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Abstract: Since bee traffic is a contributing factor to hive health and electromagnetic radiation has a
growing presence in the urban milieu, we investigate ambient electromagnetic radiation as a predictor
of bee traffic in the hive’s vicinity in an urban environment. To that end, we built two multi-sensor
stations and deployed them for four and a half months at a private apiary in Logan, UT, USA. to
record ambient weather and electromagnetic radiation. We placed two non-invasive video loggers on
two hives at the apiary to extract omnidirectional bee motion counts from videos. The time-aligned
datasets were used to evaluate 200 linear and 3,703,200 non-linear (random forest and support vector
machine) regressors to predict bee motion counts from time, weather, and electromagnetic radiation.
In all regressors, electromagnetic radiation was as good a predictor of traffic as weather. Both weather
and electromagnetic radiation were better predictors than time. On the 13,412 time-aligned weather,
electromagnetic radiation, and bee traffic records, random forest regressors had higher maximum R2

scores and resulted in more energy efficient parameterized grid searches. Both types of regressors
were numerically stable.

Keywords: precision apiculture; precision beekeeping; electromagnetic radiation; electronic beehive
monitoring; machine learning; regression; grid search; power use; energy efficiency; apiary science

1. Introduction

In 1981, Kirschvink and Gould [1] hypothesized that some animals (e.g., honey bees,
pigeons, and sharks) may possess special organs, which they called “magnetoreceptors”,
for detecting magnetic field variations. The researchers conjectured that the biogenic
magnetite (Fe3O4) discovered in honey bees, pigeons, and shark embryos may play a key
role in their magnetoreception. Multiple precision apiculture studies have attempted to
provide supporting evidence for the magnetoreception hypothesis by showing that different
biological and behavioural characteristics of honey bees (Apis mellifera) may be affected by
radio frequency and electromagnetic fields (RF EMFs) [2]. Hives exposed to high-voltage
transmission lines show increased motor activity, abnormal propolisation, smaller weight
gain, queen loss, and poor winter survival [3]. They generate sounds of higher intensity and
frequency (e.g., “worker piping”) multiple hours after the end of exposure to the pulsed
EMFs generated by regular mobile phones [4]. Honey bee losses and navigational abilities
of foragers may be related to anthropogenic magnetic fields and natural geomagnetic
storms [5]. Exposure to high-frequency radio waves increases bee mortality under some
conditions when field exposure is maximized [6]. Proximity to cell phone towers negatively
impacts incoming and outgoing hive traffic in Apis cerana colonies. [7]. Mobile phone
radiation may induce alterations in antioxidant enzyme activities and lipid peroxidation
levels and cause DNA damage in the exposed larvae [8]. Such radiation significantly
reduces the hatching ratio of adult queens whose larvae were exposed and may alter
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pupal development [9]. Extremely-low-frequency electromagnetic fields (ELF EMFs) from
powerlines impair the cognitive and motor abilities of exposed honey bees [10], reduce
their aversive learning, and increase aggression [11]. In combination with pesticides,
high-frequency electromagnetic fields (HF EMFs) cause American foul brood, higher bee
mortality, queen failures, and excessive drone brood and honey storage [12].

Due to the ever increasing dependency of many communities all over the world on
electrical devices and wired and wireless communication, the growing presence of ambient
electromagnetic radiation (EMR), for the time being at least, is inexorable [2,11], as are the
continuing urban sprawl and concomitant disappearance of native habitats. Many apiarists
have no choice but to keep their hives in urban environments with higher EMR levels [9]
due to the increasing unavailability of spaces in close proximity untouched by residential
or commercial development. Consequently, insomuch as bee traffic is a contributing factor
to hive health [13] and EMR is a growing component of the urban milieu, it is reasonable
to ask if ambient EMR can be used as a predictor of bee traffic in hive vicinity in urban
environments and how its predictive power compares to those of time and weather. While
the latter, unlike the former, have a long research history in precision apiculture (e.g., [14–18]),
to our knowledge, this study is the first one to analyze the predictive power of ambient
EMR in linear and non-linear regression models of bee traffic in hive vicinity at an urban
apiary using completely non-invasive means: no structural modification of the hive, no
forced exposure of bees to artificially induced EMFs, no removal of individual bees from
monitored hives for laboratory inspections with subsequent insecticide, and no sensors
or fiducials in or on bees. In addition, unlike the other precision apiculture and machine
learning studies we reviewed for this article, our study appears to be the first one to analyze
the grid search of non-linear regression models of bee traffic in terms of numerical stability,
physical run time, and energy efficiency, which has broader implications for machine
learning at large.

The specific objectives of our investigation were: (1) to acquire a large dataset of
time-aligned records from replicable weather, ambient electromagnetic, and video bee
traffic sensors at an urban apiary for one complete beekeeping season in northern Utah,
U.S.A; (2) to evaluate relative contributions of time, weather, and ambient electromagnetic
radiation as independent variables in linear and non-linear (random forest and support
vector machine) regression models of bee traffic in hive vicinity; (3) to run parameterized
grid searches to discover optimal value ranges for the random forest and support vector
machine hyperparameters; (4) to compare the relative performance of hive-specific and
model transfer regressors; and (5) to run the parameterized grid searches on four different
hardware platforms to test for numerical stability and to estimate the relative power use
rates of the random forest and support vector machine regressors.

The remainder of our article is organized as follows. In Section 2, we detail the
materials and methods of our investigation. In Section 3, we summarize our results.
In Section 4, we discuss our results in terms of accuracy, physical run time, and numerical
stability, which elucidates our rationale for excluding deep learning models from our
investigation. In Section 5, we present our conclusions. We moved all tables and plots
referenced in the text into the appendix to make the reading flow smoother. When we say
that a particular table or plot represents a general trend, we mean that the tables and plots
we computed from the curated datasets (e.g., tables or plots for the other dependent or
independent variables or months) in the supplementary materials showed the same or
similar trend, which can be replicated from our datasets by third parties.

The supplementary materials include all our curated datasets for this investigation
(CSV files), spread sheets with additional tables, replicable assembly instructions for our
weather–EMR monitoring stations (see Section 2), and our data collection software used in
the stations. The materials also include several short videos to illustrate some hardware and
software aspects of BeePi, our video logging (vlogging) and analysis system, with which
the readers, especially those who may be unfamiliar with our previous work on video
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analysis of bee traffic in hive vicinity (e.g., [19–21]), may want to familiarize themselves
before proceeding to the remainder of the article.

2. Materials and Methods

We used only off-the-shelf sensors in our investigation and implemented all regressors
and parameterized grid search tools with open source software libraries. All operating sys-
tems on which we executed our cross-validation, numerical stability, and power efficiency
tests are also open source. We preferred open source solutions to commercial alternatives to
ensure that our materials and methods can be broadly applied by researchers, practitioners,
and citizen scientists to study the impacts of ambient electromagnetic radiation on honey
bee traffic.

2.1. Data Acquisition
2.1.1. Environment

The city of Logan (latitude 41.73698◦, longitude −111.833836◦, elevation ≈ 1358.5 m
above sea level), where we conducted this investigation, is located in northern Utah,
a state of western U.S.A. The Logan area experiences two nectar flows per year: the major
nectar flow from mid-May to late June and the minor nectar flow from mid-August to
mid-September. The primary nectar and pollen sources are private vegetable and flower
gardens and orchards. Local apiarists hive new bee packages in late April or early May
and harvest the honey by mid-September. Regardless of the bee race (Carniolan, Italian,
Russian, etc.), many bee packages offered for sale by local suppliers come to Utah by
trucks from queen breeders in California and Georgia, two states of the U.S.A. different
from northern Utah in terms of climate: in particular, many areas in those states have no
extended periods of sub-zero Celsius temperatures and snow.

During the beekeeping season (May–September), the temperature can be as low as
+5 ◦C in late April and early May and as high as ≥30 ◦C in July and August with a drop to
+10 ◦C in September. In October, the temperature stays slightly above 0 ◦C with occasional,
slight sub-zero dips; November brings in temperatures mostly below 0 ◦C with cold rains
and snow showers. Snow stays on the ground from late November to early or mid-March;
during this period, the temperature mostly hovers in the −5 ◦C to −10 ◦C range but may
occasionally drop to ≤−20 ◦C. From December to February, the weather can be erratic,
with the temperature leaping to +5 ◦C on one day making snowfall turn into rain and
on the same or next day dropping to −10 ◦C with the rain turning back into snowfall.
The winter air quality frequently worsens due to air inversions. The summer air quality
may become abnormal in July and August due to forest fires in the geographically proximal
states of Idaho, Oregon, and California.

2.1.2. Weather and Electromagnetic Radiation Sensors

We built two stations, one for data collection, the other for redundancy in case of
software and hardware failures, and deployed them at a six-hive private apiary in Logan to
record ambient weather and EMR data [22] (see Figures 1 and 2). As shown in Figure 1, the
sensors are attached to a vertical metallic post crowned with a horizontal plastic bar. An
anemometer is on the left side of the horizontal bar (close to the wall). A wind vane is on
the right side of the horizontal bar. The grey plastic box attached to the vertical metallic
post ≈ 50 cm below the horizontal bar is a rain gauge. A pyronometer is attached to the
metallic post ≈ 50 cm below the rain gauge. A horizontal wooden plank is attached to the
metallic post ≈ 50 cm below the pyronometer. Left to right on the plank are an open plastic
box with an EMF-390, an open plastic box with a Raspberry Pi computer, and an open
plastic box with a BME-280. The boxes are waterproof, and, when deployed, waterproof
plastic covers are attached to the boxes with screws to protect the two sensors and the
computer against the elements (see Figure 2).

The apiary where both stations were deployed was in a 15 m× 18 m wooded backyard
(see Figure 2) of a private house in a southwestern residential neighbourhood of Logan.
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The stations were placed 3 m apart. The trees were ≈5–7 m from the stations and the
closest hive was ≈7 m from the stations. Both stations were powered around the clock with
waterproof extension cords plugged into a power splitter connected to a standard electrical
outlet in the wall of a barn located ≈10 m east of the stations. The extension cords were
securely pinned to the ground with metallic water hose pins to prevent interference with
human foot traffic.

Figure 1. The left picture shows a weather station during a trial run in Logan in a small backyard
next to a brick wall with a window; no data were collected at this site. The right picture shows the
back side of the same station deployed at a private 6-hive apiary in Logan, where the weather and
electromagnetic radiation data were collected from May 16 to 1 September 2020 (see Figure 2).

The anemometer, the wind vane, and the rain gauge from the Argent Data Systems [23]
measured wind speed, gust, and precipitation, respectively. The anemometer has three
equally spaced arms with cups at the end of each. The cups are attached to a shaft with
a magnet at the end. As the magnet turns, a reed switch opens and closes due to the
magnetic field. At a wind speed of 1.492 mph (2.401 kmh), the switch closes once per
second. The wind speed is calculated by counting the number of switches per second.
The wind vane includes a vertical blade attached to a rod with a shaft. A magnet is attached
at the end of the shaft, which is situated at the center of eight reed switches connected
to resistors of different values. As the vane is turned by the wind, the orientation of the
magnet on the shaft causes some switches to close. An external resistor is used as a voltage
divider, and the output voltage is measured with an analogue-to-digital converter (ADC).
Since each switch is connected to a unique resistor, the output voltage is unique for each of
the 16 represented directions, each 22.5◦ apart. The tipping bucket rain gauge includes a
rocker with two cups on each end. The rocker has a hinge connection at the center so only
one cup at a time is open to the sky for catching rain. When the cup fills to 0.02794 cm of
water, the rocker tips, the rain water runs out, and the other cup opens to the sky. Each
time the bucket tips, a switch is triggered allowing the number of tips to be counted to
estimate the rainfall.
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Figure 2. The two weather–EMR stations at a private apiary in Logan; a tower of four colored boxes
on the right side of the picture is the closest Langstroth hive (≈7 m from the farthest station) with
a live Apis mellifera colony; bottom to top, the hive consists of a light blue box, a green box, two
yellow boxes, a telescoping hive lid, and a brick placed on top of the lid to keep it in place in strong
winds; in American beekeeper jargon, the boxes are sometimes called supers; in the closest station the
waterproof boxes on the wooden plank have their covers securely attached to them; both stations
were installed at the apiary on 15 May 2020.

BME280 [24] measured the humidity, pressure, and temperature. The sensor’s op-
erating ranges are from 0 to 100% for relative humidity, 300 to 1100 hPa for atmospheric
pressure, and −40 to +85 ◦C for temperature, with the corresponding accuracies of ±3%,
±1 hPa, and ±1 ◦C, respectively. Since the atmospheric pressure sensor was factory cali-
brated for readings at sea level, we recalibrated it for the Utah elevation. The pyranometer
from Apogee Instruments [25] measured short-wave radiation (SW Rad). This silicon-cell
sensor measures the 350–1100 nm portion of the solar spectrum of global SW Rad, which is
approximately 80% of the total spectrum. As solar energy enters the sensor, a voltage is
produced and fed into an analogue-to-digital converter (ADC) to report SW Rad in Watts
per square meter (W/m2). Each millivolt produced is equivalent to 5 W/m2, and the sensor
produces a max voltage of ≈250 mV to measure up to ≈1250 W/m2 of SW Rad. Since
the SW Rad data might have been skewed by the tree shadows at the apiary, we supple-
mented the pyranometer’s SW Rad readings with the SW Rad readings from a nearby
Utah Climate Center weather station located on the Utah State University (USU) campus
≈3.2 km away from the apiary, and ≈91.44 m higher in elevation. The station is located in
a wide open space with no trees or tall buildings in the vicinity. The USU station’s readings
were downloaded from the station’s website [26]. The EMF-390 sensor [27] monitored RF
EMFs. The EMF portion of the sensor monitors in the X, Y, and Z axes with a range of 0
to ≈500 mG at a resolution of 0.1 per 1 mG. The EF portion ranges from 0 to 1000 volts
per meter (V/m) at a resolution of 1 V/m, and is frequency-independent. The RF portion
ranges from 0.2 mW/m2 to≈9999 mW/m2 at a resolution of 0.01 mW/m2, and can measure
frequencies up to 10 GHz. The EMF-390 sensor was housed in a water-proof plastic box
next to the Pi computer and powered from one of the computer’s USB ports. The MCP3208
12-bit ADC [28] converted the analogue voltage representing the wind direction, and the
SW Rad voltage from the pyranometer.
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We used a Raspberry Pi 3 model B+ 64-bit computer with the Raspbian operating
system (OS) as the station’s controller. The Pi 3 model B+ platform has multiple general-
purpose input/output (GPIO) pins and up to four USB ports for connecting hardware
components. All weather and EMR sensors were connected to the Pi computer via the
GPIO pins or the USB ports. The Pi 3 B+ model has a built-in 802.11.b/g/n/ac wireless
Local Area Network (LAN), which was used for local wireless data transfers. No internet
or cloud computing was used for data storage or processing for the reasons expounded in
Sections 4 and 5. The ChronoDot 2.1 Real-Time Clock [29] was coupled to the Pi computer
to timestamp collected weather and EMR data. The Pi computer saved the weather and
EMR data every 15 min in comma separated values (CSV) files on an attached 32G USB
storage device. The rainfall was reset to zero at 23:59 every 24 h.

2.1.3. Honey Bee Traffic Sensors

The video bee traffic data for this investigation were collected from two hives in the
apiary, which we will refer to as R45 and R411 (the original IDs from the digital logs). Both
hives had Russian bee packages from Knight Family Honey (www.knightfamilyhoney.com
(accessed on 20 February 2023)), a supplier in Orem, Utah, U.S.A. The packages were hived
by the first author in two deep Langstroth supers each on 25 April 2020. The first author,
a licensed Utah beekeeper, manually inspected the hives in loco once a month from May
to October 2020. No abnormalities, i.e., queen failure, American or European foul brood,
chalk brood, excessive Varroa levels, or swarms, were detected. No chemical treatments
were applied to either hive. The second deep Langstroth super was added to each colony
on 1 July 2020. The third Langstroth super was added on 1 August 2020.

Two BeePi video loggers (vloggers) [30–32], one per hive, were installed on the two
hives on 16 May 2020. Each vlogger consisted of an 8-megapixel Pi camera connected to
a Raspberry Pi 3 Model B+ computer with the Raspbian Operating System (OS). The Pi
computer was connected to a ChronoDot 2.1 Real-Time Clock; the timestamped videos were
saved on a 5 terabyte USB device coupled to the Pi computer. The camera was protected
against the elements and securely attached to the front side of a shallow Langstroth super
(with the computer, the clock, and the USB device inside the super) on top of the hive.
The super with the hardware equipment was separated from the hive with a wooden
inner hive cover nailed to the super’s bottom; a metallic mesh covered the small hole
in the middle of the inner cover to prevent the bees from crawling into the super from
inside the hive. Four small holes (≈2.5 cm in diameter) were drilled on each side of the
hardware super to improve ventilation. The camera looked down on the hive’s landing
pad. The volume of the space in front of the hive in the recorded videos was approximately
3 m × 3 m × 3 m. It is this space that we call the hive’s vicinity. The Pi computer was
powered around the clock through a waterproof extension cord plugged into a cord splitter
connected to the same electrical outlet in the wall of the nearby barn from which the weather–
EMR stations were powered. The computer was set to record and save 30 s videos (format:
MPEG-4 (MP4), resolution: 1080 × 1980 pixels, frames per second (fps): 24) every 15 min
from 7:30 to 20:45 daily from 16 May to 30 September 2020, for a total of 53 videos per
day. The vloggers did not have any hardware or software failures during the observation
period. They continued to function flawlessly in the presence of a wasp nest in the R45
hardware super in July and an ant nest in the R411 hardware super in August, both of
which were discovered and removed during the monthly hive inspections. No structural
modifications of the hives (e.g., special tunnels for bee exit and entry or plastic boards on
top of the landing pad) were made and no sensors or fiducials were placed in or on bees.
No videos were recorded 7–19 June 2020, due to a failure of the electrical outlet in the barn,
from which the stations and the vloggers were powered, and on 13–14 August 2020, when
the first author accidentally damaged a power cord splitter connected to the barn’s outlet
and had to replace it. Each video was processed in vivo with the BeePIV algorithm [20,21]
on the computer OGP (see Appendix A Tables A1 and A2 for the computer’s software and
hardware characteristics) to obtain the directional and omnidirectional bee motion counts

www.knightfamilyhoney.com


Sensors 2023, 23, 2584 7 of 28

for each video. BeePIV converts individual frames from videos to particle motion frames
with uniform backgrounds and applies particle image velocimetry (PIV) methods [33] to
each pair of consecutive motion frames to compute particle displacement vector fields.
Depending on their directions, individual displacement vectors in the fields are classified
as incoming, outgoing, and lateral. The total vector counts for each frame are used to
measure incoming, outgoing, and lateral bee traffic in that frame. The sums of the three
vector counts for all frames in a video give the counts of all incoming, outgoing, and lateral
bee motion counts for the video. The application of BeePIV produced one CSV file that
contained one row per every video with the upward (outgoing), downward (incoming),
lateral, and total bee motion counts (non-negative integers) for the video.

Blackiston [34] estimates that “about 60,000 or more bees reside in a healthy hive”.
According to Dadant [35], “in its usual working condition, a colony of bees contains a fertile
queen, many thousands of workers, according to the season of the year, and in the busy
season, from several hundred to a few thousand drones”. Thus, bee traffic in hive vicinity,
which is the dependent variable (DNV) in all our models, consists mostly of foragers, but
also includes drones.

Timestamps were used to align the bee motion counts from each video with the means
of four consecutive weather and EMR measurements (three previous and one concurrent)
and save the aligned records into two CSV files: one for R45 (6710 records) and one for R411
(6702 records). Only complete records were included in the merged CSV files: eight records
were removed from the R411 data, because they were missing at least one of the weather or
EMR readings. The timestamps in the final files were mapped to positive integers from 1 to
53 (e.g., 7:30→ 1, 8:00→ 2, . . . , 20:45→ 53). The two CSV files, R_4_5_s1_2020_DH.csv
and R_4_11_s1_2020_DH.csv, are in the Supplementary Materials.

2.2. Data Analysis
Regression

The independent variables (INV) for all regressors were split into four categories:
TIME, WEATHER, EMR, ALL, the latter being the union of TIME, EMR, WEATHER
(see Table A3). Each regressor had exactly one DNV (see Table A4). Three types of
regression models were evaluated: the linear regressor (LR), the random forest [36] regres-
sor (RFR), and the support vector machine [37] regressor (SVMR). We use the notation
INV→RGR→DNV to specify a regression model in terms of INV, DNV, and a regressor
(RGR) (e.g., EMR→LR→COUT is a linear regressor whose independent variables are EMR
and whose dependent variable is the cubic root of the outgoing bee motions). When a
reference to a hive or month is required, the notation INV→LR→DNV{Hive, Month} is
used (e.g., EMR→RFR→COUTPIN{R411, 7} denotes a random forest regressor for the
hive R411 and the month of July whose dependent variable is EMR and whose independent
variable is the cubic root of the sum of the outgoing and incoming bee motions). Context
permitting, we omit some elements from the notation for brevity (e.g., EMR→RFR→COUT,
WEATHER→SVMR, LR→COUTPIN) or use the notation INV = TIME, INV = WEATHER,
DNV = COUT, DNV = COUTPIN to denote models with specific independent and depen-
dent variables.

The LR analysis was executed in R with 200 model types (see Table A5). For each
month, Pearson’s correlation coefficients were computed between the EMF and WEATHER
variables, between the EMF variables, and between the WEATHER variables. All model
types were evaluated with a 70/30 train/test split. The non-linear regression (NLR) analysis
was performed with the NLR model types, as shown in Table A5. RFRs and SVMRs were
grid-searched with the 10-fold cross validation and the 70/30 train/test split to determine
optimal hyperparameter ranges. We will refer to this NLR grid search as the hive-specific
grid search. The NLR model hyperparameters and their ranges are in Tables A6–A8. In the
hive-specific grid search, for each 10-fold cross validation with the 70/30 train/test split,
the absolute minimum and maximum R2 (coefficient of determination) for each NLR
model were recorded as well as the mean maximum R2 and its standard deviation (STD).
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The analysis of the optimal hyperparameter values was performed on the top 30% of the
NLR models ranked by the maximum R2. To evaluate the NLR model transfer from hive
to hive, the grid search was used to train all NLR models on the R45 data and test them
on the R411 data, and, vice versa. We will refer to this grid search as the model transfer grid
search to juxtapose it to the hive-specific grid search.

2.3. Numerical Stability, Physical Time and Power Use

The NLR models and the hive-specific and model transfer grid searches were im-
plemented in Python with the numpy (www.numpy.org) and scikitlearn [38] libraries,
two open source tools of the Python scientific computing stack. The control scripts were
implemented in Perl. To ensure the numerical stability of the results, the Python and Perl
programs were executed on four different computers (see Tables A1 and A2). The phys-
ical run times (in seconds) were programmatically logged for each grid search on each
computer and converted into hours for the subsequent power use (i.e., energy efficiency)
analysis. We note in passing that we use the terms power use and energy efficiency synony-
mously. The power use data were taken from a Gardner Bender(TM) Power Meter PM3000.
The meter was plugged into an electrical wall outlet and each of the three computers (OPC,
PWE, EDW) were plugged into the meter to run for 24 h without running our grid search
programs. The power use experiments were not executed on the computer OGP, because in
December 2022, when we were completing the power use experiments, the computer was
permanently damaged by a power outage at the Utah State University. After the 24 h
period, the total cumulative power amount (CPA) in kilowatt-hours (kW-h) on the meter’s
display was recorded. The meter was reset, and the RFR hive-specific grid search program
was executed on the computer for another 24 h, and the CPA was recorded. After the meter
was reset again, the SVMR hive-specific grid search program was executed on the computer
for another 24 h, and the CPA recorded. The power use rates in each case were estimated
as CPA/24. During all power use experiments, no other processes, except the regular
background Linux OS processes, ran on the computer, the wireless and wired internet
connections were disabled to prevent background updates, no USB devices were connected
to the computer, and the computer’s monitor was turned off.

3. Results
3.1. Regression

Table A9 gives the Pearson’s correlation coefficients and the corresponding p values of
(AVGEMF, TEMP), and (AVEMG, HUMID) (see Table A3 for the descriptions of AVGEMF,
TEMP, HUMID). For all months, the (AVGEMF, TEMP) Pearson’s correlation coefficients
and their p values were 0.95 (<0.0001); the (AVGEMF, HUMID) Pearson’s correlation
coefficients and their p values were −0.82 (<0.0001). All other absolute values of the
Pearson’s correlation coefficients were <0.7 or had p values > 0.05. Table A10 summarizes
the LR results computed in R with the 70/30 train/test split. The lowest maximum R2

of 0.10 was from TIME→LR→CIN{R45, 5}; the highest maximum R2 of 0.66 was from
ALL→LR→COUTPIN{R411, 9}. The (mean R2, STD) of TIME→LR→DNV were (0.31,
0.12); of WEATHER→LR→DNV–(0.37, 0.12); of EMR→LR→DNV–(0.36, 0.12); and of
ALL→LR→DNV–(0.45, 0.13).

The total number of the NLR models evaluated in the hive-specific grid search on the
four computers (OGP, OPC, PWE, EDW—See Tables A1 and A2) was (see Tables A6–A8).

4 (number of computers) × 323,200 (number of RFR models) + 4 (number of com-
puters) × (151,200 + 201,600) (SVMR models with non-polynomial (non-poly) and
polynomial (poly) kernels) = 2,704,000.

The total number of the NLR models evaluated in the model transfer grid search was

www.numpy.org
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2 (number of computers, i.e., PWE and EDW) × 323,200 (number of RFR models) +
1 (number of computers, i.e., EDW) × (151,200 + 201,600) (number of non-poly and
poly kernel SVMR models) = 999,200.

Thus, all in all, the total number of the NLR models evaluated in the hive-specific and
model transfer grid searches was

2,704,000 (hive-specific grid search models) + 999,200 (model transfer grid search
models) = 3,703,200.

Figures A1 and A2 summarize the relative performance of the evaluated models
with respect to INV and DNV in the hive-specific grid search. Figures A3 and A4 and
Table A11 summarize the hyperparameter statistics of the top 30% of the RFR and SVMR
models ranked by the maximum R2. The NT (number of trees) hyperparameter values
of the top RFR models were in the chosen range of (50–150) (see Table A6); the MTD
(maximum tree depth) hyperparameter values of the RFR models were in the range (10–25)
in almost all models; in one model, the MTD was <10 in July. The hyperparameter values
of the top SVMR models were all in the chosen ranges. The maximum R2 scores of
ALL→RGR→COUTPIN were on par with the maximum R2 scores of all the other models
for all regressors, hives, and months. The LR scores were the lowest for each month and
hive; the SVMR scores were in the middle; the RFR were the highest (see Table A12). The
performance for all other types of models showed the same comparative trends. Figure A5
summarizes the results of the model transfer grid search on the computer EDW.

3.2. Numerical Stability, Physical Time and Power Use

Tables A13–A15 and A21 summarize the numerical stability statistics for the two most
structurally involved models: ALL→RFR→COUTPIN and ALL→SVMR→COUTPIN,
respectively. The tables for all other models are omitted for brevity, because they exhibit the
exact same numerical stability trends. Tables A16 and A17 total the physical run times of the
hive-specific grid search on four computers for all INV, DNV, hives, months, and computers;
Tables A18 and A19 do the same for the model transfer grid search; Table A20 summarizes
the power use results.

4. Discussion
4.1. Regression

Figure A6 shows the quadratic regression line of the cubic root of the incoming bee
motion counts for all recorded times during the day for the R411 July data. The other
hives and months showed similar traffic distributions. The quadratic regression lines
showed better fits than the regular regression lines, which corroborates the findings of
Marceau et al. [13] whose best regression model for their dataset of forager counts used
quadratic regression. This observation also explains why we added quadratic effects to
INV (see Table A3). Linear regression, in and of itself, was not sufficiently powerful to
predict bee traffic patterns in the vicinity of either hive. Linear regression may not be
sufficient to predict bee traffic in hive vicinity from electromagnetic radiation or weather,
because traffic distributions, as Figure A6 demonstrates, do not appear to be linear. Nor do
traffic distributions appear to be random. If they were random, scatter plots like the one in
Figure A6 would not be seen, and one would not see the R2 scores of hive-specific models
in the range of 0.30 to 0.70. Instead, one would expect to see the R2 scores hovering at 0 or
slightly above or be negative. More experiments are required to establish the exact extent
of the non-randomness of hive-specific bee traffic in hive vicinity.

The INV = ALL NLR models performed better than the NLR models with INV = TIME,
INV = WEATHER, or INV = EMR, which indicates that the components of bee traffic
predicted by TIME, WEATHER, and EMR, by themselves, are not necessarily identical.
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Each INV category predicts its own traffic component and does not completely over-
lap with the components predicted by the other INV categories. The NLR models with
INV = WEATHER predicted better in May and June and the models with INV = EMR—in
July and August. However, the R2 performance difference between the INV = EMR and
INV = WEATHER models never exceeded 0.07. Thus, on our dataset and in our milieu,
EMR and WEATHER were equally powerful as predictors and, therefore, interchangeable.
The R2 trend predicted by INV = TIME was the same for both hives and the predictive
power of some models was higher in May and June, slipped in July and picked up in
September, which closely coincides with the two major nectar flows in the Logan area
(mid-May to late June; mid-August to mid-September). The forager traffic in Logan may
become more predictable due to the availability of multiple nectar and pollen sources
and less predictable when those sources are more difficult for forager scouts to locate.
However, among all evaluated LR and NLR models, INV = TIME models performed the
worst, which corroborates the findings of Polatto et al. [16] who concluded that “. . . time of
day apparently had little influence on the foraging activity of the bees”.

The effects of WEATHER and EMR appear to have depended not on the NLR model
type, but on the hive. The maximum R2 scores tended to be almost identical for the
INV = EMR and INV = WEATHER models for the same hive, but differed for the same
model on different hives, which suggests that some bee traffic patterns may be unique to
individual colonies. This result may corroborate the theory that a bee colony is a biological
superorganism with its unique biotic characteristics [39]. In so far as the bee traffic reflects
the unique biotic characteristics of the superorganism, to that extent it may be unique and
vary from superorganism to superorganism.

The NLR models with DNV = CIN uniformally performed better than the models with
DNV = COUT, DNV = CINMOUT, DNV = COUTMIN, and DNV = COUTPIN. However,
the R2 performance of these models differed by no more than 0.03, which makes DNV = CIN,
DNV = COUT, and DNV = COUTPIN interchangeable. CIN and COUT may be preferred
in the field, because they are faster to compute from videos than COUTPIN, the latter
requiring computation of the cubic root sum of the incoming and outgoing bee motions
instead of the cubic root of just one type of motion counts. Therefore, all things being equal,
DNV = CIN/COUT models are expected to be more energy efficient on low power devices
such as Raspberry Pi computers. The NLR DNV = CINMOUT and DNV = COUTMIN
models performed worse than their counterparts with DNV = CIN/COUT/COUTPIN.
The result was expected, because a 30-second time span of a single video is insufficient
to capture the complexity of bee traffic. Since the nectar, pollen, and water sources are
located at different distances from the hive, the foragers that leave the hive at the same
time may not necessarily return to the hive at the same time and, conversely, the foragers
that leave the hive at different times may come back at the same time. Both types of
foragers will be captured by DNV = CIN, DNV = COUT, and DNV = COUTPIN but not
necessarily by DNV = COUTMIN or DNV = CINMOUT. The dependent variables that
estimate the difference between the incoming and outgoing bee traffic (such as CINMOUT
and COUTMIN) behave more reliably for longer time spans (e.g., 3 to 6 h [21]).

Since the RFR hyperparameters NT and MTD were in the chosen ranges (see Table A6
and Figure A3) in the top performing models, the grid search ranges appear to have been
chosen appropriately. In the RFR hive-specific grid search, the NT range can be made tighter
by raising the lower bound to 75 and lowering the upper bound to 140, because all the
top performing RFR models had between 75 and 140 decision trees. For the SVMR models,
the upper bound of the hyperparameter C can be reduced to 80, because all top performing
SVMRs had C ≤ 80. The range for the hyperparameter ε was chosen appropriately as
well, because all top performing SVMRs had values of that hyperparameter in the specified
range. The linear kernel occurred less frequently among the top SVMR models than the rbf
or sigmoid kernels (see Figure A4), but had slightly higher mean maximum R2 values (see
Table A11). However, since the performance difference between these three kernels did not
exceed 0.04, these kernels were interchangeable on our dataset. There were no polynomial
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kernel models among the top performers, which indicates that for our dataset, this kernel
was not an adequate choice. Regarding the hyperparameter γ, only in June, the auto value
of γ surpassed the scale value among the top 30% of the models, but the difference in the
maximum R2 was only 0.065. Overall, auto was preferable to scale insomuch as it was
always either on par with or slightly better than scale.

Overall, RFRs performed better than SVMRs, which corroborates the robustness of
random forests reported in other precision apiculture studies. Thus, Braga et al. [18] in
investigating the problem of classifying the hive status from time and weather variables
and manual hive inspections reported that the random forest classifiers outperformed the
k-nearest neighbours, and neural networks. Kulyukin et al. [40] also reported that random-
reinforced forests frequently performed on par with shallow convolutional networks in
classifying bee images in videos. Although these investigations used random forests to
solve classification, not regression, problems, they indicate that random forests remain
viable alternatives to other machine learning models in precision apiculture. RFRs have
a conceptual advantage over SVMRs in that they can, in a straightforward manner, be
programmatically converted into symbolic descriptions in the form of sets of IF-THEN-
ELSE-IF statements; SVMR hyperparameter interactions are less interpretable and therefore
harder to analyze.

4.2. Model Transfer

The left column plots in Figure A7 show that the WEATHER/EMR/ALL→RFR
models trained on the R45 data performed on par with each other; the R2 scores of
the TIME→RFR models were lower; for the WEATHER/EMR/ALL→SVMR models the
R2 scores fluctuated between 0.18 and 0.57 but had a wider spread than those of the
WEATHER/EMR/ALL→RFR; the R2 scores of the TIME→SVMR models were slightly
higher than those of the TIME→RFR models. These observations suggest that between
18 and 57% of the bee traffic in the vicinity of the R411 hive could be predicted by the
models transferred from the R45 hive. The lower performance of the INV = TIME models
suggests that the time-dependent bee traffic patterns of the R45 hive did not coincide
with the time-dependent patterns of the R411 hive. As the right column of Figure A7
indicates, the situation was reversed for the INV→RFR models trained on the R411 data
and tested on the R45 data in that the TIME→RFR models performed better than the
WEATHER/EMR/ALL→RFR models in May, June and July, with the R2 scores fluctuating
between 0.17 and 0.38; the scores of the WEATHER/EMR/ALL→RFR models for May and
June were negative, which signals a complete lack of fit; the models recovered in July to
0.10 and then surpassed the TIME→RFR models in August and September, with the R2

scores fluctuating between 0.4 and 0.58. The INV→SVMR models (bottom right graphs
of Figure A7) had similar monthly trends with the rising R2 scores in July, August and
September; the only difference was that, unlike the TIME→RFR models, the TIME→SVMR
models behaved on par with the WEATHER/EMR/ALL→SVMR models. Comparing
the graphs in the top and bottom rows of Figure A7 suggests that R411 had more TIME-,
WEATHER-, and EMR-dependent bee traffic in common with R45, than R45 had in common
with R411. Overall, the model transfer R2 scores of the NLR models were considerably
lower than the R2 scores of the hive-specific NLR models (See Figures A1 and A2). The
latter did not have any negative R2 scores and many of them had R2 above 0.60, which
corroborates the earlier observation that bee traffic patterns may be hive-specific and differ
from colony to colony and location to location.

4.3. Numerical Stability

In scientific computing, the results of a computation are considered numerically
stable if multiple runs of the computation on the same software and hardware platform
or on different platforms yield numerical results in the same ballpark. Numerical stability
is a concern in numerical applications that deal with small and large reals or random
numbers [41]. Consistent numerical results across multiple runs ensure not only consistency
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of accuracy but also consistency of error. As a quick example of numerical instability,
let us consider the following interaction in Python 3.6.7 on a laptop with Ubuntu 18.04
(x86_64, 4 CPUs, Intel(R) Core(TM) i3-7100U CPU @ 2.40GHz, CPU max MHz = 897.051,
BogoMIPS = 4800).

>>> import numpy as np
>>> x = 1e-308
>>> interval = np.linspace(0, x, 10)
>>> y1,y2 = interval[1],interval[2]
>>> (y1,y2)
(1.11111111111111e-309,2.22222222222222e-309)
>>> 0 < y1 and 0 < y2 and y1+1 == 1 and y2+1 == 1
True
>>> [0 < y < 1 and y + 1 == 1 for y in interval[1:]]
[True, True, True, True, True, True, True, True, True]

The above interaction is a constructive proof that in Python 3.6.7, the set of reals
{y|y > 0∧ y + 1 = 1} 6= ∅. Unfortunately, this interaction is not specific to a particular
platform. With slight modifications in the printed output, it is replicable on all the comput-
ers in our study with different hardware architectures, flavours of Linux, and versions of
Python and Perl. The interaction is also replicable in Python 2.7.17, which some scientific
computing and numerical analysis researchers worldwide still consider the most numer-
ically stable version of Python. We do not want to single out Python 2, Python 3, or the
numpy library, which we, along with many fellow researchers from multiple disciplines,
consider to be invaluable programmatic research tools, without which our study would
have been impossible. Similar numerical instability instances are easily found in all the
programming languages that our research group uses (C, Perl, Python). By Church’s thesis,
they must exist in all programming languages. Our point is rather that, since numerical
instability is a fact in many applications that use real numbers or random number gen-
erators, the results are likely more numerically stable if they do not greatly fluctuate in
multiple runs on multiple platforms. In that regard, all NLR models evaluated in our study
were numerically stable in that their R2 scores did not fluctuate widely across the different
computers, operating systems, and versions of Python, Perl, numpy, and scikitlearn. No
instances were observed when the scores differed by 0.1 or higher; in a few instances the
SVMR model scores differed by 0.07, which was expected, because the SVMR models had
many more hyperparameters than their RFR counterparts.

4.4. Physical Run Time and Power Use

The hive-specific grid search took 1022.17 h for the RFR models and 1366.32 h for
the SVMR models (see Tables A16 and A17). These numbers, in and of themselves, may
not mean much until we start to consider the amount of energy required to complete
these grid searches (see Table A20). Using the mean power use rate estimates for the
computers running the RFR and SVMR grid searches in the columns (COMP + RFR)/24
and (COMP + SVMR)/24, the RFR grid search is estimated to have taken 81.77 kW-h
(i.e., 0.08 kW-h/h × 1022.17 h = 81.77 kW-h) and the SVMR grid search to have taken
95.64 kW-h (i.e, 0.07 kW-h/h × 1366.32 h = 95.64 kW-h), with a gain of 13.87 kW-h in favour
of the RFR grid search.

How do these energy amounts compare to deep learning? In 2022, we trained a
YOLOv3 network [42] to recognize individual bees in videos for our ongoing research on
bee traffic video analysis. The YOLOv3 network was trained on a GTX 980 GPU computer
running Ubuntu 18.04 LTS. The training was performed with the darknet system [43]
compiled from its C source code and took ≈2500 h to achieve an average validation loss of
0.08. The power use rate of the GTX 980 computer running the network training program
obtained from the same Gardner Bender(TM) Power Meter PM3000 was 0.24 kW-h/h for a
total estimated amount of 600 kW-h (i.e., 0.24 kW-h/h × 2500 h = 600 kW-h).
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According to the records available to us, a three-bedroom apartment with four resi-
dents in Logan used 491 kW-h in December 2019 and 382 kW-h in November 2017. If we
multiply the estimated mean RFR energy use rate (0.08 kW-h/h in Table A20) by the num-
ber of hours in December (i.e., 31 × 24 = 744 h) and November (i.e., 30 × 24 = 720 h), we
obtain 59.52 kW-h for December and 57.6 kW-h for November. Thus, the RFR search used
≈12% of the apartment’s energy amount in December 2019 and 15% of its energy amount
in November 2017. The same calculation with the mean SVMR power rate of 0.07 kW-h/h
(see Table A20) yields 52.1 kW-h for December (≈11% of the apartment’s energy amount in
December 2019) and 50.4 kW-h for November (13% of the apartment’s energy amount in
November 2017). The estimate with the combined RFR and SVMR mean power use rate
of 0.15 kW-h/h (i.e., the sum of the two mean rates = 0.08 + 0.07) obtains 111.60 kW-h for
December (23% of the apartment’s energy amount in December 2019) and 108 kW-h for
November (28% of the apartment’s energy amount in November 2017). If we use the GTX
980 computer power use rate of 0.24 kW-h/h, we estimate the December energy amount at
178.56 kW-h (0.24 × 744 = 178.56 = 36% of the apartment’s energy amount in December
2019) and the November energy amount at 172.80 kW-h (0.24 × 720 = 172.80 = 45% of the
apartment’s energy amount in November 2019). Machine learning has significant energy
costs [44,45].

While there are numerous best practices and case studies (e.g., [18,36]), machine
learning, both standard and deep, is hindered by a lack of mathematical theories that enable
researchers to decide a priori (i.e., deductively, without running any experiments) which
models will be best on a given dataset. The theorems by Wolpert and Macready [46,47]
indicate that it may not be possible to determine a priori which models will perform best
on a given problem or transfer best to another problem. To put it differently, there is no
alternative to the actual experiment. Consequently, so long as there are no such theories,
the constrained, parameterized grid search will remain the sole principled (as opposed to
ad hoc) method to generate optimal, domain-specific predictive models. An immediate
corollary of the last conclusion is that the concomitant considerations regarding numerical
stability and energy efficiency use will necessarily apply.

This need for increasing amounts of power to search for optimal parameters, as we
argued above and supported with calculations, has measurable costs associated with
the required energy amounts and depletion of natural resources, such as water. Other
research groups have recently started coming to the same conclusion that, in order to
be cost effective, beehive monitoring machine learning models must operate in real time
on low power hardware platforms such as the Raspberry Pi platform [48]. Therefore,
in our future work, we will continue our search for machine learning models, methods,
and algorithms for non-invasive precision apiculture that can operate on low power devices
with limited or no access to cloud computing or the Internet.

Another hidden variable rarely discussed in the machine learning literature is the
environmental costs of cloud computing extensively used for training models on various
datasets. From June 2021 to May 2022, the top four data center owners in Utah alone
consumed 149.8 million gallons of culinary water for cooling their computer facilities:
NSA—128.3 million, Facebook—13.5 million, C7—6.9 million, and Novva—1.1 million [49].
The culinary water consumption for data centers is likely much higher, because Utah has
many smaller data centers not considered in this article. In the meantime, as the historic
drought continues in Utah, the Great Salt Lake, already at historically low levels as of
September 2022, continues to lose water, with the Utah alfalfa farmers bearing the blame
for consuming too much water [50].

4.5. EMR Impact on Honey Bees

A diligent, impartial reviewer of the precision apiculture literature on the effects of
EMR on honey bees cannot but conclude that the evidence is controversial and inconsistent:
some studies report negative impacts, while other studies report mixed results or no impact.
Broadly speaking, the studies we found in the precision apiculture literature can be divided
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into two broad categories: non-invasive and invasive. The investigations in the former
category (e.g., [7,12]) study the effects of ambient EMR on various aspects of honey bee
colonies by measuring ambient EMR with sensors without any structural modifications
of hives, placement of sensors on bees, or placement of EMR sources (e.g., smartphones)
directly into hives. The latter category (e.g., [5,8–11]) includes studies that modify the hive
or the bee, introduce EMR into the habitat, or expose individual bees extracted from a hive
to artificially induced electromagnetic fields in the laboratory.

Lupi et al. [12], after a year-long investigation of the combined effects of pesticides
and low- and high-frequency EMFs, reported the presence of American foul brood, higher
mortality rates, queen changes, excessive drone brood and honey storage, with only one hive
(out of four) surviving at a multi-stress site. The main findings by Shepherd et al. [10,11] were
also negative in that the transient exposure to EMF was reported to reduce individual bees’
learning abilities, to impact their flight and foraging behaviours, to reduce aversive learning,
and to increase aggression levels. However, all testing was performed with individual
bees removed from a single hive and exposed to artificially induced radiation levels from
a custom-built device in a laboratory. In the study by Ferrari [5], magnetized wires were
glued to the abdomens of selected foragers to expose them to artificially induced fluctuating
magnetic fields; the return rates of treated and untreated foragers released at different
distances from their hives showed significant differences; correlations were found between
forager loss and the Earth’s magnetosphere. The study by Darney et al. [6], on the other
hand, reported mixed results: the exposure of honey bees to high-frequency radio waves
increased mortality only in one condition (out of five): when the bees were exposed to
high-frequency radio waves for 2 h per day; no negative effects on mortality were observed
in the four other conditions. Odemer and Odemer [9] reported mobile phone radiation to
reduce the hatching rate of queens whose larvae were exposed; however, no effects were
observed on colony development if the treated queens successfully mated. Studies that
report no negative effects also exist. For example, the investigation by Mall and Kumar [51]
found no impact of EMR on brood rearing, honey production, or foraging behaviour of
Apis mellifera L. colonies.

We agree with the observation of Odemer and Odemer [9] in their review of numerous
studies of EMR effects on honey bees that “all examined studies were characterized by
substantial shortcomings which were sometimes even admitted by their authors upfront”.
We came to the same conclusion after our own review of the relevant literature. For example,
in Favre’s investigation [4], a mobile phone (900 MHz; energy absorption rate < 2 W/kg)
placed in a hive to play a radio station for several hours was observed to induce worker
piping sounds in the hive. However, as Darney et al. [6] point out in their analysis of
Favre’s results, one cannot rule out the possibility that the airborne sound signals perceived
by honey bees induced the response [52]. That said, Favre’s investigation is thorough in
describing the executed field study, especially the details of the hardware installation inside
the hive and the measurement methodology.

As to the effects of ambient EMR on the two bee colonies in our study, both colonies
at the beginning, during, and at the end of the monitored period were queenright. No
abnormalities were detected during the monthly hive inspections. Both colonies had similar
amounts of capped and uncapped honey, brood, larvae, and pollen at the end of the period.
Thus, while in most LR and NLR models, EMR was as good a predictor as WEATHER
and sometimes a better predictor than WEATHER and always a better predictor than
TIME, we cannot report any observed impact of ambient EMR on the actual health of
the two monitored colonies. Our investigation belongs in the non-invasive category of
precision apiculture studies. We hope that our findings will be helpful to researchers and
practitioners who seek non-invasive methods to study the effects of ambient EMR on honey
bee colonies.
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5. Conclusions

We caution that our conclusions are applicable only to datasets and environments
sufficiently similar to ours (e.g., same or similar statistics and distributions of independent
and dependent variables) and acknowledge that, given the great variability of bee races,
climates and hardware sensors, broad generalizations are difficult. It may be the case
that abiotic factors alone such as weather and electromagnetic radiation are insufficient
to predict bee traffic completely [16]. More research is required to establish whether bee
traffic patterns are unique to individual colonies and the statistically significant extent of
that uniqueness.

Conclusion 1: Optimal hive-specific RFRs were found with the hyperparameter
ranges in Table A6; the number of decision trees can be narrowed to the interval
(75–140); the R2 scores of optimal hive-specific RFRs were higher than those of
optimal model transfer RFRs.

Conclusion 2: Optimal hive-specific SVMRs were found with the hyperparameter
ranges in Table A7; the upper bound of the hyperparameter C can be lowered to 80;
linear, rbf and sigmoid kernels were interchangeable; poly kernels performed worse
than linear, rbf and sigmoid kernels; auto and scale values of the hyperparameter γ
were interchangeable; the R2 scores of optimal hive-specific SVMRs were higher
than those of optimal model transfer SVMRs.

Conclusion 3: EMR and WEATHER were interchangeable as independent variables
in LRs, RFRs and SVMRs and performed better than TIME; in applied research of
bee traffic in urban environments, ambient EMR sensors may be used if and when
WEATHER sensors are not available or in conjunction with the latter.

Conclusion 4: CIN, COUT and COUTPIN were interchangeable as dependent
variables in LR, RFR and SVMR models; CINMOUT and COUTMIN performed
worse than CIN, COUT and COUTPIN.

Conclusion 5: The parameterized grid searches of RFRs were more energy efficient
than those of SVMRs.
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Abbreviations
The following abbreviations are used in this manuscript:

EMF electromagnetic field
RF EMF radio frequency and electromagnetic field
ELF extremely low frequency
HF high frequency
EMR electromagnetic radiation
CSV comma separated values
USB universal serial bus
LAN local area network
LTS long-term support
vlogging, vlogger video logging, video logger
fps frames per second
SW short-wave
SW Rad short-wave radiation
ADC analogue-to-digital
RFR random forest regressor
SVMR support vector machine regressor
RBF radial basis function
LR linear regressor/regression
NLR non-linear regressor/regression
STD standard deviation
INV independent variable(s)
DNV dependent variable(s)
NT number of trees (a hyperparameter in RFR)
MTD maximum tree depth (a hyperparameter in RFR)
CIN cubic root of incoming bee motions
COUT cubic root of outgoing bee motions
COUTPIN cubic root of sum of incoming and outgoing bee motions
CINMOUT cubic root of difference of incoming and outgoing bee motions
COUTMIN cubic root of difference of outgoing and incoming bee motions
CPU central processing unit
GPU graphic processing unit
CPA cumulative power amount
kW-h kilowatt-hour
V/m volts per meter
W/m2 watts per square meter
W/kg watts per kilogram
mG milligauss
Hz Hertz
MIPS millions of instructions per second
BogoMIPS Bogus MIPS, crude measurement of CPU speed by the Linux kernel when

it boots to calibrate internal busy-loop
mph miles per hour
kmh kilometers per hour
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Appendix A

Appendix A.1. Tables

Table A1. Software details of the four computers and hive-specific and model transfer NLR grid
search programs; column 1 contains the computer IDs from the CSV files with complete experimental
results in the Supplemental Materials; Foral Fossa is Ubuntu 20.04 LTS; Bionic Beaver is Ubuntu
18.04 LTS; GCC is Gnu C/C++ compiler.

Computer ID Operating System Python Numpy Sklearn Perl

OGP Foral Fossa 3.8.13 (GCC 7.5.0) 1.23.1 1.1.2 5.30.0
PWE Bionic Beaver 3.6.9 (GCC 8.4.0) 1.19.5 0.24.2 5.26.1
OPC Foral Fossa 3.8.10 (GCC 9.4.0) 1.23.4 1.1.3 5.30.0
EDW Bionic Beaver 3.6.9 (GCC 8.4.0) 1.19.5 0.24.2 5.26.1

Table A2. Hardware details of the four computers on which hive-specific and model transfer NLR
grid search programs were executed; column 1 contains the computer IDs in the CSV files with
complete experimental results in Supplemental Materials.

Computer ID Model Arc CPU Num CPUs

OGP GEFORCE RTX 2080 Ti x86_64 i7-9700K@3.60 GHz 8
PWE Dell PowerEdge T130 x86_64 E3-1230 v6@3.50 GHz 8
OPC Dell Optiplex 9020 x86_64 i7-4770 CPU@3.40 GHz 8
EDW HP Z240 x86_64 i7-6700 CPU@3.40 GHz 8

Table A3. Independent variables (INV) of the LR and NLR models; TIME models have 2 INV
(variables 1,2); WEATHER models—8 (variables 3–10); EMR models—6 (variables 11–16; ALL
models—16; W/m2—watts per square meter; mG—milligauss.

Num INV Name INV Category INV Description

1 timept TIME time point, integer in [1, 53] (time of day)
2 timept2 TIME timept2

3 pressure WEATHER atmospheric pressure (millibars)
4 pressure2 WEATHER pressure2

5 humidity WEATHER relative humidity (percent)
6 humidity2 WEATHER humidity2

7 windspeed WEATHER wind speed (miles per hour)
8 windspeed2 WEATHER windspeed2

9 temp WEATHER ambient temperature (Fahrenheit)
10 temp2 WEATHER temp2

11 swradusu EMR USU Climate Center short wave radiation (W/m2)
12 swradusu2 EMR swradusu2

13 avgemf EMR mean strength of detected EMF (mG)
14 avgemf2 EMR avgemf2

15 avgtotden EMR average total RF power flow per unit area (Watts/m2)
16 avgtotden2 EMR avgtotdens2

Table A4. Dependent variables (DNV) of the LR and NLR models; IN—number (non-negative integer)
of incoming bee motions; OUT—number (non-negative integer) of outgoing bee motions; (IN − OUT)—
difference of IN and OUT; (OUT− IN)—difference of OUT and IN; (OUT + IN)—sum of OUT and IN.

Num DNV Name DNV Description

1 CIN IN1/3

2 COUT OUT1/3

3 COUTMIN (OUT − IN)1/3 if OUT ≥ IN; −|OUT − IN|1/3 otherwise
4 CINMOUT (IN − OUT)1/3 if IN ≥ OUT; −|IN − OUT|1/3 otherwise
5 COUTPIN (OUT + IN)1/3
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Table A5. Structural components of regression model types; RGR abbreviates “regressor”; LR—linear
regressor; RFR—random forest regressor; SVMR—support vector machine regressor; total number of
LR model types is 2× 5× 4× 1× 5 = 200, where 1 denotes LR; total number of NLR model types is
2× 5× 4× 2× 5 = 400, where 2 denotes RFR and SVMR.

Hive Month INV RGR DNV

R45 5 TIME LR CIN
R411 6 WEATHER RFR COUT

7 EMR SVMR CINMOUT
8 ALL COUTMIN
9 COUTPIN

Table A6. RFR hyperparameters; see online documentation of the scikitlearn library for details at
www.scikitlearn.org; the total number of models in the hive-specific grid search is the number of
hives × the number of months × the number of INV categories × the number of DNV × the number
of values in the NT range × the number of values in the MTD range = 2× 5× 4× 5× 101× 16 =

323,200 (see Table A5 for the number of structural components in RFRs).

Num Name Range Description

1 NT {i|50 ≤ i ≤ 150} number of trees in RFR; 101 values
2 MTD {j|10 ≤ j ≤ 25} maximum tree depth in RFR; 16 values

Table A7. SVMR hyperparameters for the non-polynomial kernel models; the hyperparameter C con-
trols the softness of the margin (the larger it is, the fewer points lie in the margin); the hyperparameter
ε specifies the width of the tube within which no penalty is associated in the training loss function
with points predicted within the distance of ε from the actual value; see online documentation at
www.scikitlearn.org for more details; the total number of non-polynomial kernel SVMR models is the
number of hives × the number of months × the number of INV categories × the number of DNV ×
the number of values in the C range × the number of values in the γ range × the number of values
in the ε range × the number of kernels = 2× 5× 4× 5× 14× 2× 9× 3 = 151,200. (See Table A5 for
the number of structural components in SVMRs).

Num Name Range/Value

1 C {1} ∪ {i + 5 | 0 ≤ i ≤ 25} ∪ {i + 10 | 30 ≤ i ≤ 90}; 14 values
2 γ {scale, auto}
3 ε {i + 0.05 | 0.05 ≤ i ≤ 0.45}; 9 values
4 kernel {linear, rbf, sigmoid}
5 cache_size 1000; this is just one value common to all models

Table A8. SVMR hyperparameters for the polynomial (poly) kernel models; the C, γ, ε ranges and
cache_size value are the same as for the non-poly kernel models in Table A7; see online documentation
at www.scikitlearn.org for more details; total number of polynomial kernel SVMR models is number
of hives × number of months × number of INV categories × number of DNV categories × number
of values in the C range × number of values in the γ range × number of values in the ε range ×
number of kernels × number of degree values = 2× 5× 4× 5× 14× 2× 9× 1× 4 = 201,600 (see
Table A5 for the numbers of structural components in SVMRs).

Num Name Range/Value

1 kernel poly; this is just one value common to all models
2 degree [2, 3, 4, 5]; 4 values

www.scikitlearn.org
www.scikitlearn.org
www.scikitlearn.org
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Table A9. (Pearson, p value) between AVGEMF(A), TEMP(T), and AVGEMF(A), HUMID(H) for
combined R45 and R411 data; Pearson’s, p values are rounded to two and four decimals, respectively;
months are in columns; monthly number of observations (N) are: 774 (5); 1361 (6); 1578 (7); 1422 (8);
1575 (9); the Supplementary Materials include the spreadsheet ModelCVFits.xlsx which contains,
under the tab “Correlations”, the tables of all Pearson’s of (EMR,INV) and (WEATHER,INV) and the
corresponding p values.

5 6 7 8 9

A,T (0.97, <0.0001) (0.96, <0.0001) (0.93, <0.0001) (0.97, <0.0001) (0.93, <0.0001)
A,H (−0.85, 0.0001) (−0.89, <0.0001) (−0.90, <0.0001) (−0.89, <0.0001) (−0.76, <0.0001)

Table A10. LR results with 70/30 train/test split; INV and DNV are in rows, months in columns; in
entry x; y, x = R2 for R45, y = R2 for R411 for column month; lowest and highest R2 values are
bolded; all reals are rounded two decimals.

INV,DNV/Month 5 6 7 8 9

TIME,CIN 0.16; 0.31 0.10; 0.31 0.33; 0.50 0.22; 0.30 0.51; 0.40
TIME,COUT 0.19; 0.41 0.11; 0.28 0.29; 0.46 0.17; 0.26 0.50; 0.42
TIME,COUTPIN 0.20; 0.38 0.14; 0.36 0.29; 0.46 0.21; 0.22 0.50; 0.38

WEATHER,CIN 0.18; 0.42 0.16; 0.55 0.34; 0.43 0.23; 0.40 0.49; 0.46
WEATHER,COUT 0.19; 0.53 0.19; 0.51 0.32; 0.47 0.18; 0.34 0.45; 0.44
WEATHER,COUTPIN 0.27; 0.58 0.21; 0.52 0.29; 0.40 0.29; 0.32 0.48; 0.42

EMR,CIN 0.15; 0.42 0.16; 0.47 0.31; 0.42 0.28; 0.43 0.49; 0.39
EMR,COUT 0.23; 0.56 0.18; 0.46 0.29; 0.47 0.22; 0.40 0.49; 0.47
EMR,COUTPIN 0.22; 0.51 0.17; 0.45 0.29; 0.41 0.32; 0.34 0.51; 0.39

ALL,CIN 0.28; 0.48 0.32; 0.60 0.37; 0.56 0.41; 0.48 0.57; 0.50
ALL,COUT 0.30; 0.64 0.23; 0.55 0.35; 0.57 0.23; 0.44 0.57; 0.54
ALL,COUTPIN 0.36; 0.66 0.28; 0.59 0.34; 0.49 0.37; 0.37 0.60; 0.48

Table A11. (MEAN,STD) of maximum R2 in top 30% of INV→SVMR models; minimum and maxi-
mum R2 means are bolded.

MONTH RBF SIGMOID LINEAR POLY AUTO SCALE

5 (0.537, 0.115) (0.514, 0.120) (0.542, 0.103) nan (0.542, 0.112) (0.519, 0.112)
6 (0.531, 0.102) (0.505, 0.104) (0.544, 0.081) nan (0.551, 0.090) (0.486, 0.094)
7 (0.536, 0.054) (0.540, 0.019) (0.555, 0.028) nan (0.547, 0.031) (0.538, 0.046)
8 (0.428, 0.028) (0.431, 0.038) (0.415, 0.039) nan (0.426, 0.038) (0.426, 0.033)
9 (0.594, 0.044) (0.609, 0.054) (0.630, 0.046) nan (0.605, 0.047) (0.614, 0.052)

Table A12. ALL→RGR→COUTPIN, RGR is specified in columns; in entry (x; y), x is the mean R2

for hive R45 and y is the mean R2 for R411; highest R2 values are bolded for each month and hive.

MONTH LR R45; R411 RFR R45; R411 SVMR R45; R411

5 0.36; 0.66 0.44; 0.72 0.39; 0.68
6 0.28; 0.59 0.46; 0.71 0.42; 0.67
7 0.34; 0.49 0.44; 0.63 0.40; 0.61
8 0.37; 0.37 0.52; 0.60 0.43; 0.49
9 0.60; 0.48 0.74; 0.70 0.69; 0.66
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Table A13. (MEAN, STD) of maximum R2 of ALL→RFR→COUTPIN in the hive-specific grid search
on computers OPC and PWE; computer IDs are names of columns 1,2; in cell is x; y|z; w, x, y are the
mean max R2 and its STD for hive R45, z, w are the mean max R2 and its STD for hive R411; reals are
rounded to two decimals; maximum and minimum R2 are bolded; ties broken arbitrarily.

MONTH OPC PWE

5 0.43; 0.04 0.71; 0.03 0.42; 0.05 0.71; 0.03
6 0.46; 0.03 0.70; 0.02 0.46; 0.03 0.70; 0.02
7 0.43; 0.03 0.62; 0.02 0.43; 0.02 0.61; 0.02
8 0.51; 0.03 0.59; 0.04 0.51; 0.04 0.59; 0.03
9 0.73; 0.01 0.70; 0.02 0.73; 0.01 0.70; 0.02

Table A14. (MEAN, STD) of maximum R2 of ALL→RFR→COUTPIN in the hive-specific grid search
on computers EDW and OGP; computer IDs are names of columns 1,2; in cell is x; y|z; w, x, y are the
mean max R2 and itsSTD for hive R45, z, w are the mean max R2 and its STD for hive R411; reals are
rounded to two decimals; maximum and minimum R2 are bolded; ties broken arbitrarily.

MONTH EDW OGP

5 0.42; 0.04 0.71; 0.02 0.42; 0.05 0.71; 0.03
6 0.46; 0.03 0.70; 0.02 0.46; 0.03 0.70; 0.02
7 0.43; 0.03 0.62; 0.02 0.43; 0.03 0.61; 0.02
8 0.51; 0.01 0.60; 0.04 0.51; 0.03 0.60; 0.04
9 0.73; 0.01 0.70; 0.02 0.73; 0.01 0.70; 0.02

Table A15. (MEAN, STD) of maximum R2 of ALL→SVMR→COUTPIN in the hive-specific grid
search on computers OPC and PWE; in cell is x; y|z; w, x, y are the mean max R2 and its STD for R45,
z, w are the mean max R2 and its STD for R411; reals are rounded to two decimals; maximum and
minimum R2 are bolded; ties broken arbitrarily.

MONTH OPC PWE

5 0.38; 0.05 0.66; 0.03 0.38; 0.05 0.66; 0.03
6 0.40; 0.05 0.40; 0.04 0.40; 0.04 0.40; 0.04
7 0.39; 0.02 0.60; 0.02 0.39; 0.03 0.60; 0.02
8 0.42; 0.03 0.49; 0.04 0.42; 0.04 0.49; 0.02
9 0.68; 0.02 0.66; 0.03 0.68; 0.02 0.65; 0.02

Table A16. Hive-specific grid search run times for INV→RGR→DNV{H, M}, each INV category on
each computer; RGR is RFR or SVMR; DNV, H (Hive) and M (Month) take on all possible values;
all reals are rounded to two decimal places; minimum and maximum run times are bolded for each
model and computer.

INV,DNV Computer Time (RFR; SVMR) (h)

TIME,DNV OPC 23.19; 25.17
TIME,DNV OGP 10.65; 22.31
TIME,DNV PWE 23.31; 25.88
TIME,DNV EDW 23.57; 26.67

WEATHER,DNV OPC 70.20; 192.41
WEATHER,DNV OGP 56.39; 158.38
WEATHER,DNV PWE 73.17; 178.38
WEATHER,DNV EDW 75.97; 182.41

EMR,DNV OPC 55.54; 97.80
EMR,DNV OGP 44.54; 63.00
EMR,DNV PWE 56.75; 89.59
EMR,DNV EDW 58.57; 91.12
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Table A16. Cont.

INV,DNV Computer Time (RFR; SVMR) (h)

ALL,DNV OPC 113.50; 58.40
ALL,DNV OGP 93.64; 47.58
ALL,DNV PWE 121.59; 56.10
ALL,DNV EDW 121.59; 51.12

Table A17. Hive-specific grid search run time for all RFR and SVMR models for all INV, DNV,
hives, months and computers; total model run times are the sums of the appropriate run times from
the columns in Table A16; for example, 80.72 = 23.19 + 10.65 + 23.31 + 23.57; reals are rounded to
two decimal places; minimum and maximum run times are bolded in each column.

INV,DNV RFR TIME (h) SVMR TIME (h)

TIME,DNV 80.72 100.03
WEATHER,DNV 275.73 711.58
EMR,DNV 215.40 341.51
ALL,DNV 450.32 213.20

TOTAL 1022.17 1366.32

Table A18. Model transfer grid search run time of INV→RGR→DNV models on PWE and EDW
computers; RGR is RFR or SVMR; RFR runs were executed on PWE and EDW; SVMR model transfer
runs on PWE; INV is specified in rows; DNV, H(Hive) and M(Month) take on all possible values; each
model was trained on R45 data and tested on R411 data and then trained on R411 data and tested on
R45; all reals are rounded to two decimals.

INV,DNV Computer Time (RFR; SVMR) (h)

TIME,DNV PWE 2.47; 5.47
TIME,DNV EDW 2.51; nan

WEATHER,DNV PWE 10.23; 47.10
WEATHER,DNV EDW 10.39; nan

EMR,DNV PWE 7.52; 15.82
EMR,DNV EDW 7.71; nan

ALL,DNV PWE 17.22; 15.41
ALL,DNV EDW 17.63; nan

Table A19. Total model transfer grid search run time of RFR and SVMR models for all INV, DNV,
hives and months; RFR time in each row is the mean of the corresponding RFR times on PWE and
EDW in Table A18; thus, 2.49 = (2.47 + 2.51)/2, 10.31 = (10.23 + 10.39)/2, etc.; TOTAL row is the sum
of the run time means in the columns; reals are rounded to two decimal places.

INV,DNV RFR TIME (h) SVMR TIME (h)

TIME,DNV 2.49 5.47
WEATHER,DNV 10.31 47.10
EMR,DNV 7.62 15.82
ALL,DNV 17.43 15.41

TOTAL 37.85 83.80
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Table A20. Power use of the computers OPC, PWE and EDW running hive-specific RFR and SVMR
grid searches with 10-fold cross validation and a 70/30 train/test split; reals in columns 2, 3 and 4 are
in kilowatt-hours (kW-h) from the Gardner Bender(TM) Power Meter PM3000 (no rounding); column
COMP is the cumulative power amount (CPA) of the computer by itself for 24 h; column COMP+RFR
is the CPA of the computer running our RFR software for 24 h; column COMP+SVMR contains
the CPA of the computer running our SVMR software for 24 h; reals in columns (COMP+RFR)/24,
(COMP+SVMR)/24 are the row values in (COMP + RFR) and (COMP+SVMR) divided by 24 and
rounded to two decimals; these power use rates are in kW-h/h; the CPAs and rates of only RFR
and SVMR can be estimated from the table as (COMP + RFR) − COMP, (COMP + SVMR) − COMP,
((COMP + RFR) − COMP)/24, ((COMP + SVMR) − COMP)/24; row MEAN contains the means of
the column values.

ID COMP COMP + RFR COMP + SVMR (COMP + RFR)/24 (COMP + SVMR)/24

OPC 0.833 1.549 1.491 0.06 0.06
PWE 1.690 1.992 2.227 0.08 0.09
EDW 0.949 2.306 1.769 0.10 0.07

MEAN1.157 1.949 1.829 0.08 0.07

Table A21. (MEAN, STD) of the maximum R2 of ALL→SVMR→COUTPIN in hive-specific grid
search on computers EDW and OGP; in cell x; y|z; w, x, y are the mean max R2 and its STD for R45,
z, w are the mean max R2 and its STD for R411; reals are rounded to two decimals; maximum and
minimum R2 are bolded; ties broken arbitrarily.

MONTH EDW OGP

5 0.39; 0.05 0.66; 0.03 0.38; 0.04 0.66; 0.02
6 0.66; 0.03 0.65; 0.02 0.65; 0.03 0.66; 0.03
7 0.38; 0.02 0.60; 0.02 0.38; 0.02 0.59; 0.01
8 0.41; 0.04 0.50; 0.05 0.42; 0.03 0.49; 0.03
9 0.68; 0.02 0.65; 0.02 0.68; 0.02 0.66; 0.02

Appendix A.2. Figures

Figure A1. Cont.
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Figure A1. INV bar plots of maximum R2 scores of INV→RGR→DNV{H, M}models; RGR is RFR
(top row) and SVMR (bottom row); Hive (H) is hive R45 (left column) and hive R411 (right column);
Month (M) is the x-axis; INV and DNV take on all possible values.

Figure A2. DNV bar plots of the maximum R2 scores of INV→RGR→DNV{H, M}models; RGR is
RFR (top row) and SVMR (bottom row); Hive (H) is hive R45 (left column) and R411 (right column);
Month (M) is the x-axis; INV and DNV take on all possible values.
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Figure A3. Mean value (dots) and corresponding standard deviation (vertical lines) of RFR hyperpa-
rameters (i.e., number of trees (NT)—blue and maximum tree depth—orange), of the top 30% (i.e.,
ranked by R2) of RFR models found with 10-fold cross validation and 70/30 train/test split; upper
and lower bounds of the number of trees—light red; upper and lower bounds of the maximum tree
depth (MTD)—dark red; ≈ denotes removal of unused sub-ranges on the y-axis for compactness.

(a) (b)

Figure A4. (a) Mean value (dots) and corresponding standard deviations (vertical lines) of SVMR
hyperparameters (i.e., C—blue, epsilon—orange) of the top 30% (ranked by R2) of SVMR models;
upper and lower bounds of C—light red; bounds of epsilon—dark red; (b) frequency of rbf, sigmoid,
linear, poly kernels (top); auto and scale for gamma hyperparameter (bottom).
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(a) (b)

(c) (d)

Figure A5. Mean of the maximum R2 of INV→RFR→ DNV models (a,b) and INV→SVMR→DNV
models (c,d) trained on R45 data and tested on R411 (a,c) and trained on R411 data and tested on R45
data (b,d).

Figure A6. Scatter plot of CIN (cubic root of incoming bee motions) and quadratic regression for hive
R411 for July.
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Figure A7. RFR and SVMR model transfer maximum R2 score curves; RFR—(top row); SVMR—
(bottom row); (left column): training on R45 data, testing on R411 data; (right column): training on
R411 data, testing on R45 data.
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