponding foot contacts. It leverages
the binary representation to identify the foot contact with the ground. The multi-tasking
architecture of DDPM utilizes noise predictions rather than predicting the joint angles.

Chang et al. [30] utilized Mocap data captured by Xia et al. [25] to provide a variety of
motions for qualitative analysis of motion generation with various contents and styles. The
authors trained their model using an NVIDIA RTX 3090 GPU with 32-bit floating-point
arithmetic, and the training phase lasted for about 24 h. Chang et al. [30] evaluated their
model in various ways, such as by comparing it with existing DDPM-based models, quali-
tatively evaluating results by visualization, and using an ablation study. The evaluation
concludes that the designed model generates higher-quality motions than its competitors.

Jiang et al. [31] presented a framework called a motion puzzle that transfers motion
styles by body parts. The proposed framework extracts style from a variety of motions
for several body parts. The extracted styles are then locally translated to the desired body
parts. The motion puzzle framework is designed to preserve the content of the specific
motion by controlling the styles of individual body parts (such as the spine, legs, and
arms). The proposed framework takes a motion source and several desired motions as
inputs. The targeted motions stylize the body parts, and the full-body motion is generated
as the output.

Jiang et al. [31] used encoders to design the motion puzzle framework. The design
comprises a decoder that creates a styled whole-body motion, and two encoders that
extract multi-level style characteristics for individual body parts from target movements,
as well as a content feature from a source motion. The authors used a spatial–temporal
convolutional network as the foundation for the proposed motion puzzle framework to
encode and synthesize motions in which several joints move over time in spatially and
temporally correlated ways. The symmetry between the structure of human body parts
and the convolutional network is achieved by employing pooling–unpooling methods.

The authors developed their dataset by extracting motion samples from the CMU
dataset. The Mocap dataset captured by Xia et al. [25] was used to evaluate the designed
model. The model training was performed with two NVIDIA GTX 2080ti, and it took 5 h.
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The evaluation was performed by (i) visualizing the results for transferring styles by body
part, (ii) comparing it with existing models, and (iii) conducting an ablation study. The
authors demonstrated the integration of an existing character controller with a real-time
motion style transfer.

Motion styles can be transferred from one sequence to another using adversarial
learning. Wang et al. [32] proposed a neural network-based architecture for achieving
motion style transfer. The architecture consists of a sequential adversarial autoencoder
(SAAE) and a style discriminator. At each time step, the SAAE takes a one-hot encoding
of the input sequence’s style/emotion label as input. The style discriminator learns to
extract the input sequence’s style information from its encoding representation. The model
uses motion examples from the Mocap dataset and transfers one motion’s style to another.
Wang et al. [32] conducted experiments on their model using the Emilya [33] dataset. The
validation of results was performed by comparing them with the existing models. We
present the implementation details of various motion style transfer approaches in Table 1.

Table 1. Implementation details of motion style transfer approaches.

Authors Enabling Tech-
nology Datasets Hardware Training

Time Result Evaluation

Pan et al. [1] CNN

Uses different datasets

• Dataset 1: MHAD, with 660 action sequences
• Dataset 2: CMU motion capture dataset
• Dataset 3: HDM05
• Dataset 4: Holden et al. [9]

Motion actions/Styles: Details of datasets (2–4) is
provided in Section 4

NVIDIA
GeForce
GTX1050Ti,

10 h

• Result Visualization
• Comparison with ex-

isting work
• Style interpolation

* Holden et al. [7] CNN

Holden et al. [9] dataset with 10 motion styles, details
of datasets is provided in Section 4. Motion
actions/Styles: 10 different styles and various kinds of
locomotion including walking, jogging, and running

NVIDIA
GeForce GTX
970

3.5 h
• Comparison with ex-

isting work

Smith et al. [8] ANN

Uses two different datasets

• Dataset 1: 79,000 motion sequences (captured by
Xia et al. [25])

• Dataset 2: 550,000 motion sequences
(self-captured)

Motion actions/Styles: walking, running, jumping,
kicking, punching, neutral, proud, angry, depressed,
strutting, childlike, old, sexy

i7 3.50 GHz,
4 core PC with
a GeForce GTX
1070 graphics
card

3 h

• Result Visualization
• Comparison with ex-

isting work
• Case study

* Aberman et al. [11] GNN/encoders

Uses two different datasets

• Dataset 1: 1500 labeled motion sequences
(captured by Xia et al. [25])

• Dataset 2: 10,500 total motion sequences
(self-captured)

Motion actions/Styles: walking, running, jumping,
kicking, punching, neutral, proud, angry, depressed,
strutting, childlike, old, sexy

NVIDIA
GeForce GTX
Titan Xp GPU
(12 GB)

8 h and
16 h for
dataset
1 and
dataset
2, respec-
tively

• Result Visualization
• Comparison with ex-

isting work
• Ablation Study
• Style Interpolation

Xia et al. [25] MAR

Uses two different datasets

• Dataset 1: CMU motion capture dataset (details
of dataset is provided in Section 4)

• Dataset 2: 79,829 motion sequences
(self-captured)

Motion Actions/Styles: As of Smith et al. [8]

Intel(R)
Xeon(R) E3-
1240 3.40 GHz
and NVIDIA
GTX 780T
(3 GB)

Unknown

• Comparison with ex-
isting work

• Component Evalua-
tions

* Zhang et al. [26] ANN
Synthetically created 30 min dog motion capture
dataset Motion actions/styles: walk, pace, trot, and
canter, sitting, standing, idling, lying and jumping

NVIDIA
GeForce GTX
970 GPU

20/30 h
with 4/8
expert
weights

• Comparison with ex-
isting work

* Mason et al. [27] ANN

Synthetically created 1 h motion capture dataset
Motion actions/Styles: walking, running, jumping,
kicking, punching, neutral, proud, angry, depressed,
strutting, childlike, old, sexy

Intel i7-6700HQ
CPU 7 h

• Result Visualization
• Comparison with ex-

isting work
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Table 1. Cont.

Authors Enabling Tech-
nology Datasets Hardware Training

Time Result Evaluation

Dong et al. [28] CycleGAN

Synthetically created dataset that contains 23 motion
actions performed by both adults and children. Motion
actions/Styles: Ball throw with left /right arm, punch,
kick, jump, idle, broad jump forward, high jump,
5 jumping jacks, walk, fast walk, hopscotch, sneaky
walk, happy walk, jog, fast run, skip

NVIDIA P100
graphics card 7 h

• Comparison with ex-
isting work

• Ablation study
• Perceptual study

* Style ERD [29] GNN Mocap dataset captured by Xia et al. [25] Motion
Actions/Styles: As of Xia et al. [25]

PC with
NVIDIA
GeForce GTX
1060 GPU
(6 GB)

Unknown

• Comparison with ex-
isting work

• Qualitative evalua-
tion

• user study

* Chang et al. [30] DDPM Mocap dataset captured by Xia et al. [25] Motion
actions/styles: As of Xia et al. [25]

NVIDIA RTX
3090 GPU,
32 bits

24 h

• Comparison with ex-
isting work

• Qualitative evalua-
tion

• Ablation study

* Motion Puzzle [31] CNN (i) CMU dataset, and (ii) Mocap dataset captured by
Xia et al. [25]

2x NVIDIA
GTX 2080ti 5 h

• Results visualizing
• Comparison with ex-

isting work
• Ablation study

* Source code publicly available.

3. Tools and Technologies for Motion Style Transfer

In the existing literature, researchers employ several tools and state-of-the-art tech-
nologies to facilitate motion style transfer. Network architecture plays a key role in learning
deep representation to facilitate motion style transfer. Network architectures are leveraged
to learn spatial and temporal correlations in motion data for efficient style transfer. The
architectures for learning deep representations for motion style transfer can be broadly
classified into three categories [34]: (i) architectures for learning spatial features, (ii) archi-
tectures for learning temporal features, and (iii) miscellaneous architectures. This section
provides a brief description of each category.

3.1. Architectures for Learning Spatial Features

Spatially-structured architectures facilitate DNNs to learn spatial correlations that rely
on network architectures. These architectures are structured around the human skeleton,
such that the function of the network computes inherent information about the human
skeleton. These approaches process the data either hierarchically or in parallel network
branches after dividing the skeleton into body parts. Convolutional neural networks and
graph convolutional networks are well-known architectures of this category.

3.1.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are widely used in image processing, pattern
recognition, and motion style transfer. When learning spatial correlations in data with
regular structures, such as images and videos, CNNs are particularly efficient. CNNs can
be applied to transfer the style of one animation frame to the content of another. CNN
is a fully connected network, i.e., all neurons are fully connected with the neurons of
other layers. The architecture of CNN is similar to the ANN and it contains many hidden
layers in addition to one input layer and one out layer. The hidden layers of CNN may be
convolutional, fully connected, and or normalization layers. A linear unit rectifier (ReLU)
is generally used as the activation function for CNN. A reverse-propagation function may
be adopted for the weight assignments between the successive layers of CNN. Pan et al. [1]
and Aberman et al. [11] employ CNN for motion style transfers.
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3.1.2. Graph Convolutional Networks

Graph convolutional networks (GCNs) are extended versions of CNNs that have
emerged recently for skeleton motion. The key difference between CNN and GCN is that
the former is typically executed on regular and structured data, while the latter is a more
generalized version that can operate on irregular data. The GCN constructs a map of
nodes and links the neighborhood nodes via Euclidean distances on which a convolution
is applied. The GCN learns the features by considering the Euclidean distances between
the neighboring nodes. It uses the feature vector for sampling and execution in the Fourier
domain. Aberman et al. [35] and Li et al. [36] used GCNs to design the models for
motion generation.

3.2. Architectures for Learning Temporal Features

The temporal dimensions of motion data provide data on the types of activity per-
formed and how they are carried out. We provide popular architectures in this sub-section.

3.2.1. Recurrent Neural Networks

Recurrent neural networks (RNNs) are specialized forms of neural networks and
are widely used for sequential data, such as sound, images, etc. RNNs typically execute
timestamps of time series data sequentially and can handle different lengths of sequences.
Such networks build internal states to capture the temporal context. RNNs use the hid-
den layer to retain sequential information in memory, enabling them to store time-based
sequences. They can be used to predict subsequent poses in human motion. In their
work, Jain et al. [37] used one RNN for each body part and predicted the next poses by
incorporating the predictions of neighboring RNNs (at the previous timestamp) and its
own prior predictions as inputs. RNNs are well-suited for learning time series data like
human motion, as they can predict the next posture from the previous motion. However,
they are known to converge to average poses.

3.2.2. Long Short-Term Memory

Generally, the RNN uses long short-term memory (LSTM) architecture for learning
temporal features. A typical LSTM contains a memory cell that may retain values for
any length of time and three gates that control the flow of data into and out of the cell.
Because the memory cell may retain data over any time, LSTM is useful for capturing both
short-term and long-term temporal relationships. These gates are an input gate, an output
gate, and a forget gate. The gradients used to update the network weights might become
large (or extremely small), which either precludes the further learning of the network or
causes the network to diverge. Wang et al. [32] used LSTM-based learning for style transfer.

3.3. Miscellaneous Architectures

Several authors [38–40] have designed DL architectures to learn special–temporal
relationships for motion style transfer. These architectures aim to model the temporal
motion parameters and decompose the spectral motion parameters for spatiotemporal style
transfer [41]. For example, Zhang et al. [26] made adjustments in expert weights by using a
gating network; this resulted in a mixture of the scheme.

4. Datasets for Skeleton Motion

This section provides an overview of existing popular datasets for skeleton motion.
The dataset selection is an important aspect when designing an algorithm. The designed
model is trained from the dataset and the quality and comprehensiveness of the dataset
directly influence the performance of the model. Therefore, it is crucial to choose an
appropriate dataset for the model. This section provides an overview of existing popular
and widely used motion datasets. This overview of existing datasets will be very beneficial
for researchers to choose the appropriate dataset.
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4.1. CMU Dataset

The Carnegie Mellon University (CMU) motion capture database is one of the most
widely used datasets. The CMU dataset is a large-scale freely available dataset for learning
and research purposes. The CMU dataset contains about 3.9 × 106 frames recorded at a
frequency of 120 Hz. The movements of 29 joints are tracked for the motion data. The
dataset contains motions of various types organized into 144 classes and 2605 motion
samples. The data are arranged into 6 major categories—human interaction, interaction
with the environment, locomotion, physical activities, sports, situations, scenarios, and test
motions. The data are available in several formats, such as ASF, AMC, and zip (compressed),
with the possibility of converting to several other formats. The total size of the data is over
4 GB.

4.2. Human3.6M Dataset

Human3.6M [42] is a diverse and large-scale dataset of human poses. It is a collection
of 3.6 million 3D human poses. The dataset was generated by recording the movements
and poses of 6 male and 5 female professional actors. The movements and poses in 15 dif-
ferent scenarios were recorded and the dataset was organized accordingly; 32 joints of the
skeletons were recorded for the movements. The Human3.6M dataset is not freely available;
however, it can be obtained upon request. Moreover, 941 citations of the Human3.6M
dataset demonstrate its wide popularity in the research community.

4.3. Mocap HDM05 Dataset

The Mocap HDM05 [43] is a publicly available large-scale motion dataset containing
over 360,000 frames recorded at a frequency of 120 Hz. The dataset is available in various
formats, such as C3D, ASF, AVI, and AMC, and includes 31 marked joints of the skeleton,
with more than 3 h of systematically recorded motions organized into over 100 different
classes. The dataset was populated by five actors performing various motions between 10
to 50 times. The HDM05 [43] is widely accepted among the research community and has
over 462 citations.

4.4. NTU RGB+D Action Recognition Dataset

Shahroudy et al. [44] presented the NTU RGB+D dataset, which is a large-scale 3D
dataset for human activities. The dataset was generated using Microsoft Kinect v2 sensors
to track 25 joints in the 3-dimensional human body. It contains 56,000 videos and 4 million
frames with a frequency of 30 Hz, organized into 60 action classes further divided into
3 major groups: 40 daily routine activities (reading, eating, etc.), 9 health-related actions
(falling, sneezing, etc.), and 11 other hybrid actions (hugging, kicking, etc.). The RGB+D
dataset is widely adopted by the research community and has been cited over 1680 times.

4.5. NTU RGB+D 120 Action Recognition Dataset

Lie et al. [45] introduced RGB+D 120, a large-scale dataset for human activity recog-
nition. RGB+D 120 is an extended form of the RGB+D dataset, which is based on similar
sensors and methodologies; however, the scale of the dataset is much higher. The RGB+D
120 dataset was created by tracking 25 human body joints. The dataset captures 120 action
categories of 40 persons; the categories include 82 daily routine activities, 12 health-related
actions, and 26 other hybrid action categories. The dataset contains 114,000 videos and
8 million frames at a frequency of 30 Hz. The NTU RGB+D 120 dataset has 427 citations.

4.6. HumanEva Datasets

Sigal et al. [46] presented HumanEva, a video and motion capture dataset. Specifically,
Sigal et al. [46] developed two datasets and named them HumanEva-I and HumanEva-II,
respectively. The HumanEva-I dataset was developed by four subjects who exercise six pre-
defined actions repeatedly. The HumanEva-I dataset comprises 74,600 frames recorded at a
60 Hz frequency. HumanEva-II is a relatively smaller dataset, consisting of 24,600 frames
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at a 60 Hz frequency. Both datasets track the motions of the human body by monitoring
15 different body joints. The citation count for the HumanEva datasets is 1073.

4.7. Holden et al. Motion Dataset

Holden et al. constructed a motion dataset [9] by using existing datasets, such as
CMU and HDM05 by [43] and Xia et al. [25]. After combining these existing datasets,
Holden et al. captured their own data and append them to the existing datasets. In order
to ensure symmetry between the skeleton structures of different datasets, retargeting
operations utilizing inverse kinematics are carried out. The resulting dataset, as compiled
by Holden et al., comprises 6 million frames captured by tracking 21 body joints at a
frequency of 120 Hz. The Holden et al. constructed dataset [9] is widely adopted by the
research community; its popularity is evident from 462 citations.

4.8. 3DPW Dataset

Marcard et al. [47] presented 3D poses in the wild (3DPW) dataset, which records videos
from a moving phone camera. The 3DPW dataset contains 60 video sequences with a total
of 51,000 frames recorded at a frequency of 30 HZ. The dataset contains 11,000 different
motions captured by tracking 52 body joints. The dataset was recorded with 18 3D models
in different arrangements. The dataset is freely available for research activities. The 3DPW
dataset has 392 citations.

4.9. AMASS Dataset

Mahmood et al. [48] presented the archive of motion capture as surface shapes
(AMASS) dataset, which consists of large-scale data on human motions. AMASS is a
publicly available dataset used for research purposes and consists of 440 different subjects
and 13,195 motions. The dataset contains 180 million frames with a frequency of 60 Hz.
The citation count for the AMASS dataset is 282.

4.10. Total Capture Dataset

Trumble et al. [49] presented a human pose dataset named total capture that is publicly
available. The dataset was built by using the multi-viewpoint video (MVV) and inertial
measurement unit (IMU). The dataset was created by 5 actors (4 males and 1 female)
performing different actions in various poses with 3 repetitions. The dataset contains
1,892,176 frames recorded at a frequency of 60 Hz. The citation count for the total capture
dataset is 133. Summary of widely used motion datasets is given in Table 2.

Table 2. Summary of motion datasets.

Dataset Size Frame Rate Joints Citations Availability URL

CMU Dataset Motions/actions: various
motion in styles of human interaction,

interaction with environment, locomotion,
physical activities, and sports scenarios

3.9 × 106 frames 120 29 – Public http://Mocap.cs.cmu.edu/, accessed on
12 December 2022

Human3.6M Motions/actions:
conversations, eating, greeting, talking on

phone, posing, sitting, smoking, taking
photos, walking in various scenarios

3.6 × 106 frames 120 31 941 On request
http://vision.imar.ro/human3.6m/

description.php, accessed on
12 December 2022

Mocap HDM05 Dataset Motions/actions:
walking, running, jumping,

grabbing/depositing activities, sports
activities, sitting and lying down, and

miscellaneous motions

3.6 × 105 frames 120 31 462 Public
https:

//resources.mpi-inf.mpg.de/HDM05/,
accessed on 20 November 2022

NTU RGB+D Dataset Motions/actions:
drinking water, eating meal, brushing teeth,

brushing hair, sit down, stand up, and
several other actions

4.0 × 105 frames 30 25 1680 On request
https://rose1.ntu.edu.sg/dataset/
actionRecognition/, accessed on

20 November 2022

http://Mocap.cs.cmu.edu/
http://vision.imar.ro/human3.6m/description.php
http://vision.imar.ro/human3.6m/description.php
https://resources.mpi-inf.mpg.de/HDM05/
https://resources.mpi-inf.mpg.de/HDM05/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
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Table 2. Cont.

Dataset Size Frame Rate Joints Citations Availability URL

NTU RGB+D 120 Dataset
Motions/actions: put on/take off

headphone, bounce ball, tennis bat swing,
thumb up/down, make OK/victory sign,

and several other actions

8.0 × 105 frames 30 25 427 On request
https://rose1.ntu.edu.sg/dataset/
actionRecognition/, accessed on

20 November 2022

HumanEva-I Dataset Motions/actions:
walking, jogging, gesturing combo,

throwing and catching a ball, boxing,
combo

74,600 frames 60 15 1137 public http://humaneva.is.tue.mpg.de/datasets_
human_1/, accessed on 5 October 2022

HumanEva-II Dataset Motions/actions:
walking, jogging, gesturing combo,

throwing and catching a ball, boxing,
combo

24,600 frames 60 15 1137 Public http://humaneva.is.tue.mpg.de/datasets_
human_2, accessed on 5 October 2022

Holden et al. motion Dataset
Motions/actions: various motion in styles

of human interaction, interaction with
environment, locomotion, physical

activities, and sports scenarios

6.0 × 106 frames 120 21 462 Public

https://theorangeduck.com/page/deep-
learning-framework-character-motion-

synthesis-and-editing, accessed on
7 November 2022

3DPW Dataset Motions/actions: shopping,
doing sports, hugging, discussing,

capturing selfies, riding bus, playing guitar,
relaxing

180 × 106 frames 60 52 460 Public https://virtualhumans.mpi-inf.mpg.de/
3DPW/, accessed on 7 November 2022

AMASS Dataset Motions/actions:
walking, jogging, crawling, standing,

siting, kicking, ball catching, and many
other actions

5.1 × 104 frames 30 23 387 Public https://amass.is.tue.mpg.de/, accessed on
1 November 2022

Total Capture Datasets Motions/actions:
walking, running, standing, jumping,

kicking, punching, neutral
1,892,176 frames 60 21 160 Public https://cvssp.org/data/totalcapture/,

accessed on 1 November 2022

5. Current Challenges and Future Research Directions

This section briefly describes the contemporary challenges of motion style transfer
techniques. Despite considerable research efforts for motion style transfer, there are still sev-
eral challenges that exist that preclude the popularity of such techniques. A few prominent
research challenges in the domain are presented as follows.

5.1. Quantitative Evaluation of the Synthesized/Generated Motion

Anticipating the significance of the domain, more models are being developed to
facilitate motion style transfer. However, to the best of our knowledge, there is no unified
model that quantitatively evaluates the generated motions. Generally, the researchers are
evaluating the generated motions by visual representation, case studies, and/or comparing
them with previous work. There is a lack of literature on the quantitative evaluation of
synthesized/generated motions. The quantitative evaluation of synthesized/generated
motions is an open research challenge.

5.2. Non-Availability of Benchmark for Evaluation

Motion style transfer has been an active area of research for over a decade, with
several researchers utilizing various enabling technologies, hardware, and datasets, and
with varying training times (Table 1). For an effective evaluation of the designed approach,
a unified benchmark needs to be developed that takes into account several parameters,
such as hardware specifications, datasets, training time, and unified performance metrics,
in order to assess the effectiveness of these techniques.

5.3. Style Retargeting

When extracting a motion style from a source to be transferred to the destination
character, it must be consistent with the skeleton structure of the destination character.
In case of a mismatch between the skeleton structure of the source and destination, style
retargeting needs to be performed. In style retargeting, the extracted style is tailored such
that it may be applied to the destination skeleton.

https://rose1.ntu.edu.sg/dataset/actionRecognition/
https://rose1.ntu.edu.sg/dataset/actionRecognition/
http://humaneva.is.tue.mpg.de/datasets_human_1/
http://humaneva.is.tue.mpg.de/datasets_human_1/
http://humaneva.is.tue.mpg.de/datasets_human_2
http://humaneva.is.tue.mpg.de/datasets_human_2
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://theorangeduck.com/page/deep-learning-framework-character-motion-synthesis-and-editing
https://virtualhumans.mpi-inf.mpg.de/3DPW/
https://virtualhumans.mpi-inf.mpg.de/3DPW/
https://amass.is.tue.mpg.de/
https://cvssp.org/data/totalcapture/
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5.4. Need for Paired and Registered Data

The source of motion examples is of key importance for efficient motion style transfer,
as the styles are extracted from the source motion. These motion sources need to be
comprehensive and may contain diverse motions and style pairs. Motion style transfer
techniques use motion data in which different styles of motion can be paired and registered
together [11].

To build such data, each character needs to perform specific actions in different styles,
such as performing a walk in several different styles, and all such styles need to be paired
and registered together. However, this is an extremely time-consuming and non-scalable
approach. Therefore, for motion style transfer, it is necessary to have paired and registered
data, which is a challenging and difficult task to achieve.

5.5. Style Extraction and Transfer from Fewer Examples

Due to the difficulty of capturing and processing sufficient motion style data, motion
style transfer techniques should be capable of extracting and transferring styles from fewer
motion examples.

5.6. Training Overheads

Anticipating the insufficiency of traditional motion style transfer techniques, the
researchers employed various AI-based approaches to efficiently transfer the motion styles.
These AI-based approaches train the model and perform motion style transfer subsequently.
The AI-based techniques have shown great potential and are successfully applied for
motion style transfer. The training overheads of such an approach affect their performances.
The availability of comprehensive training data and the overheads for training the models
are significant challenges associated with AI-based motion style transfer approaches.

5.7. Handling Unseen Motions/Styles

To transfer the motion styles, the model needs to cope with the unseen motions/styles.
Generally, motion style transfer performs retraining to address unseen motions and styles.
This retraining consumes further computing resources and, hence, degrades the perfor-
mance of the style transfer technique. Efficiently handling unseen motions/styles without
performance degradation is challenging for motion style transfer techniques.

6. Conclusions

In today’s dynamic and interactive digital world, the utilization and modeling of video
characters for animations have increased significantly. Motion style transfer is an active ap-
proach for modeling human-based characters for use in animation applications. This paper
aims to provide a comprehensive and concise overview of motion style transfer techniques.
It presents a brief overview of state-of-the-art motion style transfer techniques, along with
their enabling technologies and implementation details. The sources of motion examples
for style transfer play crucial roles; therefore, an overview of several prominent datasets is
also provided in this study. Finally, the existing challenges in the area are highlighted.
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