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Abstract: Multiple-input multiple-output (MIMO) radars enable better estimation accuracy with
improved resolution in contrast to traditional radar systems; thus, this field has attracted attention
in recent years from researchers, funding agencies, and practitioners. The objective of this work
is to estimate the direction of arrival of targets for co-located MIMO radars by proposing a novel
approach called flower pollination. This approach is simple in concept, easy to implement and
has the capability of solving complex optimization problems. The received data from the far field
located targets are initially passed through the matched filter to enhance the signal-to-noise ratio,
and then the fitness function is optimized by incorporating the concept of virtual or extended array
manifold vectors of the system. The proposed approach outperforms other algorithms mentioned in
the literature by utilizing statistical tools for fitness, root mean square error, cumulative distribution
function, histograms, and box plots.

Keywords: direction of arrival estimation; flower pollination algorithm; co-located radar; MIMO systems

1. Introduction

5G can be defined as next-generation emerging technology that increases the system’s
capacity and has high data rates with improved quality of service [1,2]. The design and
development of an antenna guarantee the successful operation of any 5G device. Multiple-
input multiple-output (MIMO) systems are one of the most indispensable technologies used
in 5G communication systems [3–5]. In recent years, MIMO radar systems have been the
focus of research for practitioners, researchers, and funding agencies due to their enhanced
capabilities of high resolution and improved estimation accuracy, as compared to the
traditional phased array radar systems [6]. The research in the field of MIMO radar systems
can broadly be divided into two cases, i.e., when the antennas in transmitters and receivers
are widely separated, and in the second case, when the antennas in both transmitters and
receivers are placed close to each other [7]. The second case has an obvious advantage over
the first one, as it receives the reflected signals in the same target aspect, thus allowing
a simple target model to be adopted [8]. Based on this, if the closely spaced antennas
of the transmitter and receiver are placed far away from each other, then the system is
said to be a bistatic MIMO system. Conversely, the system is referred to as monostatic or
collocated if the receiver and the transmitter are placed close to each other, meaning that
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the direction of arrival (DOA) and direction of departure (DOD) are the same [9]. Several
researchers have attempted to address the issue of DOA estimation for the co-located
MIMO radar systems [10,11]. A discrete time Fourier transform method is exploited in [12]
to estimate the DOA by sampling the received signals in the spatial domain; however, the
resolution issues of this approach are limited due to the Rayleigh criterion. To overcome this
issue, subspace-based approaches called super resolution methods are proposed in [13–15].
These methods work on the received signals’ covariance matrices by dividing the space
into two subspaces called the signal subspace and noise subspace. The main issue with
these techniques is their computational complexity, as they require a large number of
snapshots. To reduce their computational complexity, compressed sensing-based methods
are proposed in [16,17] that require a lower number of snapshots by exploiting the target
sparsity in the spatial domain. In general, the compressive sensing methods are classified
into greedy and norm-based methods, such as orthogonal matching pursuits (OMP) and
stagewise OMP [18]. Furthermore, sparse Bayesian learning (SBL)-based approaches are
also proposed using the prior assumption of sparse signals and can achieve excellent results
at a relatively high computational cost [19]. In [20], another super resolution method is
proposed for the DOA estimation of fast-moving targets that only uses a single snapshot.
This method utilized the concept of virtual array geometries and achieved better results as
compared to the ones discussed in [18,19,21]. However, it needs further improvement in
estimation accuracy and computational complexity.

In this paper, DOA estimation is carried out by proposing a novel approach called the
flower pollination algorithm (FPA). This approach is simple in concept, easy to implement,
and has the capability of solving complex optimization problems [22,23]. The received
data from the far field located targets are initially passed through the matched filter to
enhance the signal-to-noise ratio (SNR), and then the fitness function is optimized by
incorporating the concept of virtual or extended array manifold vectors of the system.
The proposed approach outperforms other algorithms mentioned in the literature [18–21],
by utilizing statistical tools for fitness, root mean square error, cumulative distribution
function, histograms, and box plots. All the simulations are carried out in MATLAB.

The following list details the salient features of this work:

• FPA is designed and implemented for the first time for DOA estimation with a
monostatic/co-located MIMO radar system.

• A novel fitness function based on extended array manifold vectors is developed for
the optimization of FPA.

• For different scenarios, the design scheme is validated.
• The scheme’s correctness is observed for very small deviations from the reference values.
• Different statistical performances, such as RMSE, box plots, CDF and histograms, are

used to confirm the reliability, consistency and robustness of the proposed approach.

The overall presentation of the remaining work is managed as follows: the first part
is dedicated to the introduction, which is followed by the system model in Section 2. The
proposed methodology is discussed in Section 3, while the results and discussion are
presented in Section 4. Section 5 summarizes the work, along with some future directions
in the research area of DOA estimation.

2. System Model

In this section, a system model is developed for DOA estimation with a co-located or
monostatic MIMO radar system. The transmitter (Tx) and the receiver (Rx) have N and M
antenna sensors, respectively. The Tx and Rx are placed close enough to ensure that the
DOD and DOA of the system with respect to the targets are the same, as shown in Figure 1.
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Figure 1. Co-Located Radar System.

The inter-element spacings in Tx and Rx antennas are kept as L/2. The Tx of the
collocated MIMO radar transmits orthogonal signals that can be given for one pulse
duration T [20] as

T∫
0

Sn1(t)S
H
n2
(t)dt = δ(n1 − n2) (1)

where δ(n1 − n2) = 1 for n1 = n2 and zero otherwise. It is supposed that the transmitted
signals are reflected back from Q sources in space with different DOAs and are received by
the Rx of the same collocated MIMO radar. Hence, the signal received by the m-th antenna
in the Rx is represented as

ym(t) =
Q

∑
q=1

N

∑
n=1

Sn(t)ej(Kd(n−1) sinψq) αqej(Kd(m−1) sinθq + ξm(t), where m = 1, 2, . . . , M. (2)

where ψq and θq represent the DOD and DOA, respectively, which are equal for the
collocated MIMO radar. Similarly, K = 2π/λ is the propagation constant and αq is the
reflection coefficient, while ξm is the AWGN added at the m-th Rx antenna that has unit
variance and a zero mean. Once the signal is received, it is further fed to the matched filter
to improve the SNR, whose impulse response for one pulse T is hn(t) = S∗n(T− t). The
response of the m-th and n-th antenna in the Rx and Tx, respectively, for Q targets in space
can be given as

ym,n(t) =
Q

∑
q=1

T∫
0

SH
n (t)Sn(t)ejK(n−1)d sinψq αqejK(m−1)d sinθq dt +

T∫
0

SH
n (t)ξm(t)dt (3)

When we incorporate Equation (1) into Equation (3), we can obtain the following equation:

ym,n(t) =
Q

∑
q=1

ejK(n−1)d sinψq αqejK(m−1)d sinθq + ξm,n (4)

where ξm,n =
T∫
0

SH
n (t)ξm(t)dt for a single snapshot.
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In its extended form, Equation (4) can be given as follows:

ym,n =
Q

∑
q=1

αqgn(ψq)hm(θq) + ξm,n (5)

where gn(ψq) = ejK(n−1) sinψq and hm(θq) = ejK(m−1) sinθq for n = 1, 2, . . . N and
m = 1,2,. . . , M.

The AMV g and h for the target located in the qth direction with respect to Tx and Rx,
can be given as

g(ψq) = [g1(ψq), g2(ψq), . . . , gN(ψq)]
H (6)

and
h(θq) = [h1(θq), h2(θq), . . . , hM(θq)]

H (7)

Now, with the signal received at the output of the matched filter for the (m,n)th

combination of antennas, the following equation can be used:

ym,n =
Q

∑
q=1

αqgn(ψq)hm(θq) + ξm,n (8)

The response of the m-th Rx antenna for the entire Tx array can be given as follows:

ym =
Q

∑
q=1

αqhm(θq)g(ψq) + ξm (9)

For the response of the entire Rx array, the concept of extended array manifold vectors
(EAMV) is used, which increases the dimension of our observed vector, i.e.,

y =
Q

∑
q=1

αqh(θq)⊗ g(ψq) + ξ (10)

where ⊗ is the Kronekar product. Equation (10) can be given in vector form as follows:

y = Bβ+ ξ (11)

where B = [h(ψ1)⊗ g(θ1), h(ψ2)⊗ g(θ2), . . . , h(ψQ)⊗ g(θQ)] and β = [α1,α1, . . . , αQ].
For co-located MIMO radars, the DOD (ψ) and DOA (θ) are equal, so the problem at

hand is to precisely and efficiently estimate the unknown θq for q = 1, 2, . . . , Q.

3. Proposed Methodology

Xin-She Yang, in 2012, was inspired by the pollination process in flowers and devel-
oped an efficient algorithm called the flower pollination algorithm (FPA) [24]. Due to its
ease of implementation and capabilities of solving complex optimization problems, the
FPA attracted scientists and engineers from different fields of science and engineering,
such as control system engineering [25], wireless networks [26], power systems [27], image
processing [28], clustering and classification [29], computer gaming [30] and electrical
systems [31].

In this algorithm, the concept of reproduction of new flowers in flowering plants based
on the pollination process is introduced, consisting of two types, namely biotic (global
pollination) and abiotic (local pollination). In both types, the pollen of one flower meets
pollen from another flower that may belong to the same plant or another plant that belongs
to the same species. As a result, fruitful fertilization can take place in this algorithm. The
pollinators or carriers of pollen are different in both processes, i.e., insects and birds take
part in the biotic pollination process, while wind or simple diffusion acts as pollinators
in the abiotic process. In nature, the biotic process takes place more often than the other



Sensors 2023, 23, 2550 5 of 15

process. Flower constancy also plays a major role in the pollination process, due to the fact
that pollinators restrict themselves to the plants of a certain species [32]. The global and
local pollinations in this algorithm are given as

xt+1
i = xt

i + L(xt
i − gbest) (12)

and
xt+1

i = xt
i + ε(x

t
j − xt

k) (13)

In these equations, L denotes the Levy flights, which determines the pollination
strength and is always greater than 0 and ε denotes the uniform distributions, respectively.

In this work, we have designed and exploited the FPA for the estimation of the DOA
in a co-located MIMO radar. In this regard, the flow diagram of FPA is shown in Figure 2,
while its steps in the form of a pseudo code are given below. The overall graphical abstract
of the entire work is shown in Figure 3.
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Step1: Initialization. A random population of Np flowers/plants/pollens is generated.
Each member of this population has as many entries as there are decision variables, i.e., the
number of DOA estimations of the targets. The j-th member representation of the FPA is
given as

F̂j =
(

f1 f2 · · · fNp

)H
=
(
θ̂1 θ̂2 · · · θ̂Np

)
j
H where θ̂ =

[
θ̂1, θ̂2, · · · , θ̂Q

]
(14)

The constraints associated with the underlying problem are as follows:
θ ∈ R : −90◦ ≤ θq ≤ 90◦ where q = 1, 2, 3, . . . , Q. Further settings of
the FPA parameters, such as the population size, the number of iterations and the limit for
probability switching, are set.

Step2: Fitness Evaluation. The flower members of the population F̂j are evaluated
one by one by the fitness function using the mean square error (MSE) concept, in which
both the responses (desired and estimated) are based on EAM vectors and are ranked
accordingly, i.e.,

f ε = E
(∣∣Bβ-B̂β

∣∣2) (15)
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In Equation (15), the array manifold matrix B and β are defined in Equation (11), where

B̂ = [h(ψ̂1)⊗ g(θ̂1), h(ψ̂2)⊗ g(θ̂2), . . . , h(ψ̂Q)⊗ g(θ̂Q)] (16)

Step3: The initial best member (solution) g* is obtained.
Step4: The limit for the probability switch (PSW) is defined as (0,1).
Step5: Fitness values of all Np members/flowers/solutions are computed.
Step6: If rand is less than PSW, then
Step7: A step vector L of dimension d (while obeying the Levy distribution) is drawn.
Step8: Global pollination is carried out using Equation (12).
Step9: A uniform distribution ε ∈ [0, 1] is drawn.
Step10: Among all the solutions, j and k are chosen randomly.
Step11: Local pollination is carried out using Equation (13).
Step12: A new best solution is evaluated.
Step13: If the evaluated new solution is less than g*,
Step14: xt = xt+1

Step15: The current best solution g* is found within all xt
i .

Step16: The best solution and its fitness are stored as the global best solution for
each run.

Step17: Steps 1–16 are performed multiple times to obtain a large data set for
reliability purposes.

Step18: The fitness function given in Equation (15) and the RMSE given in Equation (17)
are used as performance metrics for the proposed scheme.

RMSE =

√√√√√Runs
∑

s=1
||
(
θs − θ̂s

)
||2

NE
, NE being number of elements in θ (17)

4. Results and Discussion

In this section, several simulations are carried out to validate the performance and
reliability of the proposed flower pollination algorithm for the DOA estimation of targets
located in the Fraunhoper zone, with respect to the Rx of a co-located MIMO radar system.
The Tx and Rx of the co-located MIMO radar system are equipped with uniform linear
arrays with N and M antennas, respectively. This section is mainly divided into two parts;
in the first part, the overall performance of FPA is analyzed for different scenarios based on
a different number of targets. A comparison with the state-of-the-art algorithms [18–21]
is carried out in the second part. Initially, all the received signals at the Rx side of the
monostatic MIMO radar are passed through a matched filter to improve the SNR, and
then the concept of extended array manifold (EAM) vectors is used to optimize the fitness
function defined in Equation (15). The inter-element distance between any two adjacent
antennas is taken to be half of the wavelength on both the Tx and Rx sides. Throughout
the simulations, the values of the reflection coefficients are considered as unity. All of the
desired and the estimated vectors of DOAs are in degrees. The proposed scheme (FPA)
requires a single snapshot to optimize the fitness function. The parameter settings of the
proposed FPA are given in Table 1. All the results are taken from 100 independent trials of
the proposed algorithm. The system specifications are shown in Table 2.

Table 1. Parameter Settings of FPA.

S.No. Name Specification

1. Population Size 10 members
2. Probability Switch (PSW) 0.8
3. Number of Iterations 2000
4. Lower Bound −90◦

5. Upper Bound 90◦
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Table 2. System Specifications.

S.No. Name Specification

1. Operating System Windows 10 Enterprise, 64 bit
2. RAM 32 GB
3. Processor Intel(R) Core (TM) i7-7820HQ CPU @ 2.90 GHz 2.90 GHz
4. Software MATLAB R2022b

Part 1: In this part, DOAs are estimated for two sources, three sources and four sources.
The analysis of the data is carried out in two different scenarios, that is, the different number
of targets or sources for the same level of noise, as shown in Figures 4–7, and the same
number of targets for different levels of SNR, as shown in Figures 8–11. In the first scenario,
four different cases were taken into account i.e., the 0 dB noise case, 5 dB noise case, 10 dB0
dB noise case and 15 dB noise case. The best fitness values obtained in 100 independent
runs of the proposed algorithm FPA are shown with different statistical tools, such as CDF,
box plots and histograms. This work presents only the 0 dB noise and 15 dB noise cases,
which are shown for the first scenario in Figures 4–7, but other graphs could also have been
provided if desired. In the given figures, the 2s, 3s and 4s denote two sources, three sources
and four sources, respectively. Figures 4–7 show that the fitness value of two sources is less
than the fitness value of three sources. In addition, the fitness value of three sources is less
than the fitness value of four sources. It is because when the number of unknown values
increases, the problem becomes more difficult; thus, the performance of the algorithm
decreases slightly.
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For the second scenario, the same number of sources as the first scenario is taken into
account, i.e., two sources, three sources and four sources. A different noise level is added to
each of them in turn and in steps, i.e., first, two sources are considered and initially, the 0 dB
noise is added to these two sources and the data are obtained for 100 runs of the proposed
scheme FPA. Next, each set of data is obtained for 100 independent runs of the same proposed
algorithm (FPA) for 5 dB, 10 dB, and 15 dB noise levels added to the same two sources,
respectively. The same is carried out with the three sources and four sources cases. Table 3
shows the best estimated DOAs and their RMSE with different noise levels for two sources.
Table 4 shows the estimated DOAs and their RMSE with different noise levels for three sources.
Likewise, Table 5 shows the estimated DOAs and their RMSE with different noise levels for
four sources. In each case, the desired DOAs considered are as follows:

Desired DOAs f or Two Sources = [−35 35]
Desired DOAs f or Three Sources = [−40 40 50]

Desired DOAs f or Four Sources = [−55 55 65 − 65]
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Table 3. DOA Estimation for Two Targets for N = 6 and M = 6 with Different Noises.

Noise
DOAs

RMSE
θ1 θ2

0 dB −34.6106 35.3599 0.0318
5 dB −35.2284 34.8185 0.0286

10 dB −35.1221 35.0787 0.0136
15 dB −35.1136 35.0413 0.0267

Table 4. DOA Estimation for Three Targets for N = 6 and M = 6 with Different Noises.

Noise
DOAs

RMSE
θ1 θ2 θ3

0 dB −39.6713 41.1235 52.2910 0.1626
5 dB −40.0724 40.8380 50.4058 0.0915

10 dB −39.7974 40.1003 50.1806 0.0387
15 dB −40.0801 39.9033 49.6680 0.0270

Table 5. DOA Estimation for Four Targets for N = 6 and M = 6 with Different Noises.

Noise
DOAs

RMSE
θ1 θ2 θ3 θ4

0 dB −55.9432 54.0006 65.7209 −67.0888 0.1931
5 dB −55.5708 55.3826 65.1077 −65.3172 0.1802

10 dB −56.1675 54.1641 64.5014 −67.3498 0.1379
15 dB −54.9222 54.6566 65.0776 −64.6327 0.0855

Furthermore, the graphs of the best fitness values, CDF, box plots and histograms are
shown in Figures 8–11 for the second scenario. In Figure 10, the symbols 2sn0, 3sn0 and
4sno represent two sources, three sources and four sources with 0 dB noise, respectively.
Likewise, 2sn5, 3sn5 and 4sn5 represent two sources, three sources and four sources with
5 dB noise, respectively, and so on. Figure 4a shows that the best fitness achieved for
two sources with 0 dB noise is about 0.28 in 100 runs of the proposed algorithm. In the
same graph, it is clear that the best fitness achieved by three sources is about 0.33 in 100 runs
and likewise, the best fitness achieved by four sources in 100 runs is about 0.34. Figure 4b
shows the graph for the 15 dB noise case that is added to the same two sources, three
sources and four sources, respectively. It can be observed from this graph that as the noise
is reduced from 0 dB to 15 dB, the fitness of all the sources (2s, 3s and 4s) is improved, i.e.,
the best fitness achieved in 100 runs by two sources is about 10−2. Likewise, the best fitness
values achieved by three sources and four sources in the same 100 runs are less than 10−2.
Figure 5 shows the CDF analysis for the same two noise levels 0 dB and 15 dB, which are
added to the same two sources, three sources and four sources, respectively. Figure 5a
shows that about 1% of runs of the proposed algorithm gives a fitness value of about 0.28
for two sources. Likewise, about 1% of runs give a fitness value of about 0.33 for three
sources and about 1% of runs give a fitness value of 0.34 for four sources. Figure 5b shows
the same sources with the 15 dB noise case. From this figure, it is clear that about 2% of
runs give a fitness value of about 10−2 for two sources, but the same 2% of runs give a
smaller fitness value from 10−2 for three sources and four sources, respectively. Figure 6
displays the box plot analysis of the same two cases, i.e., 0 dB and 15 dB noise, which are
added to the same two sources (2s), three sources (3s) and four sources (4s), respectively.
Figure 6a shows that the worst fitness achieved by two sources (2s) is about 0.42. Similarly,
the worst fitness values achieved by three and four sources (3s and 4s) are about 0.47 and
0.48, respectively. Moreover, the best fitness values achieved by two sources (2s), three
sources (3s) and four sources (4s) are about 0.36, 0.41 and 0.42, respectively. Fifty percent
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of the fitness values are less than 0.42 for two sources (2s), less than 0.44 for three sources
(3s) and less than 0.45 for four sources (4s). Figure 6b shows that the worst fitness values
achieved by two sources (2s), three sources (3s) and four sources (4s) are about 0.013, 0.020
and 0.030, respectively. Likewise, the best fitness values achieved by the same two sources,
three sources and four sources are about 0.0122, 0.017 and 0.027, respectively. Fifty percent
of the fitness values are less than 0.016 for two sources, less than 0.78 for three sources and
less than 0.029 for four sources, respectively. As is clear from these figures, when the noise
level decreases, the fitness values are also improved. One can verify very easily from these
graphs that for 0 dB noise, the fitness value is higher than the case where the noise level is
decreased to the 15 dB level. Likewise, Figures 8–11 demonstrate that even for the lower
values of SNR, the proposed algorithm performed well. In summary, all of these graphs
show that the novel scheme FPA performs well in each scenario.

Part 2: This part presents the comparison of our proposed FPA algorithm with the
state-of-the art algorithms in the literature [18–21].

Case 1: In this case, the number of antennas in Tx and Rx is chosen to be N = 5 and
M = 10, respectively. The inter-element distances between each two consecutive antennas
in both Tx and Rx arrays are kept as the same, i.e., half the wavelength. Furthermore, 20 dB
additive white Gaussian noise (AWGN) was added to the received signals for practicability
purposes. Three targets are considered, of which the desired values of the DOA are
considered to be −30, 30 and 50. The proposed scheme is run 100 times independently and
a large amount of data is obtained. The performance of our proposed scheme FPA can be
verified from Table 6, as it performed better compared to the other algorithms in terms of
estimation accuracy and RMSE. The second-best result is achieved by [20].

Table 6. DOA Estimation for Three Targets for N = 5 and M = 10 with SNR = 20 dB.

Scheme θ1 θ2 θ3 RMSE

Desired DOA −30 30 50 –
SBL Method [19] −30.0260 29.8147 50.6640 0.1300

CDSR [20] −30.0960 29.8947 50.1740 0.4082
OMP Method [18] −30.0260 29.9447 50.7040 0.3985
Proposed Scheme −30.0000 30.0000 50.0000 0.0901

In the same way, the proposed algorithm is further tested for considering a lower
number of antennas in Rx, i.e., M = 4. Although the results are slightly degraded, one can
still verify from Table 7 that the proposed algorithm performed fairly well compared to the
other algorithms.

Table 7. DOA Estimation for Three Targets for N = 5 and M = 4 with SNR = 20 dB.

Scheme θ1 θ2 θ3 RMSE

Desired DOA −30 30 50 -
SBL Method [19] −31.0260 30.8147 50.1640 0.7009

CDSR [20] −30.8060 30.8547 49.6940 1.0591
OMP Method [18] −31.3860 31.0947 49.5040 0.7623
Proposed Scheme −30.0366 30.0905 49.8765 0.0909

Case 2: In this case, simulations are carried out to validate the robustness against the
noise of the proposed algorithm FPA. Different values of SNRs are considered, which range
from 10 dB to 40 dB. The RMSE of the proposed algorithm is minimal, as compared to
its counterpart algorithms for Rx with M = 10 and M = 4, as shown in Figures 12 and 13.
Again, the second-best RMSE is produced by the algorithm discussed in [20].
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The corresponding Cramer–Rao lower bound (CRLB) for the DOA estimation shown
in Figures 12 and 13 can be obtained from [21].

Case 3: In this case, the computational complexity of the proposed algorithm is
compared with [18–20] for three targets. As provided in Table 8, the proposed algorithm
requires 1.08 s to attain the desired outcomes, which is higher than the algorithms discussed
in [18–20]. The best computational complexity is achieved by [18].

Table 8. Computational complexity.

Schemes Computational Times (sec)

Sparse Bayesian [19] 1.0702
CDSR [20] 0.6037
OMP [18] 0.1051
Proposed 1.08
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5. Conclusions and Future Work

In this work, the problem of DOA estimation for monostatic MIMO radars was
considered. A novel and efficient approach based on flower pollination was designed and
implemented. The proposed approach is inspired by the pollination process of flowering
plants that has successfully solved different optimization problems. In the present work,
the FPA was optimized by incorporating a new fitness function based on extended array
manifold vectors. This fitness function works on the mean square error that defines an
error between the estimated and the reference responses of the system. It required a single
snapshot to attain the desired outcomes. The efficiency of the proposed algorithm was
compared to the already existing methods in the literature and it has shown comparatively
better results in terms of RMSE and estimation accuracy. However, the computational
complexity of our proposed algorithm is slightly higher than the other algorithms. Different
statistical tools such as CDF, box plots and histograms were used to verify the effectiveness
of the proposed algorithm.

In the future, this approach can be used in the fields of adaptive beamforming, null
steering, tracking multiple targets, etc. Future research into the suggested meta-heuristics
computing approach may prove to be a good option for dependable, effective, and precise
DOD/DOA estimation in various applications of utmost importance [33–35].
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