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Abstract: In this paper, we propose an innovative approach for robust prediction of processing tomato
yield using open-source AutoML techniques and statistical analysis. Sentinel-2 satellite imagery was
deployed to obtain values of five (5) selected vegetation indices (VIs) during the growing season of
2021 (April to September) at 5-day intervals. Actual recorded yields were collected across 108 fields,
corresponding to a total area of 410.10 ha of processing tomato in central Greece, to assess the
performance of Vis at different temporal scales. In addition, VIs were connected with the crop
phenology to establish the annual dynamics of the crop. The highest Pearson coefficient (r) values
occurred during a period of 80 to 90 days, indicating the strong relationship between the VIs and
the yield. Specifically, RVI presented the highest correlation values of the growing season at 80
(r = 0.72) and 90 days (r = 0.75), while NDVI performed better at 85 days (r = 0.72). This output was
confirmed by the AutoML technique, which also indicated the highest performance of the VIs during
the same period, with the values of the adjusted R2 ranging from 0.60 to 0.72. The most precise results
were obtained with the combination of ARD regression and SVR, which was the most successful
combination for building an ensemble (adj. R2 = 0.67 ± 0.02).

Keywords: Sentinel-2; AutoML; NDVI; PVI; WDVI; SAVI; RVI; yield prediction; processing tomato

1. Introduction

Yield mapping is the process of collecting and analyzing field-level crop yield data, of-
fering several benefits, including improved efficiency, increased profitability, better resource
management, and improved food security [1,2]. It is a valuable tool for farmers because it
allows them to monitor and optimize the productivity of their fields and make informed
decisions about management practices. The more information they have about the yield of
each crop and field on their farm, the better they can assess the impact of decisions made
during the growing season and improve management decisions for subsequent seasons [3].
This interest in yield monitoring systems has triggered the development and adoption of
smart farming methods, as they provide a large amount of information on key agricultural
parameters from the field level to larger geographic areas. Through the use of a range
of advanced technologies and data analysis techniques, smart farming can optimize crop
management practices, especially in intensive cropping systems such as those of processing
tomato (Lycopersicon esculentum).

Considering that global trade of processed tomato products is worth more than USD
7.5 billion annually and the exports of finished products reached 6.9 million tons in the
2021/2022 period, as reported by the World Processing Tomato Council (WPTC) [4], the
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socioeconomic importance of this crop at the international level is obvious. In Greece,
the total area under processing tomato in 2018 was 4102.20 hectares, corresponding to
an average yield of 71 tons per hectare, which varies depending on the hybrid, weather
conditions, soil, and cultivation practices [5]. Although processing tomato is a dynamic crop
for the agricultural economy, climatic uncertainties and increased demands on agricultural
water sources threaten the sustainability of production. Increasing demand for higher value-
added products such as canned tomatoes, passata, tomato sauces, and organic products
has created a need to improve tomato yield and quality.

Among smart farming data streaming technologies [6,7], the most common approaches
assume that yield is correlated with photosynthetically active biomass and other crop pa-
rameters at an important phenological stage of the crop. As a result, a variety of sensors and
vegetation indices (VIs) have been used and reported to correlate well with a range of vege-
tation parameters, including the ability to predict yield [8,9]. While considerable research
efforts have been made in the area of smart farming systems, only a limited number of
studies has been focused on processing tomato crop. In the past, Fortes et al. [10] conducted
field research at two commercial tomato processing plants and used measurements of
apparent electrical conductivity and NDVI measurements to estimate processing tomato
yield. Using two geostatistical methods, an NDVI map was developed to predict the yield
of processing tomatoes [11]. Gianquinto et al. [12,13] investigated the stability of several
vegetation indices (the main VIs considered in a previous study) in assessing the canopy
reflectance of a processing tomato crop against the main plant traits described as sources of
variation (chlorophyll and N content; N supply), including yield prediction.

In recent years, following the tremendous advances made in access to Earth observa-
tion (EO) products, data, and services, several studies have focused on the use of satellite
imagery to estimate crop variables. Campillo et al. [14] used satellite imagery to distin-
guish productivity zones in processing tomato. Spatial variability was examined using
various NDVI images from the Sentinel-2 satellite. They served as a control point to mea-
sure the evolution of the crop throughout the crop cycle and define different productivity
zones [14,15]. According to Vaglio Laurin et al. [16], Sentinel-2 has proven to be a valuable
tool for monitoring growth and crop damage in a given crop. In their study, early tomato
maps based on Sentinel-2 data had an accuracy of >80% for users in seven out of nine cases
and >80% in five out of nine cases, with differences due to the different agricultural charac-
teristics and environmental heterogeneity of the study areas. Finally, a multilevel model for
tomato yield prediction was developed by Psiroukis et al. [17] using spectral indices from
Sentinel-2 imagery.

A widely used method to examine the relationship between two or more variables
of interest is the combination of statistical and regression analyses, including descriptive
statistics. Traditionally, Pearson correlation is used to determine the spatial relationship
between canopy NDVI and crop yield, and linear and multivariate regression models are
used to determine field-wide production. As computer power has increased significantly in
recent decades, more sophisticated machine learning approaches have been developed to
predict crop yield [11,18]. As early as 2005, Koller and Upadhyaya [19] developed a neural
network model to predict processing tomato yield based on the conservation of mass
using daily LAI values, along with PAR data and other crop-specific parameters. Their
results showed that although the actual and predicted yield maps did not have a very high
correlation, the two maps had similar yield patterns. Although the application of machine
learning in agriculture is currently occurring at a rapid and effective pace [20], widespread
use of these techniques remains a challenge. Their successful application is not effortless
and still relies heavily on specialized human resources [21]. They typically require the
extensive involvement of experts working iteratively to develop the most appropriate ma-
chine learning pipeline. One solution to this problem may be automated machine learning
(AutoML), which offers the opportunity to improve this task and save time and human
resources by automating the time-consuming, iterative tasks of developing machine learn-
ing pipelines. For instance, model selection and optimal tuning of hyperparameters can be
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achieved automatically. AutoML systems are meta-level machine learning algorithms that
find high-performance pipeline designs based on previous individual machine learning
solutions [22,23]. These systems automatically evaluate alternative pipeline topologies and
attempt to iteratively improve performance for a given task and dataset [24]. In addition,
engineers can focus on the final implementation details to deploy AutoML-provided solu-
tions. This workflow results in better models being delivered in less time. At the same time,
these workflows can provide domain researchers with a new understanding of how their in-
put data, such as NDVI, interact with the yield prediction models. Recently, Pelta et al. [25]
used NDVI from Sentinel-2 and Landsat-8, meteorological data, and artificial intelligence
to predict the seasonal crop coefficient for processing tomatoes.

While previous research has explored various correlation and regression models
between VIs and crop production, as well as machine learning techniques for estimating
crop yield, AutoML, as described above, has not been widely explored. In the agricultural
field, the use of AutoML techniques has only been recorded for time series processing and
analysis of proximal and satellite imagery [26,27], weed identification [28], and prediction
of quality attributes in grapes [29]. To the best of our knowledge, the use of ensemble
regressors in yield prediction is not well studied. Since finding the best ensembles could
lead to a combinatorial explosion, AutoML was explored as a methodology to address
this issue, with promising results. In this paper, we propose a novel approach for robust
yield prediction of processing tomatoes using five different VIs (NDVI, PVI, RVI, WDVI,
and SAVI) and ensembles of machine learning models automatically found by AutoML
techniques. VIs were obtained from Sentinel-2 imagery using non-destructive methods
during the 2021 growing season. This study also provides some clear results about which
are the most effective growth stages and VIs for yield prediction.

2. Materials and Methods
2.1. Study Area

This study took place in the wider area of central Greece (Figure 1a), where 108 fields
corresponding to a total area of 410.10 ha of processing tomato were selected as pilot fields
(extent of E: 22◦13′20′′ N: 39◦42′40′′, E: 23◦6′40′′ N: 39◦10′40′′). The experimental process
included fields of three different hybrids. Specifically, the Dexter hybrid corresponded
to 62 fields in an area of 242.40 ha, the Faber hybrid corresponded to 20 fields in an area
of 66.80 ha, and the Foster hybrid corresponded to 26 fields in an area of 100.90 hectares
(Figure 1b). All pilot fields ranged in size from 1 to 14 ha and were planted in rows with
an average row spacing of 0.4–0.6 m, which corresponds to the extensive cropping system
commonly used in the region. The planting date of the pilot fields was different and ranged
between mid-April and mid-May 2021, while harvesting was completed in all fields in
early September. The pilot fields were digitized using georeferenced layers (.kml) of each
field’s boundaries, which were collected by agronomists in May 2021. An example of the
vector layers of field boundaries collected during these field measurements is presented in
Figure 1. Finally, the actual yield of each pilot field was recorded directly by the farmers
under the supervision of agronomists, and the respective total yield values were included
in the dataset.

2.2. Satellite Imagery

The remote sensing data used in this study are 10 × 10 m2 resolution multispectral
images acquired by the multispectral imager (MSI) sensor on ESA’s Sentinel-2 satellite
platforms. Atmospherically corrected imagery (level 2A, providing values for reflectance
at the bottom of the atmosphere) from the Sentinel-2A/B satellite in cartographic geometry
(UTM/WGS84 projection) was acquired free of charge from the ESA portal (https://scihub.
copernicus.eu/, accessed on 13 October 2022). Satellite imagery data were collected at 5-day
intervals, but the sample size was not always constant due to total cloud cover (Table 1). For
each date, a set of three (3) satellite images was downloaded to cover the entire study area.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Table 1. Acquisition dates of satellite data for the 2021 growing season.

Month Dates

April Cloud
cover

Cloud
cover

May 03/05/21 13/05/21 18/05/21 23/05/21 28/05/21
June 02/06/21 07/06/21 12/06/21 17/06/21 22/06/21 27/06/21
July 02/07/21 07/07/21 12/07/21 17/07/21 22/07/21 27/07/21

August 0/08/2021 06/08/21 11/08/21 16/08/21 21/08/21 26/08/21 31/08/21

September Cloud
cover 10/09/21 15/09/21

Preprocessing of the data included resampling the images to 10 m because the spectral
bands of Sentinel-2 operate at different spatial resolutions of 10 m (4 bands: B2, B3, B4, and
B8), 20 m (6 bands: B5, B6, B7, B8A, B11, and B12), and 60 m (3 bands: B1, B9, and B10). On
the days when heavy cloud cover occurred and the experimental fields of interest were not
visible, the corresponding values were removed from the dataset to ensure the validity of
the data.

To evaluate the satellite systems and their relationship to yield, five VIs, namely the
normalized difference vegetation index (NDVI), weighted difference vegetation index
(WDVI), soil-adjusted vegetation index (SAVI), ratio vegetation index (RVI), and perpen-
dicular vegetation index (PVI), were calculated for each date via SNAP software (Sentinel
Application Platform—ESA Sentinels Application Platform v6.0.4), which is provided free
of charge and accessible to everyone as part of the European Copernicus project. As a result,
VI raster datasets of the whole area were created by iterating the VI formulas over all
satellite image pixels.

The second step of data preprocessing involved the mosaicking of the individual
images of each survey date into a single raster dataset of the entire study area using ArcGIS
software (Environmental Systems Research Institute, Redlands, CA, USA). Once the total
number of images was determined, an additional manual filtering step was performed to
ensure that each generated mosaic consisted solely of high-quality and cloud-free data from
the pilot fields. Given the small size of the fields, pixels outside the pilot farm boundaries
were also selected and masked. For each date, a mean VI value was extracted from each field
using the zonal statistics tool of the ArcGIS software. The results were recorded in Excel
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spreadsheets with 108 NDVI, RVI, PVI, SAVI, and WDVI values for all the measurement
dates acquired.

2.3. VIs

The most widely used vegetation indices are the NDVI (normalized difference veg-
etation index) and the weighted difference vegetation index (WDVI). Other commonly
used VIs are the soil-adjusted vegetation index (SAVI), the ratio vegetation index or the
simple ratio vegetation index (RVI), and the perpendicular vegetation index (PVI). For the
calculation of the VIs, bands 4 and 8 of Sentinel-2 were used, which correspond to the RED
and NIR spectrum, respectively. The equations used for the estimation VIs are presented
below (Table 2):

Table 2. The selected VIs used in this study and their respective spectral equations.

Index Equation Reference

NDVI (NIR−RED)
(NIR+RED)

Rouse et al. [30]

WDVI

NIR − S ∗ RED
where S is the slope of the soil line

from a plot of red versus
near-infrared.

Clevers [31,32]

PVI

(NIR−a∗RED−b)√
(a ˆ 2 + 1)

where a is the slope of the ground line,
and b is the ground line’s gradient.

Richardson & Wiegand [33]

RVI NIR/RED Pearson & Miller [34]

SAVI ( (NIR−RED)
(NIR+RED+L) ) ∗ (1 + L)

where L is a soil adjustment factor
Huete [35]

NDVI is the most commonly used vegetation index and has found various applications.
The result of NDVI calculation is an image with a continuum of pixel values ranging from
−1 to 1 (Figure 2a). The NDVI varies from a minimum at bare soil reflectance to a maximum
for a fully developed canopy with a value slightly less than one [30]. Healthy photosynthetic
vegetation is related to higher positive values; on the other hand, stressed vegetation or even
bare soil is related to lower values, especially <0.2 [36,37]. In the processing tomato crop,
NDVI values are reported to have good correlation with several vegetation parameters,
including the ability to predict yield [11].
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The same spectral bands were used for RVI (ratio vegetation index or simple ratio
vegetation index), which is recorded to improve both saturation in high vegetation and
sensitivity to the soil in low vegetation compared with NDVI [38]. It was introduced by
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Pearson and Miller [34]) and is based on the contrast between the visible red and far-
infrared bands of electromagnetic radiation for the pixels corresponding to vegetation [34].
High values of the index are mainly attributed to healthy vegetation and result from the
combination of its low reflectance value for the red and the high reflectance it presents in
the near-infrared band. Its value range is from 0 to more than 30, with healthy vegetation
usually presenting values of 2 to 8 (Figure 2b).

Richardson and Wiegand [33] approached the problem of variable soil brightness
by developing the perpendicular vegetation index (PVI), which attempts to eliminate
differences in soil background (Figure 3a) [33]. It can be computed as a spectral indicator of
plant development or biomass accumulation and cannot be considered to be independent
of soil brightness. While it is effective in removing soil brightness effects for bare soil, it
quickly becomes more sensitive as the canopy develops. A PVI value of 0 indicates bare
soil, whereas negative values indicate water and positive values indicate vegetation. It is
less sensitive to the atmosphere but is considered sensitive to the reflectivity and brightness
of the ground, especially in cases with low vegetation cover.
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The weakness presented by PVI regarding the assumption that there will be only
one soil type under vegetation is addressed by the soil-adjusted vegetation index (SAVI),
which was proposed by Huete [35] and is a hybrid of NDVI and PVI. The originality of this
index lies in the establishment of a simple model that permits an adequate description of
the soil–vegetation system [39]. SAVI (Figure 3b) also attempts to eliminate soil background
effects; however, it is much less sensitive to changes in the background caused by soil color
or surface soil moisture content than the ratio vegetation index [40]. Qi et al. [41] showed
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that the adjustment factor (L) is not a constant but a function that varies inversely with the
amount of vegetation present. Generally, it is best applied to soils with sparse vegetation,
and its range of desired values is the same as that of NDVI [42].

The WDVI (weighted difference vegetation index) was introduced by Clevers et al. [31]
in 1989. WDVI (Figure 3c) has been used to overcome high PVI values due to a bright soil
background. This index is also based on distance, and it assumes that the ratio between NIR
and the red reflectance of bare soil is constant [43]. The WDVI concept was developed in
order to correct for the influence of soil background, but it is quite sensitive to atmospheric
conditions. It is mathematically simpler than the rest of the indicators but with an infinite
range of desired values [32].

2.4. Statistical Analysis

Once actual yield data were collected, statistical analysis was performed to evaluate
and establish relationships between yield and VIs using XLSTAT software (Addinsoft,
www.xlstat.com, accessed on 1 November 2022). A crucial step prior to the analysis was
the removal of artifacts within the data, which may appear as extraneous data points that
fall outside the general range of the dataset (referred to as outliers). Since their presence
indicates a possible measurement error, they were removed in the preprocessing phase.
Descriptive statistics and graphs were generated, and linear correlation was investigated
to find relationships between the yield data and the satellite-derived VIs. Specifically,
Pearson’s correlation coefficient (r) was used to assess the spatial similarity between the
recorded yield and the VI variables. Then, AutoML was deployed to further evaluate the
relationships between the yield and the respective VIs.

2.5. Automated Machine Learning

Machine learning techniques can sometimes improve the modeling capacity of tradi-
tional statistical techniques. However, the availability of hundreds of machine learning
algorithms makes choosing the right one a major challenge. Moreover, each of these al-
gorithms has multiple hyperparameters that must be fine-tuned by trial and error. This
means that there is no a priori knowledge about the best fit, and they are not optimized
during the training process; for example, the number of trees for Random forests and
AdaBoost, the splitting criterion (e.g., Gini, entropy, etc.) for all tree-based methods, and
the sensitivity to outliers for robust linear regression methods such as Theil-Sen or Huber.
Therefore, it is critical to automate this process through AutoML and focus on gaining
scientific knowledge as to which is the best time in a season to predict yield.

AutoML is a field of research that has become increasingly popular over the last few
years [44]. Different domains, such as image recognition [45] and time series processing [46],
take advantage of this technique. Moreover, some specific subfields of AutoML, such as
neural architecture search (NAS), have arisen to optimize the search for some specific
hyperparameters in the design of neural architectures (e.g., number of layers, activation
function, etc.). However, there are still some open concerns [47] because (i) finding the best
hyperparameters can still be too computationally expensive and (ii) AutoML adds a new
layer of complexity/abstraction that can make the interpretability of the model decisions
harder. On the other hand, more studies are arising around this topic; therefore, agriculture,
specifically yield prediction, should be used to evaluate the current state of the technologies
implementing AutoML techniques. In this study, AutoML was also used to create ensembles
based on the best models found during the optimization process. Ensemble models aim to
improve the performance of machine learning models by combining several of them [48]. In
the case of regression, the mean of the predictions of the models with the best performance is
used as the final prediction (see Figure 4). An ensemble can be composed of endless models;
however the larger the amount, the higher the computational requirements. Therefore, in
this study, ensembles of up to 3 regressors were evaluated.

www.xlstat.com
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Although AutoML can use any type of machine learning algorithm, AutoML was
studied in this paper to extend our previous work on AutoML without ensembles [29].
Linear and nonlinear regression algorithms were used, including ordinary least square,
automatic relevance determination regression, Theil-Sen, and Huber regression models, as
well as decision-tree-based algorithms:

• Ordinary least squares (OLS): the most common estimation method for computing
linear regression models, which can be found in related work, e.g., Prasetyo et al. [49];

• Automatic relevance determination (ARD) regression: compared to the OLS estimator,
the coefficient weights are shifted slightly toward zeros, which stabilizes them [50];

• Theil-Sen estimator method: the most popular non-parametric technique for estimat-
ing a linear trend, making no assumptions about the underlying distribution of the
input data [51];

• Huber regression: this model is aware of the possibility of outliers in a dataset and
assigns them less weight than other samples, in contrast to Theil-Sen, which ignores
them [52];

• Decision trees: this method uses a non-parametric learning approach. Its main ad-
vantage is that it can be visualized to better understand why the classifier made
a particular decision.

To improve the predictive power of the model, in this study, we also evaluated several
ensemble methods based on decision trees, such as AdaBoost, fandom forests, and extra
trees. These methods combine the predictions of multiple tree-based models to make more
accurate predictions than the individual models. Specifically, these ensemble methods start
with a decision tree and then use boosting or bootstrap aggregation to reduce its variance
and bias (bagging). It is important to remark that these tree ensembles are different from the
ensemble of models that are built on top of the system. This means that the final ensemble
used to compute the regression can be composed of three tree ensembles (e.g., two random
forests and one AdaBoost).

• AdaBoost: The AdaBoost algorithm (adaptive boosting) uses an ensemble learning
technique known as boosting, whereby a decision tree is retrained several times, with
greater consideration given to data samples for which the regression is imprecise [53];

• Random Forest: A supervised learning approach in which the ensemble learning
method is used for regression. In this approach, numerous decision tree regressors are
combined into a single model trained for many data samples collected on the input
characteristic (in this case, NDVI) using the bootstrap sampling method [54];

• Extremely Randomized Trees: Extra trees is similar to random forest in that it combines
predictions from many decision trees, but instead of bootstrap sampling, it uses the
entire original input sample [55].
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2.6. AutoML Software

In this study, the auto-sklearn framework [22] was used to implement the AutoML
pipeline. This means that three main techniques were used. First, Bayesian optimization
was used as the global optimization algorithm. Since finding the best regressor and its
hyperparameters is a non-convex, computationally expensive problem, the Bayes theo-
rem can be used to direct an efficient and effective search of an optimal hyperparameter
configuration [56]. Secondly, a metalearning step was used to warm start the Bayesian
optimization procedure, which resulted in a considerable boost in efficiency. In the case of
auto-sklearn, the metalearning approach used an offline phase to learn the best initialization
configurations along 140 datasets from the OpenML [57] repository. Thirdly, auto-sklearn
implements an ensemble building technique whereby the most suitable models are com-
bined to boost the prediction performance.

3. Results
3.1. Statistical Analysis

Before performing the correlation analysis, basic statistics were calculated to examine
the data. According to the descriptive statistics of the actual yield (Table 3), the values
ranged from 40 to 135 t/ha. The mean values ranged from 86.68 to 98 t/ha depending on
the hybrid. These values are considered high, considering the national average production
of processing tomatoes (71 t/ha, Ministry of Rural Development and Food). The coefficient
of variance (CV) ranged from 20.42% to 25.13%, which is relatively high, considering the
total number of fields. Overall, the Dexter hybrid had the highest yield average, while the
lowest value was observed in the Foster hybrid.

Table 3. Descriptive statistics of the yields (t/ha) corresponding to Dexter, Faber, and Foster hybrids.

Yield Mean Min Max SD CV (%)

Dexter 98.20 55.00 135.00 21.05 21.44
Faber 90.05 65.00 120.00 18.40 20.42
Foster 86.68 40.00 124.00 21.79 25.13
Total 93.91 40.00 135.00 21.20 22.57

It was found that the highest NDVI values were recorded 75 to 80 days after trans-
planting (Figure 5). In the early stages, NDVI values were low, which is to be expected,
considering that in row crops, the soil was clearly visible in the remotely sensed images.
Full canopy cover and flowering were recorded in June (60–75 days after transplanting),
while the tomato formation phase occurred in July, depending on the transplanting date.
This is consistent with a previous study [58] in which phenological monitoring was per-
formed for the period of 2016–2021 using NDVI values from Sentinel-2 imagery. Based
on the reported NDVI values, Figure 5 shows the NDVI dynamics and the corresponding
phenological stages of the crop.

Not surprisingly, based on the mean values of all five VIs (NDVI, PVI, WDVI, SAVI,
and RVI), progressive canopy growth is observed (Figure 6). In the early stages, the
influence of soil is strong due to the low canopy cover. There seems to be a positive trend
that peaks at 80 days and is negative in the last stages of the crop.

Statistical analysis of the dataset shows a positive linear relationship between VIs and
yield throughout the season. In the first 45 days, the relationships were weak (Pearson
correlation coefficient (r) < 0.30), indicating poor predictive ability. However, in the follow-
ing period, the Pearson correlation coefficient increased for all VIs, reaching the highest
values in the period from 75 to 95 days after transplanting, depending on the VI and hybrid,
as shown in Tables 4–7. For the cultivar Dexter (Table 4), the dataset includes 62 fields
corresponding to a range of 50 to 62 observations for each date depending on the cloud
cover. RVI had the highest values of Pearson coefficient at 80 (r = 0.71, p < 0.05) and 90 days
(r = 0.75, p < 0.05), while NDVI had the highest values at 85 days (r = 0.718, p < 0.05). SAVI
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and PVI performed well at 90 days, while the highest correlations were shown at 95 days
(r = 0.72, p < 0.05) by WDVI.
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Table 4. The Pearson coefficient representing the relationships between the derived VIs and the yield
of the Dexter hybrid.

VI
Pearson Coefficient

80 Days 85 Days 90 Days 95 Days

NDVI 0.70 * 0.72 * 0.68 * 0.65 *
RVI 0.71 * 0.71 * 0.75 * 0.60 *

SAVI 0.68 * 0.68 * 0.74 * 0.65 *
PVI 0.67 * 0.67 * 0.75 * 0.71 *

WDVI 0.58 * 0.66 * 0.75 * 0.72 *
* Correlation is significant at the 0.05 level.



Sensors 2023, 23, 2586 11 of 20

Table 5. The Pearson coefficient representing the relationships between the derived VIs and the yield
of the Faber hybrid.

VI
Pearson Coefficient

75 Days 80 Days 85 Days 90 Days

NDVI 0.82 * 0.71 * 0.85 * 0.81 *
RVI 0.80 * 0.75 * 0.70 * 0.86 *

SAVI 0.79 * 0.78 * 0.81 * 0.90 *
PVI 0.63 * 0.82 * 0.80 * 0.83 *

WDVI 0.58 * 0.79 * 0.79 * 0.87 *
* Correlation is significant at the 0.05 level.

Table 6. The Pearson coefficient representing the relationships between the derived VIs and the yield
of the Foster hybrid.

VI
Pearson Coefficient

75 Days 80 Days 85 Days 90 Days

NDVI 0.59 * 0.64 * 0.68 * 0.75 *
RVI 0.77 * 0.74 * 0.72 * 0.84 *

SAVI 0.70 * 0.71 * 0.66 * 0.79 *
PVI 0.72 * 0.72 * 0.64 * 0.77 *

WDVI 0.71 * 0.72 * 0.66 * 0.78 *
* Correlation is significant at the 0.05 level.

Table 7. The Pearson coefficient representing the relationships between the derived VIs and the yield
of all hybrids.

VI
Pearson Coefficient

80 Days 85 Days 90 Days 95 Days

NDVI 0.68 * 0.72 * 0.70 * 0.63 *
RVI 0.72 * 0.70 * 0.75 * 0.56 *

SAVI 0.68 * 0.69 * 0.74 * 0.65 *
PVI 0.67 * 0.64 * 0.72 * 0.68 *

WDVI 0.58 * 0.65 * 0.73 * 0.69 *
* Correlation is significant at the 0.05 level.

For the Faber cultivar, the dataset includes 20 fields corresponding to a range of 17 to
20 observations for each date depending on the cloud cover. The r value of the VI datasets
ranged from 0.58 to 0.90 (Table 5), and satisfactory values appeared after 75 days of the
growing season. The highest correlation at 75 (r = 0.82, p < 0.05) and 85 days (r = 0.85,
p < 0.05) was obtained by NDVI, whereas RVI, SAVI, PVI, and WDVI values obtained
during the same period presented r values ranging from 0.58 to 0.81. SAVI appeared to be
better at 90 days (r = 0.90, p < 0.05) and PVI at 80 days (r = 0.82, p < 0.05).

For the Foster hybrid, the dataset includes 26 fields corresponding to a range of 23
to 26 observations for each date depending on the cloud cover. RVI values were higher
throughout the 75- to 90-day post-planting period (Table 6). In particular, during the
75–85-day period, RVI achieved the best performance, followed by PVI and WDVI.

Statistical analysis was performed for the entire dataset including 108 fields corre-
sponding to a range of 90 to 106 observations for each date depending on the cloud cover.
The period with the highest ratio was found for the period from 80 to 95 days (Table 7). The
RVI showed the highest values at 80 (r = 0.72, p < 0.05) and 90 days (r = 0.75, p < 0.05) after
transplanting. The NDVI performed better at 85 days (r = 0.72, p < 0.05), while the PVI had
higher values at 95 days (r = 0.68, p < 0.05).

Apart from finding the correlations of the VIs with the yield, Sentinel-2 images can
also serve as a valuable field management tool for farmers and agronomists during the
cultivation season. Therefore, once the original VI layers had been cropped using the
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field boundaries as a mask, for each selected date, all pixels in the new raster layer were
classified using a three-class quantile classification for visual interpretation of all the VIs.
An example of the VI maps generated at 10 × 10 m2 resolution during the 90 days is shown
in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21 
 

 

SAVI 0.68 * 0.69 * 0.74 * 0.65 * 

PVI 0.67 * 0.64 * 0.72 * 0.68 * 

WDVI 0.58 * 0.65 * 0.73 * 0.69 * 

* Correlation is significant at the 0.05 level. 

Apart from finding the correlations of the VIs with the yield, Sentinel-2 images can 
also serve as a valuable field management tool for farmers and agronomists during the 
cultivation season. Therefore, once the original VI layers had been cropped using the field 
boundaries as a mask, for each selected date, all pixels in the new raster layer were 
classified using a three-class quantile classification for visual interpretation of all the VIs. 
An example of the VI maps generated at 10 × 10 m2 resolution during the 90 days is shown 
in Figure 7. 

 

 
Figure 7. Example of the VI maps generated throughout the cultivation season at 90 days for the 
three varieties in quantile classification. 

3.2. Automated Machine Learning 
For the AutoML experiment, the adjusted coefficient of determination (R²) and root 

mean square error (RMSE) were used to evaluate the predictive accuracy and determine 
the performance of the models for the best VI and period. In addition, a fivefold cross-
validation was performed for each regression model to check its generalization ability and 
ensure its robustness. The experiments were also repeated 10 times to ensure that the final 
results were as accurate as possible. 

Table 8 shows that the best yield predictions were made by RVI and SAVI. 
Specifically, these two indices reached an average R² of 0.72 ± 0.02 and 0.69 ± 0.03, 
respectively, 90 days after transplanting. Moreover, their RMSEs were also the lowest 
(1.03 ± 0.03 and 1.06 ± 0.04, respectively). The remaining VIs (NDVI, WDVI, and PVI) are 
also among the regression models with the best performance. However, they all show a 
large difference relative to RVI and SAVI. Another observation from Table 8 is that the 
best result were achieved 90 and 85 days after transplanting. 

Figure 7. Example of the VI maps generated throughout the cultivation season at 90 days for the
three varieties in quantile classification.

3.2. Automated Machine Learning

For the AutoML experiment, the adjusted coefficient of determination (R2) and root
mean square error (RMSE) were used to evaluate the predictive accuracy and determine
the performance of the models for the best VI and period. In addition, a fivefold cross-
validation was performed for each regression model to check its generalization ability and
ensure its robustness. The experiments were also repeated 10 times to ensure that the final
results were as accurate as possible.

Table 8 shows that the best yield predictions were made by RVI and SAVI. Specifi-
cally, these two indices reached an average R2 of 0.72 ± 0.02 and 0.69 ± 0.03, respectively,
90 days after transplanting. Moreover, their RMSEs were also the lowest (1.03 ± 0.03 and
1.06 ± 0.04, respectively). The remaining VIs (NDVI, WDVI, and PVI) are also among the
regression models with the best performance. However, they all show a large difference
relative to RVI and SAVI. Another observation from Table 8 is that the best result were
achieved 90 and 85 days after transplanting.

Table 8. The 10 best-performing vegetation indices and periods.

VI Period (Days) Adjusted R2 RMSE

RVI 90 0.72 ± 0.02 1.03 ± 0.03
SAVI 90 0.69 ± 0.03 1.06 ± 0.04
SAVI 85 0.65 ± 0.03 1.09 ± 0.03
RVI 85 0.64 ± 0.02 1.12 ± 0.06
RVI 80 0.63 ± 0.02 1.13 ± 0.04

NDVI 85 0.62 ± 0.04 1.14 ± 0.06
WDVI 90 0.61 ± 0.02 1.15 ± 0.03
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Table 8. Cont.

VI Period (Days) Adjusted R2 RMSE

WDVI 85 0.61 ± 0.03 1.15 ± 0.04
PVI 90 0.61 ± 0.05 1.16 ± 0.05

SAVI 80 0.60 ± 0.04 1.15 ± 0.05

Figure 8 depicts a scatter plot of RVI in which two high-performance dates (85 and
90 days after transplanting) are compared against two dates with lower performance (5 and
25 days after transplanting). It can be observed that the predictions very close to the real
yield value are those in the period 85 to 95 days. On the other hand, the early dates, which
have a lower performance, present predictions that deviate from the actual yield value.
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Figure 8 shows a type of error/bias in the dataset that reveals two behaviors. When
(actual) yields are less than or equal to 9 t/ha, the regressors tend to overestimate yield. On
the other hand, when (actual) yields are greater than 9 t/ha, regressors tend to underesti-
mate yield. We can hypothesize that the (ensemble) regressors tend to form a distribution
with a mean/mode (apartment behavior) that acts as a gravity point in the predictions.
In this particular example, this could explain yields lower than and equal to 8 t/ha and
higher than 9 t/ha. In the specific case of 9 t/ha, the range of the values is not as great as for
lower yields, but further research should be conducted to ensure that the predicted yield is
more balanced around the real value and not prone to overestimation. Figure 9 presents
the progression of adjusted R2 over the growing season. All indices show the best results
in the 80–90-day period. This behavior is consistent with the results reported in Table 7.
NDVI showed low performance overall but reached a peak in predictive power 65 days
after transplanting. RVI showed the best predictive performance, but after the peak, its
performance declined more rapidly than that of the other VIs. PVI and WDVI also showed
low performance compared to SAVI and RVI.

In addition to selecting the VIs and growth stages with the highest predictive accuracy,
it was also important to examine whether using ensembles of more than one regressor
was a better choice than using only one regression model. Figure 10 shows the rate of
ensemble size for each of the experiments that used the VIs and growth stages shown in
Table 8. This means that 500 were considered (number of rows × number of experiments ×
number of folds). An ensemble size of two was the preferred size (67.86%) to provide the
predictions with the highest adjusted R2 and lowest RMSEs. The option with the second
highest performance was to use single regressors (21.43%); finally, the least promising
option was to use ensembles with a size of three regressors (10.71%).
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Table 9 expands on Figure 10 by showing which models and ensembles achieved
the best performance and how often they occurred. The combination of ARD regression
and SVR was the most successful for creating an ensemble. SVR combined with Huber
regression also achieved high performance. As for the individual regressors, ARD and
Hubber had the highest performance several times. On the other hand, SVR was a good
support in combination with other regressors but was not a successful single regressor. It is
also important to note that some of the regressors evaluated by the AutoML algorithm did
not show up, notably OLS regression, AdaBoost, and extra trees. When using three models
to create the ensemble, the combination of ARD, random forest, and SVR was the highest-
performing option.
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Table 9. The 10 best-performing models (ensembles and single regressors).

Ensemble/Model R2 Num. Appearances.

ARD Regr. + SVR 0.67 ± 0.02 109
ARD Regr. 0.65 ± 0.03 87

Huber Regr. + SVR 0.65 ± 0.02 74
Huber Regr. 0.65 ± 0.04 63

ARD Regr. + Huber Regr. 0.66 ± 0.03 52
ARD Regr. + Random Forest + SVR 0.63 ± 0.03 41

ARD Regr. + Decision Tree 0.65 ± 0.02 30
Huber Regr. + Theil-Sen Regr. 0.64 ± 0.04 23

SVR + Theil-Sen Regr. 0.65 ± 0.03 12
ARD Regr. + Random Forest 0.63 ± 0.05 5

4. Discussion

This study examined the performance of individual satellite-derived VIs in predicting
the yield of three different varieties of processing tomato. VIs derived from spectral bands
of multispectral imagery have long been used to estimate crop canopy and yield. The
use of remote sensing technologies to estimate field and yield variability is becoming
more common in precision agriculture due to their relatively lower cost and non-invasive
approach [59]. Using Sentinel-2-like bands of other optical sensors, Veloso et al. [60] found
that the results were highly correlated with fresh biomass and the green area index (GAI)
and were able to detect short-lived phenological stages, enabling precise monitoring of
crop development. Lykhovyd et al. [58] also found that each phenological phase has its
own NDVI range. Similarly, the results of this study helped to determine the VI dynamics
of tomato plants and to study plant phenology in detail. Naturally, the lowest mean values
of all VIs were recorded during the period after transplanting, when canopy cover was still
low and there was a lot of soil between the rows. The percentage of soil cover increases
toward the middle of the season, when tomato plants reach their maximum vigor before
they begin to transfer sugars to their fruit. Specifically, the highest mean VI levels were
reached in July during the tomato emergence stage (75 to 95 days after planting), after
which a gradual decline began. This research revealed that tomato plants exhibit a unique
pattern of annual growth dynamics that is well-described and explained by VI values.

Another important point is that satellite imagery is a useful tool for estimating crop
variables at the regional scale, but continuous Earth observations with high spatial reso-
lution are often interrupted by clouds. In this study, cloud coverage did not allow for the
computation of the VIs in all cases, resulting in a different number of samples for each date.
For instance, the number of samples for the period of 70 to 110 days after transplanting
ranged between 80 and 85 samples. At 75 and 100 days after transplanting, the sample
size corresponded to 81 and 93 samples, respectively. Additionally, as usually happens
when machine learning is applied to real-world data, some of the variables do not fit the
Gaussian distribution. However, all the variables that fit the Gaussian distribution achieved
better performances. Specifically, the range in which the VIs presented Gaussian distribu-
tion was during the period of 55 to 115 days after transplanting. A study conducted by
Kaplan et al. [61] showed how this limitation can be overcome by combining observations
from two publicly available space-based optical sensors (Sentinel-2 and VENµS) while
simultaneously taking ground measurements over four growing seasons to monitor the
evolution of tomato processing. Publicly available synthetic aperture radar imagery (SAR),
particularly from Sentinel-1, has expanded the ability to monitor vegetation during day
and night, even when cloud cover limits optical Earth observation. Kaplan normalized
the local angle of incidence in Sentinel-1 imagery to improve estimates of leaf area index,
vegetation height, and crop coefficient [62]. In addition, the Copernicus Sentinel-2 mission
allows each point on Earth to be reobserved every five days with the same viewing direc-
tion, achieving even higher temporal sampling, which is particularly useful in areas with
frequent cloud cover.
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According to the results, the first two months reflect a weak relationship between VIs
and yield due to low canopy cover. Poor correlation of all VIs was generally observed in the
early growth stages of the plants, when vegetation is low and bare soil covers a significant
portion of the total field area. This is explained by the fact that most of the satellite sampling
grids are bare soil. In addition, the spatial resolution of 10 m imposes some limitations
for crops grown in rows, as soil and vegetation between rows introduce additional noise
into the spectral data. In the period from 80 to 90 days after transplanting, the predictive
power of the Sentinel-2 derived VI data is satisfactory. Specifically, for NDVI, RVI, and
SAVI, the Pearson coefficient consistently exceeded 0.6 for each cultivar, as well as for the
entire dataset. For all cultivars, the VIs performed solidly and consistently showed r values
above 0.6 at 80 days. The best performance for all VIs used in this study occurred at 90 days
(r > 0.7), and the higher values of RVI during this period were considered optimal for
predicting yield. Variability among the different varieties and VIs is to be expected because
canopy development is a complex process and not homogeneous in all fields. Although the
results are aligned with the findings of Psiroukis et al. [17], which used a similar approach,
the Pearson correlation values we obtained did not reach the high values reported in their
study. This discrepancy could be due to differences in the dates of the datasets used or
differences in the cultivation practices employed in the Khachmaz region of Azerbaijan.

Using AutoML to find ensembles of regressors with high predictive power was one of
the main goals of this work. Statistics require a model to be chosen that incorporates our
knowledge of the system, and ML requires the choice of a predictive algorithm by relying
on its empirical capabilities [63]. Therefore, in this study, we used a combined approach to
quantify the performance of the different VIs. RVI and SAVI showed the highest correlations
with the final yield at 80 (adj. R2 = 0.63 ± 0.02 and adj. R2 = 0.6 ± 0.04) to 90 days (adj.
R2 = 0.72 ± 0.02 and adj. R2 = 0.69 ± 0.03), possibly indicating a critical stage when
processing tomato crops undergo changes that can be distinguishable through Sentinel-
2-derived data. Several researchers recommend the use of the soil-adjusted vegetation
index (SAVI), which belongs to the group of spatial vegetation indices with the least bias
related to soil properties and their presence on remote sensing images, allowing for better
identification of plants and their differentiation from the soil [58,64]. On the other hand,
NDVI underperformed in relation to the other Vis, with values below 0.62. The weak linear
relationship between yield and the two indices (NDVI and PVI) may be attributed to the
influence of non-weather factors determining yield, such as atmospheric influences or the
fact that NDVI is sensitive to the effects of soil brightness and canopy shadow [65]. At
the same time, WDVI and PVI both showed very similar performance values in terms of
correlation with the final yield.

This approach is an extension of our previous work in which ensembles were not
studied [29,66]. An important finding of the current work is that ensembles of two re-
gressors achieved the highest adjusted R2 in most cases. This means that by averaging
the predictions of two accurate regressors, precision can be increased. This result is con-
sistent with the suggestion of Zhang [67] that the balanced use of different viewpoints
from different models or regressors can lead to a more robust and consistent prediction.
Consequently, the use of ensembles could be explored in other agricultural problems, such
as the prediction of sugar content in grapes.

On the other hand, there is a common result with our previous work related to the high
performance of some specific regressors. In particular, ARD regression and SVR achieved
consistently good predictions. In contrast, tree-based regressors, such as extra trees or
random forests were not successful in any of the studies. However, this should not lead
to the conclusion that tree-based methods will necessarily fail in other related regression
problems. Any machine-learning-based solution is subject “no free lunch” theorem [68],
meaning that no algorithm is the best solution for every dataset. Therefore, even the most
powerful algorithm is not suitable for all yield prediction problems. In contrast, since
AutoML can be optimized by restricting the search space, using consistently successful
regressors could improve the efficiency of the entire pipeline by finding a suitable solution.
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5. Conclusions

To date, few studies have been conducted to evaluate the effectiveness of Sentinel-
2 in monitoring processing tomato crop variability and predicting yield by combining
statistical analysis and machine learning. In this study, an evaluation of different VIs
and their relationship to phenological stages and yield in processing tomato crop was
conducted. Vegetation indicators were calculated based on spectral information derived
from Sentinel-2. The results show the potential of Sentinel-2 imagery to monitor field vigor
and predict tomato yield at the regional level, demonstrating clear results regarding the
most effective growth stages and VIs for yield prediction. The best performance for all
VIs used in this study was obtained by RVI and SAVI, with the maximum accuracy and
reliability occurring in the period from 80 to 90 days after transplanting. Moreover, the
results show that by using AutoML, the combination of ARD regression and SVR was the
combination of regressors with the highest predictive accuracy.

The findings presented in this paper are encouraging for the development of a large-
scale monitoring system, especially based on the Sentinel-2 mission, which provides free
access to data with high spatial and temporal resolution from most regions of the world.
The pattern of annual NDVI change in tomato crops could be integrated into models for
automatic crop identification, mapping, and phenological monitoring.
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