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Abstract: The modal gain equalization (MGE) of few-mode fiber amplifiers (FMFAs) ensures the
stability of signal transmission. MGE mainly relies on the multi-step refractive index (RI) and doping
profile of few-mode erbium-doped fibers (FM-EDFs). However, complex RI and doping profiles lead
to uncontrollable residual stress variations in fiber fabrication. Variable residual stress apparently
affects MGE due to its impacts on the RI. So, this paper focuses on the residual stress effects on MGE.
The residual stress distributions of passive and active FMFs were measured using a self-constructed
residual stress test configuration. As the erbium doping concentration increased, the residual stress of
the fiber core decreased, and the residual stress of the active fibers was two orders of magnitude lower
than that of the passive fiber. Compared with the passive FMF and the FM-EDFs, the residual stress
of the fiber core completely transformed from tensile stress to compressive stress. This transformation
led to an obvious smooth RI curve variation. The measurement values were analyzed with FMFA
theory, and the results show that the differential modal gain of the FMFA increased from 0.96 to
1.67 dB as the residual stress decreased from 4.86 to 0.01 MPa.

Keywords: modal gain equalization; few-mode fiber amplifier; fiber residual stress

1. Introduction

Space division multiplexing (SDM) technology is considered a promising approach to
break through the limit of single-mode fiber (SMF) communication system capacity [1,2].
As one of the implementation schemes of SDM technology, few-mode fiber amplifiers
(FMFAs) are required to have a differential modal gain (DMG) between all amplified signal
modes as small as possible, as a large DMG can increase the outage probability of the
optical communication system [3,4].

Modal gain equalization (MGE) is closely related to the fiber refractive index (RI) and
doping profiles of few-mode erbium-doped fibers (FM-EDFs). Conventional FM-EDFs
with step refractive index (RI) profile and uniform doping always have high DMG (about
5–10 dB) [5,6], which cannot be used in communication systems. At present, in order to
obtain an FMFA with a low DMG, various FM-EDFs with complex RI and doping profiles
have been proposed and experimented with, such as those having ring-core RI profile
and uniform doping [7], ring-core RI profile and layered doping [8], layered RI profile
and layered doping [9], and air-hole-assisted layered/step RI profile and uniform/layered
doping [10,11]. However, complex RI and doping profiles always lead to uncontrollable
residual stress variations in fiber fabrication, which affects MGE due to residual stress
being able to affect the fiber RI [12]. It is necessary to specifically study the effect of fiber
residual stress on the MGE of FMFAs. The most basic way is to develop a configuration
that can accurately measure fiber residual stress. At present, the scientific methods that
can measure fiber residual stress include the half-shade method [13], the photoelastic
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tomography method [14], the two-wave-plate compensator method [15], and the Brace–
Köhler compensator (BKC) method [16]. Among them, the BKC method is the most suitable
technique for the actual measurement of fiber residual stress, because it can accurately
measure lower optical retardation (caused by fibers) and its operation process is simple.
Since its development, research on the effect of fiber residual stress on fiber performance
has gradually developed. Raine et al. reported the axial stress profiles of UV-irradiated
fibers, providing diagnostic information and the direct observation of UV-written grading
structures [13]. In 2013, Feng et al. reported the effect of fiber residual stress changes caused
by fiber cutting and arc fusion on the RI of large-mode-area (LMA) erbium-doped fibers
(EDFs) and LMA ytterbium-doped fibers (YDFs) [17,18]. In 2016, Wang et al. reported the
residual stress changes caused by weak arc discharge in single-mode fibers, and explored
the influence of these changes on the filtering performance of long-period fiber grating [19].
In 2019, Anuszkiewicz et al. reported the effect of fiber residual stress of nanostructure-core
fused silica fibers on the fiber RI and revealed that the residual stress of the fiber core was
tensile stress [20]. In 2022, by measuring the residual stress in a single FBG fiber/epoxy
composite system, Khadka et al. provided a new detection method for the fabrication of
polymer systems and polymer matrix composites [21,22]. It can be found from the above
research studies that fiber residual stress has an important influence on the performance of
fiber systems.

In this work, the fiber residual stress effects on the MGE of FMFAs was studied. Using
a self-constructed residual stress test configuration based on the BKC method, the residual
stress distributions of passive and active few-mode fibers (FMFs) were measured. The
increase in erbium doping concentration (EDC) caused a residual stress decrease in the fiber
core, and the residual stress of the active fiber was two orders of magnitude lower than
that of the passive fiber. Compared with the passive FMF and the FM-EDFs, the residual
stress of the fiber core completely transformed from tensile stress to compressive stress.
This transformation led to an obvious, smooth curve transition between the core layer RIs.
The measurement values were analyzed with FMFA theory, and the results show that the
DMG of the FMFA increased from 0.96 to 1.67 dB as the residual stress in the FM-EDF core
decreased from 4.86 to 0.01 MPa, which reveals the relationship between residual stress
and the MGE of FMFAs.

2. Principle

The residual stress test configuration was independently developed based on the BKC
method, and the basic principle of the BKC method is analyzed and described in detail in
reference [23]. The key point of this method is to measure the optical retardation generated
by the polarized beam passing through the fiber, and the residual stress distribution of the
fiber cross section can be calculated after the optical retardation distribution is processed
using the inverse Abel transform [24] and computed tomography, as shown in Figure 1.
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According to the stress-optic law, residual stress can change the fiber RI, and the
specific expression is

n = n0 + Cσ (1)

where n0 is the isotropic fiber RI; C is the elastic optical constant; σ is the residual stress,
which can be decomposed into three stress components (σx, σy, and σz); and n is the
anisotropic fiber RI.

Next, we solve the fiber mode field distribution under the changed fiber RI, n. An
optical fiber is a circularly symmetric regular optical waveguide, and its RI has invariance
on the z-axis, that is,

n(x, y, z) = n(x, y) (2)

In the calculation of circular uniform optical waveguide, the optical vector satisfies
the following wave equation:

[∇2 + (k2n2 − β2)](Et + Ez) = 0 (3)

where Et and Ez are the transverse and longitudinal components of the electric field,
respectively. Moreover, Et also satisfies the wave equation and is expressed as

[∇2
t + (k2n2 − β2)]Et = 0 (4)

In scalar field analysis, we adopt the rectangular coordinate system, and Et = Ex + Ey,
Since Ex or Ey in linear polarization mode is 0, let Ex = 0 below. Then, by considering the
circular symmetry of fiber waveguide and separating Ey,

Ey(ρ, ϕ) = ejmϕEy(ρ)ey m = 0,±1,±2, · · · (5)

Meanwhile, Ey(ρ) satisfies the Bessel equation, i.e.,

d2Ey

dρ2 +
1
ρ

dEy

dρ
+

(
U2

a2 −
m2

ρ2

)
Ey = 0 m = 0,±1,±2, · · · (6)

where U2 =
(
k2n2 − β2)a2. If U2 < 0, W2 = −U2. The solution of the above Bessel

equation is

Ey =

{
AJm(Uρ/a) + BNm(Uρ/a) kn > β
AIm(Uρ/a) + BKm(Uρ/a) kn < β

(7)

By solving the Maxwell equation, longitudinal field Ez is obtained as follows:

Ez =


j
β

[
A
(

sin ϕ U
a J′m + jm cos ϕ

ρ Jm

)
+ B

(
sin ϕ U

a N′m + jm cos ϕ
ρ Nm

)]
kn > β

j
β

[
A
(

sin ϕ W
a I′m + jm cos ϕ

ρ Im

)
+ B

(
sin ϕ W

a K′m + jm cos ϕ
ρ Km

)]
kn < β

(8)

Equation (8) is the field distribution in the linear polarization mode. It can be seen
that the fiber RI is influenced by residual stress, resulting in the change in the mode field
distribution. According to the theory of FMFAs, the mode field distribution affects the gain
performance of the amplifier. The gain performance of the FMFA is mainly related to the
mode field distributions of signal light and pump light, and the doped particle distribution.
It can be expressed as follows:

ηjk =
x

S
Nt(ρ, ϕ)is,j(ρ, ϕ)ip,k(ρ, ϕ)ρdρdϕ (9)

where ηjk is the overlapping integral factor of signal mode j, pump mode k, and doped
particle distribution Nt on the cross section of the fiber, which determines the DMG; and
is,j and ip,k are the mode intensity distributions of signal light and pump light on the fiber
cross section, respectively. It can be seen that as Nt and ip,k are determined, is,j is the only
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factor that can affect the DMG. Moreover, is,j is closely related to the mode field distribution
determined by refractive index n. Therefore, through the above calculations, the theoretical
relationship between the fiber residual stress and the MGE of FMFAs is established. As for
the solving of the DMG, it is analyzed specifically in our previous published work [9].

3. Experimental Measurement

The experimental structure of the residual stress test configuration is shown in Figure 2.
The fiber was placed in a glass concave matching dish with two micrometer holes on both
sides, which prevented fiber offset. The glass concave matching dish is shown in the
circular illustration in Figure 2.
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Equation (8) is the field distribution in the linear polarization mode. It can be seen 
that the fiber RI is influenced by residual stress, resulting in the change in the mode field 
distribution. According to the theory of FMFAs, the mode field distribution affects the 
gain performance of the amplifier. The gain performance of the FMFA is mainly related 
to the mode field distributions of signal light and pump light, and the doped particle dis-
tribution. It can be expressed as follows: 
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where ηjk is the overlapping integral factor of signal mode j, pump mode k, and doped 
particle distribution Nt on the cross section of the fiber, which determines the DMG; and 
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Figure 2. The self-constructed residual stress test configuration.

First of all, it was necessary to verify the measuring accuracy of the test configuration.
The recognized method is comparing the residual stress measurement results of Corning
single-mode fibers (SMF-28) with the published scientific work [16]. The representative
references are the results published in Reference [16]. The residual stress distribution
is shown in Figure 3. The measured residual stress distribution of Corning SMF-28 in
this work is shown in Figure 4. Through comparison, the measured residual stress dis-
tribution of Corning SMF-28 in this work is similar to that of Reference [16], whether in
one-dimensional or two-dimensional distributions. Moreover, at the outer edge of the fiber
cladding, the residual stress reference value and the measured value are 9.74 and 9.65 MPa,
respectively, showing a small difference. Therefore, according to the above verification, the
measurement results of this residual stress test configuration are reliable.

Next, the test configuration was used to measure the residual stress of a series of
home-made FMFs. These FMFs were produced according to the design of FM-EDFs in
our previous work [9], including passive FMFs and FM-EDFs with different EDC. Here,
different EDC refers to the amplification of the EDC ratio of each core layer [9] with
different multiples to dope. Moreover, two kinds of FM-EDFs with low and high EDCs
were successfully trial-produced. By measuring the residual stress distributions of these
fibers, the influence of residual stress on the fiber RI was studied.
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4. Result
4.1. Passive FMF

The cross-section, RI profile, and one-dimensional and two-dimensional residual
stress distributions of the passive FMF are shown in Figure 5. The passive FMF was a
circular, single-cladding, trench-assisted, three-layered-core structure, as shown in Figure 5a.
Figure 5b shows the RI profile, which was basically consistent with the design, and the
RI transition of each core layer was broken. It can be seen in Figure 5c that the maximum
residual stress value of the passive FMF core was 4.86 MPa around ±6.2 µm. Moreover,
the residual stress in all core positions was greater than 0 MPa, indicating that the overall
property of the FMF core residual stress was tensile stress (if the residual stress value
is greater than 0 MPa, it is tensile stress; otherwise, it is compressive stress [23]). This
tensile stress was mainly caused by the layered fiber core. In the process of the mechanical
stretching of the FMF preform, the mutual adsorption and adhesion effects between multi-
layered cores lead to tensile stress. As a comparison, that of the single-mode fiber core
without layers was compressive stress, as shown in Figure 4a. Figure 5d shows the two-
dimensional residual stress distribution on the cross section of the passive FMF.
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4.2. FM-EDF-LAER

The cross-section, RI profile, spontaneous emission spectrum, and one-dimensional
and two-dimensional residual stress distributions of the FM-EDF with a low-amplification
erbium ratio (FM-EDF-LAER) are shown in Figure 6. The FM-EDF-LAER was a circu-
lar, single-cladding, trench-assisted, three-layered-core structure, as shown in Figure 6a.
Figure 6b shows the RI profile; the RI flatness of each core layer decreased, showing a
smooth curve transition trend between each core layer. In addition, in order to prove and
distinguish the characteristic of the low-EDC FM-EDF-LAER, its spontaneous emission
spectrum is shown in Figure 6c. When the selected FM-EDF-LAER length was 20 cm
and the pump power was 400 mW, the spontaneous emission power (SEP) of the fiber
in the wavelength range of 1528~1533 nm was about −55.76 dBm. Figure 6d,e show the
one-dimensional and two-dimensional residual stress distributions of the FM-EDF-LAER,
respectively. The maximum residual stress value of the FM-EDF-LAER core was 1.39 MPa
around±6.3 µm. The residual stress of the FM-EDF-LAER core showed a whole downward
trend compared with that of the passive FMF core, and the residual stress in some core
positions was less than 0 MPa, indicating that the residual stress in some core positions
changed from tensile stress to compressive stress. This property change also conforms to
the basic law of erbium particle doping in the core. Adding more components of particle
materials to the limited core space causes the particles to squeeze each other, thus causing
the residual stress in some core positions to decrease into compressive stress. This compres-
sive stress led to the reduction in the RI flatness of some layers and to the transition of each
layered core to show a smooth curve.
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LAER.

4.3. FM-EDF-HAER

The cross-section, RI profile, spontaneous emission spectrum, and one-dimensional
and two-dimensional residual stress distributions of the FM-EDF with a high-amplification
erbium ratio (FM-EDF-HAER) are shown in Figure 7. The FM-EDF-HAER was an octago-
nal, double-cladding, trench-assisted, three-layered-core structure, as shown in Figure 7a.
This octagonal outer cladding was conducive to the full utilization of pump light in the
amplification experiment. Figure 7b shows the RI profile; the flatness of each core layer
RI decreased more significantly, showing a smoother curve transition between each core
layer than FM-EDF-LAER. The spontaneous emission spectrum of the FM-EDF-HAER is
shown in Figure 7c. When the selected FM-EDF-HAER length was 20 cm and the pump
power was 400 mW, the SEP of the fiber in the wavelength range of 1528~1533 nm was
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about −46.70 dBm, indicating that this fiber had a higher EDC than the FM-EDF-LAER.
Figure 7d,e show the one-dimensional and two-dimensional residual stress distributions of
the FM-EDF-HAER, respectively. The maximum residual stress value of the FM-EDF-HAER
core was 0.01 MPa around ±6.3 µm. Compared with the case of the FM-EDF-LAER, the
whole residual stress of the FM-EDF-HAER core was smaller and was less than 0.01 MPa,
indicating that the residual stress in almost all positions of the FM-EDF-HAER core was
compressive stress. The higher compressive stress made the materials of each core layer
squeeze each other more significantly, resulting in lower flatness and smoother curve
transition of the layered RI.
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5. Discussion

We analyzed the RI profiles of the above different fibers with FMFA theory [9] to
investigate the MGE characteristics as follows:

(1) We assumed that there was an ideal FM-EDF-HAER, but with residual stress distri-
bution and RI profile being consistent with those of the passive FMF, and marked it
as the ideal fiber. In this case, the calculated modal gains and DMG as a function of
wavelength are shown in Figure 8a. In the wavelength range of 1530~1565 nm, the
DMG reached the maximum of 0.96 dB at 1565 nm, and the maximum DMG appeared
between LP02 and LP01.

(2) The experimental RI profile of the FM-EDF-LAER was analyzed with FMFA theory to
calculate the DMG. The corresponding results are shown in Figure 8b. Since the fiber
had been doped with a lower EDC, the maximum signal modal gain was 18.35 dB,
which was lower than the maximum modal gain (about 20.03 dB) of the ideal fiber.
In the C-band range, the DMG reached the maximum of 1.34 dB at 1565 nm, and the
maximum DMG appeared between LP02 and LP11.

(3) The experimental RI profile of the FM-EDF-HAER was analyzed with FMFA theory
to calculate the DMG, and the corresponding results are shown in Figure 8c. The
maximum signal modal gain of this fiber was 20.39 dB. Similarly, as the wavelength
continued to increase, the DMG at 1565 nm reached a maximum of 1.67 dB. Moreover,
the maximum DMG appeared between LP11 and LP21.
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In conclusion, these residual stress changes not only affected the order arrangement
of each modal gain in FM-EDFs but also led to a larger DMG, which was mainly caused
by the influence of fiber residual stress on the RI. In this work, it was also found, for the
first time, that with the increase in compressive stress, the transition of the layered RI
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showed a smooth curve trend, which had a significant impact on MGE. This discovery
provides a new method for the reduction in MGE in the future and is conducive to the
further improvement of communication system capacity. Finally, the influence of the above
FM-EDF residual stress on the MGE of FMFAs is reported in Table 1. With the decrease in
the core residual stress from 4.86 to 0.01 MPa, the DMG of the FMFA increased from 0.96 to
1.67 dB.

Table 1. Influence of fiber residual stress on the MGE of FMFAs.

Fiber Maximum SEP
(dBm)

Peak Residual Stress
in Core (MPa)

Property of Residual
Stress in Core RI Change DMG (dB)

Ideal fiber −46.70 4.86 Tensile stress Broken layer
transition 0.96

FM-EDF-LAER −55.76 1.39 Partial transformation
to compressive stress

Gradually smooth
curve layer
transition

1.34

FM-EDF-HAER −46.70 0.01 Compressive stress Totally smooth curve
layer transition 1.67

6. Conclusions

The presence and modification of residual stress inherently affects existing fibers and
devices. In this work, the residual stress effects on the MGE of FMFAs was studied. Using
a self-constructed residual stress test configuration based on the BKC method, the residual
stress distributions of passive and active FMFs were measured. The results show that the
increase in EDC caused the residual stress of the fiber core to decrease, and the residual
stress of the active fibers was two orders of magnitude lower than that of the passive fiber.
Compared with the passive FMF and the FM-EDFs, the residual stress of the core completely
transformed from tensile stress to compressive stress. This transformation led to an obvious,
smooth RI curve variation. Finally, the measurement values were analyzed with FMFA
theory, and the results show that the DMG of the FMFA increased from 0.96 to 1.67 dB as
the residual stress decreased from 4.86 to 0.01 MPa. This work is of great significance to
the expansion of the research field of residual stress and reveals the relationship between
residual stress and the MGE of FMFAs.
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