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Abstract: Monitoring and estimating the density of microalgae in a closed cultivation system is
a critical task in culturing algae since it allows growers to optimally control both nutrients and
cultivating conditions. Among the estimation techniques proposed so far, image-based methods,
which are less invasive, nondestructive, and more biosecure, are practically preferred. Nevertheless,
the premise behind most of those approaches is simply averaging the pixel values of images as
inputs of a regression model to predict density values, which may not provide rich information of
the microalgae presenting in the images. In this work, we propose to exploit more advanced texture
features extracted from captured images, including confidence intervals of means of pixel values,
powers of spatial frequencies presenting in images, and entropies accounting for pixel distribution.
These diverse features can provide more information of microalgae, which can lead to more accurate
estimation results. More importantly, we propose to use the texture features as inputs of a data-driven
model based on L1 regularization, called least absolute shrinkage and selection operator (LASSO),
where their coefficients are optimized in a manner that prioritizes more informative features. The
LASSO model was then employed to efficiently estimate the density of microalgae presenting in a
new image. The proposed approach was validated in real-world experiments monitoring the Chlorella
vulgaris microalgae strain, where the obtained results demonstrate its outperformance compared
with other methods. More specifically, the average error in the estimation obtained by the proposed
approach is 1.54, whereas those obtained by the Gaussian process and gray-scale-based methods are
2.16 and 3.68, respectively.

Keywords: microalgae; microalgal density; LASSO; image texture features; image processing; algal
monitoring

1. Introduction

There has been increasing interest in culturing microalgae at a large scale for producing
food, pharmaceutical products, and biodiesel [1]. More specifically, it was shown that some
microalgae can provide polysaccharides, vitamins, β-carotene, long-chain polyunsaturated
fatty acids, and antioxidants [2,3]. In fact, some microalgal species are used as aquafeed for
molluscs, crustaceans, and fish [4]. Recently, the cultivation of microalgae as an alternative
crop was proposed [5], as they can provide nutritious food for human. Furthermore,
some algal microorganisms that can be used for producing antibiotics, toxins, pigments,
plant growth regulators, and bioactive compounds were also discussed [6]. In terms of
environmental protection, there are microalgae, including Chlamydomonas reinhardtii and
Chlorella vulgaris, used for cleaning polluted water [7]. Bioethanol components in some
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microalgae, such as Desmodesmus sp., are employed to produce biodiesel [8] as up to 70% of
those microalgae’s dry mass are hydrocarbons.

In practice, microalgae can be cultured in either raceways, open ponds, or closed
cultivation systems, such as photobioreactors. While cultivating microalgal species in
an open pond has a low cost and can provide flexible scalability, a closed system of cul-
turing microalgae is more efficient in terms of controlling the growth rate and biomass
productivity [1], which play important roles in cases where the microalgae are considered
as commercial products. For example, a 40 liter closed system for culturing flagellates
to concentrate the microalgal biomass was proposed in [9]. Two types of microalgae for
larval fish, Tetraselmis suecica and Brachionus plicatilis, can be continuously cultivated in
a customized cultivation system designed and built by Sananurak et al. in [10]. Nau-
mann et al. developed a twin-layer solid-state bioreactor [11] for growing four types of
microalgae, such as Isochrysis sp. T.ISO, Tetraselmis suecica, Phaeodactylum tricornutum, and
Nannochloropsis sp., which can be utilized as live feeds in hatcheries. It is noted that a closed
cultivation system allows growers to easily monitor crucial information of microalgae
over time, which they can then employ to implement a closed loop control mechanism
to automatically and efficiently operate all of the cultivation procedures [12]. For in-
stance, one optimized up-scaled bioreactor for cultivating microalgal strain S. platensis
was proposed in [13], where environmental parameters such as the pH condition, liquid
level, and temperature during the culturing operations are remotely monitored through
a smartphone app. Some discussions about employing advanced technologies includ-
ing the Internet of Things or machine learning in intelligently farming microalgae were
also presented in a recent work [14]. Nevertheless, one of the critical information nor-
mally required to be monitored in culturing microalgae, particularly in real time, is their
density [6], since it allows growers to optimally control both nutrients and cultivating
conditions.

The density of microalgae can be defined by the number of microalgal cells
per mL [2,15]. In fact, an accurate number of algal cells can be obtained by carefully
examining an aliquot through a microscope [16]. However, this process is tedious and
time consuming, and particularly impractical in closed cultivation systems if an automatic
control strategy is implemented. Thus, to efficiently and practically estimate the microalgal
density, some estimation methods have been proposed [17]. For instance, the authors of
the work [18] proposed to measure the oxygen levels of microalgae generated during their
photosynthesis in a closed photobioreactor and analyze the data to indirectly estimate their
density. Zhou et al. in [19] also relied on photosynthesis but exploited an in situ optical
device to directly examine microalgae’s in vivo synthesis quantity to compute a density
value. In a similar manner, the work [20] exploited another optical meter based on the
spectrophotometric and fluorimetric principles to measure the turbidity of microalgae in
a photobioreactor. The optical density indicator results were then used to calculate the
concentration of those algal microorganisms.

Another class of methods proposed to monitor microalgal density is based on im-
age processing. Thanks to low-cost camera sensors, image-based approaches are widely
used [2,6,16,21–24]. Specifically, images of microalgae can be captured by a camera and
then analyzed by an image processing technique, where extracted information can be
utilized to calculate the density of microalgae presenting in the images. An advantage
of these methods is that they are less invasive, nondestructive, and more biosecure. In
the work [6], Jung et al. proposed to employ a camera sensor to digitally capture a top
view of a microalgal photobioreactor and then analyze light distribution profiles in the
captured images to indirectly quantify the cell density. Uyar in their work [22] developed a
mechanism that relies only on a blue color channel of microalgal images to predict the algal
cell concentration. In contrast, in our previous work [16], when taking Chlorella vulgaris
microalgae into consideration, we discovered that the information carried by a blue channel
in digitized images is insignificant. We then proposed to use only averages of red and
green color channels of captured images for estimating the density of algal species. By
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considering all three red, green, and blue (RGB) color channels of captured images, Winata
et al., in the work [24], first normalized them separately and then converted normalized
RGB images to grayscale ones, where the microalgal concentration can be quantified.

So far, to the best of our knowledge, in most image-based microalgal density estimation
methods, pixel values of measured images are averaged, which are then correlated with
known density values in a regression model to estimate the concentration of microalgae
in a new image. For instance, in [2,6,23,24], the authors, by exploiting different ratios of
the red, green, and blue color components, converted RGB color images to grayscale ones.
Each grayscale image was then averaged to a scalar value to input into a linear regression
model. In our previous work [16], we averaged the red and green color channels of each
measured RGB color image as inputs of a nonlinear Gaussian process model for prediction.

Since averaging pixel values in digitized images may not provide rich information of
microalgae presenting in measured images, in this work, we investigated more advanced
features from images as inputs of a regression model. As can be seen in the previous
works [16,24] and in Figure 1 in the following discussion, since the microalgal image
data are quite uniform, analyzing the textures of images is critical for understanding
microalgal density information. In fact, the texture of an image is defined by the spatial
relationship of pixel values or the variation in color intensity within the image [25]. Once
the image texture is analyzed, information of the spatial distribution of pixel values in a
given image can be quantified. Thus, in this work, we propose exploiting image texture
characteristics as features to be input into a regression model for estimating the microalgal
density. In addition to averages of pixel values, the image texture features considered in this
work include confidence intervals of means of pixel values, powers of spatial frequencies
presenting in images, and entropies accounting for pixel distribution. These diverse features
can provide more information of the microalgae density, which can lead to more accurate
estimation results.

(a) (b) (c)

Figure 1. Examples of the cropped images of microalgae corresponding to density of (a) 5.08 million
cells per mL, (b) 22.02 million cells per mL, and (c) 41.88 million cells per mL.

On the other hand, since the relationship between the image features and microalgal
densities can be linear or nonlinear, we propose to exploit an L1-regularization-based
approach called least absolute shrinkage and selection operator (LASSO) [26,27] as a
regression model. Fundamentally, regularization can help a regression model avoid the
over-fitting of data [28]. Furthermore, coefficients of the features in the model can be
optimized in a way that prefers the more informative features, which results in a well-fit
model to the data. Eventually, the microalgal density can be more accurately estimated.
In order to evaluate the effectiveness of the proposed approach, we implemented it in a
dataset collected by a sensing system [29] monitoring the Chlorella vulgaris microalgae strain.
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The obtained results demonstrate the outperformance of the proposed method compared
with several existing methods.

The remainder of the paper is arranged as follows. Section 2 presents how a dataset
of the Chlorella vulgaris microalgae can be gathered by using our camera-based algae
monitoring system [16]. In Section 3, we discuss how to design features of microalgal
images by analyzing their textures. The LASSO-based regression model is introduced
in Section 4, where a model for estimating the density of microalgae given their image
features is derived. We then extensively discuss possible combinations of image features as
inputs and corresponding results as outputs of the estimation model in Section 5, where
the effectiveness of the proposed approach is verified in real-world experiments. Some
conclusions of the discussion are drawn in Section 6.

2. Data Collection

In order to investigate how image texture features can be exploited to estimate the
density of microalgae, we developed a new monitoring system that is non-destructive and
biosecure since it only captures images of microalgae from a distance. In this section, we
introduce the monitoring system and its captured image data, which are then utilized to
interpret the density information.

2.1. Monitoring System

With the expectation that the proposed estimation framework can be widely imple-
mented in practice, a low-cost microalgae monitoring system was developed. The premise
behind the monitoring system is that the microalgae solution is slowly and continuously
pumped from a cultivation tank into a sample container and then refluxed back to the tank.
The sample container is transparent and located in a dark box. A low-cost Raspberry Pi
camera was deployed on a wall of the box to take photos of the sample container. Due to the
transparency of the container, the captured images present information of microalgae. It is
noted that, for the photography in the dark box, an artificial light was generated. Using the
artificial light aims to eliminate any disturbances caused by uncertain natural light, which
guarantees the best quality of the captured images. Since the sensing devices do not de-
struct the microalgae structure, the monitoring system is non-invasive and biosecure, which
differs from some invasive techniques that include the dry cell weight [30]. Furthermore,
the system can provide continuous monitoring over time without disturbing the growth
of microalgae. The microalgae monitoring system in a working state is demonstrated
in Figure 2. The development of the system cost approximately USD 150. For more details
of this sensing system, interested readers are referred to our previous work [16].

Figure 2. The low-cost system for capturing images of microalgae.
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To demonstrate the study in this work, we used the monitoring system to collect
the image data of one specific microalgae strain called Chlorella vulgaris. A captured
image example at a resolution of 800× 600 is illustrated in Figure 3. Moreover, to verify
our proposed approach using LASSO, we gathered multiple images of Chlorella vulgaris
microalgae at different densities. In particular, we started with a microalgal solution
of 42.3 million cells per mL, where one image of the microalgae presented in the solution
was taken. We then repeatedly diluted the solution by pure water 128 times and, at each
new solution generated, a corresponding image of microalgae was captured. There are a
total of 129 images of microalgae presented in 129 samples with different densities.

Figure 3. A raw image of microalgae captured by our developed system.

On the other hand, we ultimately aim to efficiently estimate the density of microalgae
given their image; that is, the proposed approach cannot be truly verified without knowing
the ground truth densities in those solution samples. Therefore, we manually counted
microalgae cells in each representative sample of 129 solutions through a time-consuming
technique called the direct microscopic count method. Details of how we obtained the
ground truth of 129 densities of microalgae presented in the 129 corresponding images can
be found in [16]. It is noted that, in the verification process of our proposed approach, we
estimated the density of microalgae by using captured image data. The estimation results
were then compared with their corresponding ground truth densities to assess the accuracy
of the estimation method.

2.2. Preprocessing Data

As can be seen in Figure 3, a raw image of microalgae captured by the monitoring
system contains not only microalgae information but also some background. Apparently,
a more expensive camera can help focus on the microalgae region. Unfortunately, the
low-cost Raspberry Pi OV 5647 camera sensor used in the monitoring system does not
have zoom functionality. On the other hand, analyzing this whole raw image is highly
computationally expensive. In fact, it is not necessary to analyze the entire raw image
since our proposed approach employs the learning principle. Therefore, we propose to
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crop the raw image to a sub-image at a resolution of 50× 50, whose top-left coordinate
is at (375, 275) in the original image. The location of the sub-image in the original image
is illustrated by a yellow square in Figure 3. In the proposed method, we solely use the
information in the cropped region to input into a model and train the model parameters
based on that information only. In the implementation, given a new raw image, we then
take only the information in the same cropped region to input into the trained model for
the estimation. Information outside the yellow square is not considered in the learning
model. Three examples of the cropped images corresponding to different densities are
demonstrated in Figure 1. The problem now becomes analyzing a cropped image (e.g., as
demonstrated in Figure 1) to estimate the microalgal density.

It is noted that each cropped image has three color channels: red, green, and blue.
Intuitively, the distribution of microalgae in the image looks quite uniform. Nevertheless,
to learn the characteristics of the image, we analyzed its color channels separately to see
how the pixel values are distributed. In particular, the pixel values in each color channel
were grouped into a histogram, where their distribution can be statistically evaluated.
For instance, nine histograms of nine color channels in three cropped images in Figure 1
are demonstrated in Figure 4, respectively. Each row of Figure 4 demonstrates three
color channels of one cropped image whereas each column illustrates one color (left—red,
middle—green, and right—blue). For comparison, each color distribution is plotted in the
same scale. Overall, the distribution range of the pixel values in each color channel is quite
concentrated. More specifically, the standard deviation of the pixel values in these nine
color channels ranges from 0.6 to 3.2, which accounts for a pretty uniform distribution of
microalgae in the captured images as can be seen in Figure 1. The next question is what
features can be established in the data for the purpose of estimating the microalgal density,
which are discussed in the following section.

(a) (b) (c)

(d) (e) (f)

Figure 4. Cont.
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(g) (h) (i)

Figure 4. Distributions of the pixel values in color channels of the cropped images of Figure 1a (first
row), Figure 1b (second row), and Figure 1c (last row), respectively. (a) Red channel of Figure 1a;
(b) green channel of Figure 1a; (c) blue channel of Figure 1a; (d) red channel of Figure 1b; (e) green
channel of Figure 1b; (f) blue channel of Figure 1b; (g) red channel of Figure 1c; (h) green channel of
Figure 1c; (i) blue channel of Figure 1c.

3. Feature Design

Since the image data are quite uniform, analyzing the texture of images is critical for
understanding microalgal density information. The texture of an image is defined by the
spatial relationship of pixel values or the variation in color intensity within the image [25].
In other words, texture provides information of the spatial distribution of pixel values in a
given image.

Given the examples of distributions of pixel values in the color channels as illustrated
in Figure 4, it can be observed that, though the distribution in each color channel is
quite uniform, the distribution range is different from one image to another. Hence, we
extracted features from the original color image or each color channel, which can be
used in the LASSO model as discussed in the next section for estimating the density
of microalgae. In the following subsection, we will discuss some typical mechanisms
employed to characterize features of each color channel in the cropped image.

3.1. Averages of Color Channels

Due to the uniformity of the pixel values in each color channel as illustrated in Figure 4,
some existing works proposed utilizing the average of pixel values in a color channel as a
predictor feature in building an estimation model. For instance, in [6,24], the authors used
a formula proposed by the International Telecommunication Union (ITU) to compute an
average value of a grayscale image as follows:

GSITU = 0.222R + 0.707G + 0.071B, (1)

where GSITU is a grayscale average and R, G, and B are the average values of the red, green,
and blue color channels, respectively. Likewise, Córdoba-Matson et al. in [2] proposed two
other formulae to calculate a grayscale average from R, G, and B, which are specified by

GS1 = 0.2989R + 0.5870G + 0.1140B, (2)

and
GS2 = 0.333R + 0.333G + 0.333B. (3)

The idea in [2,6,24] is to feature a captured image of microalgae by a grayscale average
value, which is then linearly correlated with the density of microalgae by a linear model. The
trained linear model can be used to predict the microalgal density in a newly captured image.

Though the linear models based on ITU, GS1, and GS2 were verified in some microalgal
strains, including Synechococcus sp., Desmodesmus sp., Scenedesmus sp., Dictyosphaerium sp.,
Isochrysis galbana, and Klebsormidium sp., they do not fit well to our dataset collected from
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the Chlorella vulgaris microalgae strain. More specifically, we implemented (1)–(3) with our
image dataset and plotted the resulting grayscale average values against the corresponding
densities. The visualization results are demonstrated in Figure 5. It can be clearly seen that
relationships between the microalgal densities and the grayscale average values obtained by
the ITU and GS1-based methods are highly nonlinear, whereas that of the results obtained
by the GS2 based algorithm is slightly linear. In other words, these linear models do not
work well in a generic scenario for any type of microalgal strain.

(a) (b)

Figure 5. Grayscale average values of the microalgal images versus their corresponding densities, where
the gray tones are converted based on (a) ITU [6,24] and GS1 [2] criteria and (b) GS2 [2] criterion.

In contrast, in our previous work [16], we proposed to only utilize the average values
of the red and green color channels of an image as the input of a two-dimensional (2D)
nonlinear model, whose output is a corresponding density of microalgae presenting in the
image. Using Gaussian processes, we then developed a framework to predict the microalgal
density from an image.

In this work, we propose to exploit the average values of all three color channels in
each captured image as three features presenting information of microalgae in the image.
It is noted that the median can be used in place of the average, particularly in scenarios
where outliers in the data are inevitable.

3.2. Mean Intervals of Color Channels

Since a single average value does not provide information of the distribution range of
pixel values, we then propose to exploit the confidence interval of the average value. Given
a confidence level, we can probabilistically estimate the distribution range of the average
value [31]. Let us take a red color channel as an example: the confidence interval µ of the
average of pixel values in the channel can be computed by (4) as follows:

R− zα/2
σ√
Npx
≤ µ ≤ R + zα/2

σ√
Npx

, (4)

where R is the average value of the red channel, σ is the standard deviation of the pixel
values, Npx is the number of pixels, zα/2 is the z-value, and α is the significant level. If a
95% level of confidence is used, then zα/2 = 1.96.

Therefore, instead of the average value, we propose to utilize two ends of the confi-
dence interval as two features of a color channel. In other words, we define two interval
features for a red color channel as RL = R− zα/2

σ√
Npx

and RR = R + zα/2
σ√
Npx

. Likewise,

GL, GR, BL, and BR can be computed for the interval features of the green and blue color
channels. Overall, we have six interval features for each color image of microalgae.

3.3. Spatial Frequency

In the signal context, the texture of an image can be represented by the content of its
local spectrum or frequency; that is, variations in the texture in a region of an image can
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cause changes in local spatial frequencies [25]. Given this principle, we propose to compute
the power spectrum of each color channel of microalgae images. More specifically, 2D
discrete Fourier transform (DFT) [32] can be calculated by (5) as follows:

Fx,y(u, v) =
M−1

∑
m=0

N−1

∑
n=0

e−j2πum/Me−j2πvn/N f x̂,ŷ, (5)

where x̂ = x−M + m + 1, ŷ = y− N + n + 1. f x̂,ŷ is the (x, y)th pixel in a color channel at
a resolution of M× N. u and v are spatial frequencies and Fx,y(u, v) is the (u, v)th bin of
the DFT result.

We implemented the spatial frequency technique in our dataset, and, as an example,
the power spectra of three color channels of the image as demonstrated in Figure 1c are
illustrated in Figure 6. As can be seen in Figure 4g–i, since the distribution range of pixel
values in each color channel is different, the corresponding power spectra in Figure 6
are also different. Therefore, we propose to form three spatial frequency features in each
microalgae image by computing average values of three corresponding power spectra,
which are called RFT , GFT , and BFT .

(a) (b) (c)

Figure 6. Power spectrum of spatial frequencies in three color channels of the microalgae image
shown in Figure 1c. (a) Red channel; (b) green channel; (c) blue channel.

3.4. Entropy

In texture analysis, another measure for characterizing the texture of an image is entropy
[33]. Theoretically, entropy is used to measure the randomness or information content of the
pixel distribution. It has been used as a feature in texture classification [34]. In this work,
we propose to calculate the entropies of the color channels in each image of microalgae and
employ the entropy results as features to present characteristics of the image. Mathematically,
the entropy of each color channel [35] can be specified by (6) as follows:

Rentropy = −
K

∑
k=1

pk log2(pk), (6)

where Rentropy is entropy of the red color channel and pk is the probability of the kth pixel
value. In the implementation, we simply created a histogram of all pixel values in each color
channel, with a bin width of 1, as can be seen in Figure 4. Then, pk can be considered as a
normalized histogram count from the histogram, and K is the number of histogram bins.
Eventually, for each color image of microalgae, we can compute three entropy features,
including Rentropy, Gentropy, and Bentropy, which can be employed in further analysis in
estimating the microalgal density.
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4. L1-Regularization Based Estimation Method

We have now learned that there are several methods for extracting features from
images of microalgae as discussed in Section 3. It is noted that we can even formulate
new features from the existing features that are characterized directly from an image.
For instance, given the features we discussed in Section 3, new features such as R2

entropy
or Rentropy × Gentropy can be obtained. Thus, the microalgal density estimation problem
becomes building the relationship between the image features and density values. In other
words, if a model between the image features and density values can be built, it can be
employed to predict the density of microalgae given their image.

It is assumed that there are q features f1, f2, · · · , fq extracted from an image of
microalgae that have a density of d. Let us propose a linear relationship between the image
features and density values, specified by (7) as follows:

d = β0 + β1 f1 + β2 f2 + · · ·+ βq fq, (7)

where β j is an unknown coefficient that can be estimated through training data. We as-
sume that there are n collected images of microalgae and n corresponding density values
d1, d2, · · · , dn, which leads to n sets of features { fi1, fi2, · · · , fiq}n

i=1. Then, the coeffi-
cients β1, β2, · · · , βq can be straightforwardly calculated by the use of the least square
algorithm [26].

However, due to the complexity of the dataset, the least square technique may cause
under-fitting or over-fitting problems [26], which leads to inaccuracy in the prediction.
Therefore, in this work, we propose to employ an L1-regularization-based approach called
least absolute shrinkage and selection operator (LASSO) [26,27] to optimally estimate the
coefficients β1, β2, · · · , βq. Fundamentally, regularization can help a regression model to
avoid the over-fitting of data [28].

4.1. LASSO

The premise behind LASSO is that L1 regularization adds a penalty equal to absolute
values of the coefficients β = [β1, β2, · · · , βq]T . More specifically, the coefficients β can be
optimized by [26,36]

β̂ = argminβ

[
1
2

n

∑
i=1

(di − β0 −
q

∑
j=1

fijβ j)
2 + λ

q

∑
j=1
|β j|

]
, (8)

where λ is a penalty term that can be predefined.
It is noted that the regularization in (8) can lead to a sparse model. In other words,

some coefficients obtained by (8) may become less important than the others and become
zeros. The importance of a coefficient is measured by its absolute value. In scenarios
when some coefficients become zeros, their corresponding features are eliminated from
the model, which results in a reduction in the computational complexity. This attribute of
the regularization provides the LASSO model with the ability to significantly rely on more
important features, which eventually leads to a more accurate prediction in regression.

4.2. Penalty Term Learning

It can be seen in (8) that, when the penalty term λ is zero, the optimization becomes
the least square. In contrast, when λ tends to infinity, all of the coefficients β̂ approach
zero, which makes the regression model well under-fitting. To demonstrate the influence
of choosing λ on the resulting coefficients β̂, we conducted an experiment in our dataset,
where we defined 12 features, such as R, G, B, Rentropy, Gentropy, Bentropy, R2

entropy, G2
entropy,

B2
entropy, Rentropy ×Gentropy, Rentropy × Bentropy, and Gentropy × Bentropy, which were extracted

from the image data. In this experimental example, we set λ to 100 values ranging from 0
to 10. After optimizing (8), the obtained coefficient results are depicted in Figure 7. The
results verify the argument that, when λ increases, all of the coefficients converge to zero.
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It is noted that, when λ is small, some resulting coefficients are very close to each other;
that is, their corresponding features contribute quite similarly to the model.

Given the example illustrated in Figure 7, we now investigate what value we should use
for the penalty term λ. In order to automatically identify the best value for λ given the dataset,
we propose to exploit the k-fold cross-validation technique [37]. For instance, one can set λ to
one of 100 values ranging from 0 to 10. For each λ value, it runs the k-fold cross-validation
algorithm in the given dataset, where, at each iteration, the optimization (8) is solved. A
mean of squared errors (MSE) or cross-validated squared residuals over k folds can also be
calculated. After running all possible values of λ, the best penalty term is selected by the
corresponding minimum MSE. As a demonstration, we implemented this learning technique
in our dataset with 12 aforementioned features, in which, we chose k = 5. The obtained MSE
results with error bars are depicted in Figure 8, where the minimum MSE is highlighted by a
red square, which corresponds to the selected λ.

Figure 7. An example of the coefficients β̂ given the different penalty term λ values.

Figure 8. The mean square errors obtained by the k-fold cross-validation algorithm given the different
penalty term λ values.

The next argument is how many folds in the cross-validation method should be parti-
tioned from the original dataset? We empirically implemented the technique
learning λ in our image data with three different k values. The obtained results demonstrate
that the optimal penalty term is consistent regardless of k, as summarized in Table 1.
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Table 1. The optimal penalty term at different k in the Chlorella vulgaris microalgae dataset.

k = 5 k = 10 k = 20

Minimum MSE 2.313 2.215 2.278
λ 0.001 0.001 0.001

4.3. Microalgal Density Estimation

Once the penalty term λ is determined, given training data, the coefficients β̂ can be
calculated by optimizing (8); that is, a model of the microalgal density is learned. In the
prediction step, when a new image of microalgae is taken, q features presenting for the
microalgae information can be extracted from the image and input into the learned model.
The corresponding density of the microalgae can be estimated by (9) as follows.

d̂ = β̂0 + β̂1 f1 + β̂2 f2 + · · ·+ β̂q fq, (9)

where β̂ = [β̂0, β̂1, β̂2, · · · , β̂q], and d̂ is the estimated density.

5. Experimental Result Analysis

Given the LASSO estimation approach, we now discuss how to apply the features
introduced in Section 3 to efficiently estimate the density of microalgae given their images.
Since there are multiple features being extracted from an image, multiple scenarios of
combining different features can be investigated. It is noticed that not all features can
provide good information of microalgae: different combinations of different features
may lead to different estimation results. Therefore, in this work, we consider the typical
combinations from four sets of the features presented in Section 3 and analyze the results to
derive the best combination of the features, which can lead to the most accurate estimation
of microalgal density, at least with our dataset. The procedure can be easily extended to
any other microalgae datasets.

In order to validate the estimation accuracy in each scenario, we randomly partitioned
our 129 data samples, including 129 color images and 129 ground truth density values,
into two subsets. The first subset of 100 samples was used for training, and the second
subset of 29 samples was used for testing. The validation framework is summarized in Figure 9.
Since selecting training and testing data in each validation is random, to statistically verify the
effectiveness of the proposed approach, in each scenario, we repeated the implementation
1000 times. At each run, we computed a root mean square error (RMSE) between the estimated
density results and the ground truth in the testing subset. The 1000 root mean square errors
(RMSEs) in each scenario were then condensed into two statistical parameters of mean and
standard deviation (std) for comparisons among the combination scenarios.

Figure 9. Framework of the validation procedure.
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5.1. Single Feature Combinations

In the first evaluation, we consider four scenarios where each scenario contains a
single type of feature as discussed in Section 3. The combinations are as follows:

• S1: Features of average values of all three color channels: R, G and B.
• S2: Six interval features: RL, RR, GL, GR, BL, and BR.
• S3: Three spatial frequency features: RFT , GFT , and BFT .
• S4: Three entropy features: Rentropy, Gentropy, and Bentropy.

The evaluation results presented by the mean and std values obtained in these four
scenarios are summarized in Table 2.

Table 2. Comparison of estimation accuracy in the first four examined scenarios in Section 5.1.

S1 S2 S3 S4

mean 2.40 2.12 2.36 4.90
std 0.25 0.26 0.28 0.67

It can be seen from Table 2 that, in the first three scenarios, the estimation results are
quite comparable. Nevertheless, in the fourth scenario, the estimated density results are
highly inaccurate. It seems that the entropy features do not carry much information about
microalgae in the images.

5.2. Two-Feature Combinations

If a single type of feature does not provide a good estimation of the microalgal den-
sity, combining two types of features in a learning model may enrich the information of
microalgae, which can lead to better prediction results. There are six possible combinations
of two types of features from four sets of the features that we discuss in this work. Let us
examine those scenarios as follows:

• S5: Features of three color channel averages and three entropies: R, G, B, Rentropy,
Gentropy, and Bentropy.

• S6: Features of six interval bounds and three entropies: RL, RR, GL, GR, BL, BR,
Rentropy, Gentropy, and Bentropy.

• S7: Features of three color channel averages and three spatial frequency powers: R, G,
B, RFT , GFT , and BFT .

• S8: Features of three color channel averages and six interval bounds: R, G, B, RL, RR,
GL, GR, BL, and BR.

• S9: Features of three spatial frequency powers and three entropies: RFT , GFT , BFT ,
Rentropy, Gentropy, and Bentropy.

• S10: Features of six interval bounds and three spatial frequency powers: RL, RR, GL,
GR, BL, BR, RFT , GFT , and BFT .

The validation results in these six scenarios of two types of the features combinations
are tabulated in Table 3. Overall, the estimated results obtained by combining two types of
the features are better than those obtained by combining a single type of the features. On
the other hand, whenever the entropy appears in the feature sets, the prediction results are
slightly better than the others; that is, under mixture with other features, the entropy can
provide rich information of the microalgae.

Table 3. Comparison of estimation accuracy in the next six examined scenarios in Section 5.2.

S5 S6 S7 S8 S9 S10

mean 1.75 1.78 1.89 2.09 1.79 2.09
std 0.23 0.23 0.25 0.26 0.24 0.24
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5.3. Three and Four-Feature Combinations

We now consider scenarios of combining three or four types of features to see whether
a greater variety in the types of image features involved in one learning process can result
in a more accurate prediction of the microalgal density. There are five scenarios when
combining three or four types of image texture features, which are as follows:

• S11: Features of three color channel averages, six interval bounds, and three entropies:
R, G, B, RL, RR, GL, GR, BL, BR, Rentropy, Gentropy, and Bentropy.

• S12: Features of three color channel averages, six interval bounds, and three spatial
frequency powers: R, G, B, RL, RR, GL, GR, BL, BR, RFT , GFT , and BFT .

• S13: Features of three color channel averages, three entropies, and three spatial
frequency powers: R, G, B, Rentropy, Gentropy, Bentropy, RFT , GFT , and BFT .

• S14: Features of six interval bounds, three entropies, and three spatial frequency
powers: RL, RR, GL, GR, BL, BR, Rentropy, Gentropy, Bentropy, RFT , GFT , and BFT .

• S15: All four types of the features as discussed in Section 3: R, G, B, RL, RR, GL, GR,
BL, BR, RFT , GFT , BFT , Rentropy, Gentropy, and Bentropy.

Similar to the previous considerations, the mean and std results obtained in these five
scenarios are also summarized in Table 4 for comparison. It can be seen that combining more
than two types of image features for estimating the microalgal density does not enhance the
estimation results compared with those in the cases where two types of features are used,
as demonstrated in Table 3. Therefore, we propose to employ only two types of features in
the training and prediction processes to reduce the computational complexity.

Table 4. Comparison of estimation accuracy in the five examined scenarios in Section 5.3.

S11 S12 S13 S14 S15

mean 1.76 2.11 1.76 1.77 1.79
std 0.24 0.23 0.24 0.23 0.24

5.4. Higher-Order and Nonlinear Entropy Features

We now propose to create new features from the existing ones extracted from images,
e.g., R2 or Rentropy × Gentropy, and incorporate them into the input of the training data.
Manipulating the existing features to higher-order or nonlinear features may weigh the
LASSO model in a different manner, which can lead to a better estimation. Out of the four
types of features, we picked the entropy for the manipulation. Though the entropy features,
when standing alone, do not provide good estimation results, as demonstrated in Section 5.1,
when combined with other types of features, they could lead to an improvement in the
estimation accuracy as discussed in Section 5.2. By using the higher-order and nonlinear
entropy features, we generated six combination scenarios for discussion as follows:

• S16: Features including R, G, B, Rentropy, Gentropy, Bentropy, R2, G2, B2, R2
entropy, G2

entropy,
and B2

entropy.
• S17: Features including R, G, B, Rentropy, Gentropy, Bentropy, R2

entropy, G2
entropy, and

B2
entropy.

• S18: Features including Rentropy, Gentropy, Bentropy, R2
entropy, G2

entropy, and B2
entropy.

• S19: Features including R, G, B, Rentropy, Gentropy, Bentropy, R2
entropy, G2

entropy, B2
entropy,

R3
entropy, G3

entropy, and B3
entropy.

• S20: Features including R, G, B, Rentropy, Gentropy, Bentropy, R2
entropy, G2

entropy, B2
entropy,

Rentropy × Gentropy, Rentropy × Bentropy, and Gentropy × Bentropy.
• S21: Features including R, G, B, Rentropy, Gentropy, Bentropy, R2

entropy, G2
entropy, B2

entropy,
Rentropy×Gentropy, Rentropy× Bentropy, Gentropy× Bentropy, and Rentropy×Gentropy× Bentropy.

After running six combination scenarios using the high-order and nonlinear features, the
obtained results are tabulated in Table 5 for further analysis. Compared with the results in the
previous discussion, the estimation results in five out of these six scenarios are more accurate.
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Table 5. Comparison of estimation accuracy in the last six examined scenarios in Section 5.4.

S16 S17 S18 S19 S20 S21

mean 1.63 1.64 3.76 1.67 1.54 1.56
std 0.21 0.21 0.44 0.23 0.20 0.24

In order to demonstrate why the entropy is used to create high-order and nonlinear
features, in scenario S16, we exploited the second order of both the color channel averages
and entropies (R2, G2, B2, R2

entropy, G2
entropy, and B2

entropy) in the LASSO model. However, in
scenario S17, we dropped the features R2, G2, and B2. The results in both of the scenarios
that can be found in Table 5 are consistent; that is, the features R2, G2, and B2 do not add
more information of microalgae to the model. To reduce the computational complexity, we
will not incorporate R2, G2, and B2 in further consideration.

In scenario S18, we even dropped all of the features relating to the color channel
averages. As can be seen in Table 5, the obtained results get worse. In other words, the
features R, G, and B should remain in the training dataset. We then extended the entropy
features to the third order in scenario S19. Nonetheless, the results are not better than those
in S17, which empirically proves that the third-order features are insignificant.

Moreover, we considered a multiplication interaction between two features. For in-
stance, in scenario S20, we employed three new features created by the entropies, including
Rentropy × Gentropy, Rentropy × Bentropy, and Gentropy × Bentropy. The prediction results ob-
tained in Table 5 show a significant improvement in the accuracy compared with all of
the others. We then added the multiplication interaction among three features, such as
Rentropy × Gentropy × Bentropy in scenario S21. Nonetheless, the obtained results were not
enhanced compared with those in S20, though the computation was more complicated.
Hence, we accepted scenario S20 as it can provide an acceptable estimation accuracy in our
application [16].

It is noted that the procedure that we discuss in this section can be easily extended to
other microalgal density estimation applications, where new features can be created and
combined with others as the input of the LASSO model to ameliorate the estimation accu-
racy to an expected level. However, the trade-off between the accuracy and computational
complexity should be practically considered.

5.5. Estimation Results

We now take the features combined in scenario S20 as the input of the LASSO model
and examine the performance of the proposed approach in our dataset, along with that
of the others, including the Gaussian process (GP)-based algorithm [16] and GS2-based
technique [2].

Let us consider one example of the training and testing data sets, where 100 image
samples and 100 ground truth (GT) values of microalgal density in the training data
were utilized to train three models including LASSO, GP and GS2. Given 29 images
in the testing data, the trained models were then employ to estimate densities of the
corresponding microalgae. The estimation results are compared with the GT in the testing
data, as demonstrated in Figure 10. In an ideal case of absolutely accurate estimation, the
estimation results should lie on the GT line (e.g., the blue line in Figure 10). In other words,
if the estimated density values stay further from the GT line, the estimation method is less
accurate. As can be seen in Figure 10, the proposed LASSO approach outperforms both
the GP and GS2-based algorithms in the example.
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Figure 10. The microalgal density estimation results versus the ground truth in the testing data.

In order to statistically conclude the outperformance of the LASSO estimation method,
we repeated the implementation of three techniques 1000 times, where, in each implemen-
tation, the training and testing data sets were randomly selected. RMSEs between the esti-
mated density results and the GT in the corresponding testing data set were also computed
in 1000 implementations. The RMSEs results obtained by three methods are summarized
by boxplots as illustrated in Figure 11. It can be clearly seen that the results obtained by
the LASSO approach are more accurate than those obtained by the GP and GS2 techniques.
More specifically, the mean and interquartile range of the estimation RMSEs in the LASSO
implementations are 1.54 and 0.28, whereas those in the GP and GS2 experiments are 2.16
and 0.43, and 3.68 and 0.55, respectively.

Figure 11. Boxplots of RMSEs obtained by the proposed approach compared with those obtained by
GP [16] and GS2 [2].

6. Conclusions

This paper has discussed an image-based approach for efficiently estimating the mi-
croalgal density. The exploitation of some features of image texture, including color channel
averages, confidence intervals of means of pixel values, powers of spatial frequencies, and
entropies, has been proposed to represent characteristics of microalgae presenting in mea-
sured images. More importantly, a LASSO regression model was utilized to optimally select
the most informative features, which leads to the best fitting to the data and more accurately
estimated results of the microalgal density. The proposed approach was evaluated in the
real-life dataset of monitoring the Chlorella vulgaris microalgae strain. The obtained results
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show that the average estimation error in the proposed method is approximately 1.54,
whereas those in the state-of-the-art methods are 2.16 and 3.68, respectively.

By using the approach proposed in this work, we developed a monitoring system with
a software-based human–machine interface to effectively monitor the microalgal density.
The details of the applications and software can be found in [29].

Author Contributions: Conceptualization, L.N.; methodology, T.X.N. and L.N.; validation, L.N.;
resources, D.K.N.; data curation, D.K.N.; writing—original draft preparation, L.N.; writing—review
and editing, D.K.N., T.X.N., B.N. and T.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LASSO Least absolute shrinkage and selection operator
RGB Red, green, and blue
ITU International Telecommunication Union
DFT Discrete Fourier transform
RMSE Root mean square error
GP Gaussian process
GT Ground truth

References
1. Christian Barbosa, R.; Soares, J.; Arêdes Martins, M. Low-cost and versatile sensor based on multi-wavelengths for real-time

estimation of microalgal biomass concentration in open and closed cultivation systems. Comput. Electron. Agric. 2020, 176, 105641.
[CrossRef]

2. Córdoba-Matson, M.V.; Gutiérrez, J.; Porta-Gándara, M.Á. Evaluation of Isochrysis galbana (clone T-ISO) cell numbers by digital
image analysis of color intensity. J. Appl. Phycol. 2010, 22, 427–434. [CrossRef]

3. Wells, M.; Potin, P.; Craigie, J.; Raven, J.; Merchant, S.; Helliwell, K.; Smith, A.; Camire, M.; Brawley, S. Algae as nutritional and
functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017, 29, 949–982. [CrossRef]

4. Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96.
[CrossRef]

5. Wishkerman, A.; Wishkerman, E. Application note: A novel low-cost open-source LED system for microalgae cultivation. Comput.
Electron. Agric. 2017, 132, 56–62. [CrossRef]

6. Jung, S.K.; Lee, S.B. In Situ Monitoring of Cell Concentration in a Photobioreactor Using Image Analysis: Comparison of Uniform
Light Distribution Model and Artificial Neural Networks. Biotechnol. Prog. 2006, 22, 1443–1450. [CrossRef] [PubMed]

7. Zhou, W.; Wang, Z.; Xu, J.; Ma, L. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry
towards bioenergy. J. Biosci. Bioeng. 2018, 126, 644–648. [CrossRef]

8. Bitog, J.; Lee, I.B.; Lee, C.G.; Kim, K.S.; Hwang, H.S.; Hong, S.W.; Seo, I.H.; Kwon, K.S.; Mostafa, E. Application of computational
fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Comput. Electron. Agric. 2011,
76, 131–147. [CrossRef]

9. Laing, I. Cultivation of Marine Unicellular Algae; Ministry of Agriculture, Fisheries and Food Conwy: Conwy, Wales, 1991.
10. Sananurak, C.; Lirdwitayaprasit, T.; Menasveta, P. Development of a closed-recirculating, continuous culture system for microalga

(Tetraselmis sueeica) and rotifer (Brachionus plicatilis) production. ScienceAsia 2009, 35, 118–124. [CrossRef]
11. Naumann, T.; Çebi, Z.; Podola, B.; Melkonian, M. Growing microalgae as aquaculture feeds on twin-layers: A novel solid-state

photobioreactor. J. Appl. Phycol. 2012, 25, 1413–1420. [CrossRef]
12. Metsoviti, M.; Papapolymerou, G.; Karapanagiotidis, I.; Katsoulas, N. Comparison of Growth Rate and Nutrient Content of Five

Microalgae Species Cultivated in Greenhouses. Plants 2019, 8, 279. [CrossRef]
13. Tham, P.E.; Ng, Y.J.; Vadivelu, N.; Lim, H.R.; Khoo, K.S.; Chew, K.W.; Show, P.L. Sustainable smart photobioreactor for continuous

cultivation of microalgae embedded with Internet of Things. Bioresour. Technol. 2022, 346, 126558. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compag.2020.105641
http://dx.doi.org/10.1007/s10811-009-9475-0
http://dx.doi.org/10.1007/s10811-016-0974-5
http://dx.doi.org/10.1263/jbb.101.87
http://dx.doi.org/10.1016/j.compag.2016.11.015
http://dx.doi.org/10.1021/bp0600886
http://www.ncbi.nlm.nih.gov/pubmed/17022685
http://dx.doi.org/10.1016/j.jbiosc.2018.05.006
http://dx.doi.org/10.1016/j.compag.2011.01.015
http://dx.doi.org/10.2306/scienceasia1513-1874.2009.35.118
http://dx.doi.org/10.1007/s10811-012-9962-6
http://dx.doi.org/10.3390/plants8080279
http://dx.doi.org/10.1016/j.biortech.2021.126558
http://www.ncbi.nlm.nih.gov/pubmed/34906702


Sensors 2023, 23, 2543 18 of 18

14. Lim, H.R.; Khoo, K.S.; Chia, W.Y.; Chew, K.W.; Ho, S.H.; Show, P.L. Smart microalgae farming with internet-of-things for
sustainable agriculture. Biotechnol. Adv. 2022, 57, 107931. [CrossRef] [PubMed]

15. Nguyen, L.; Nguyen, D.K.; Nghiem, T.X.; Nguyen, T. Least square and Gaussian process for image based microalgal density
estimation. Comput. Electron. Agric. 2022, 193, 106678. [CrossRef]

16. Nguyen, D.K.; Nguyen, L.; Le, D.V. A Low-Cost Efficient System for Monitoring Microalgae Density using Gaussian Process.
IEEE Trans. Instrum. Meas. 2021, 70, 7504308. [CrossRef]

17. Havlik, I.; Scheper, T.; Reardon, K.F. Monitoring of Microalgal Processes. In Microalgae Biotechnology; Posten, C., Feng Chen, S.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–142.

18. Cogne, G.; Lasseur, C.; Cornet, J.; Dussap, C.G.; Gros, J. Growth monitoring of a photosynthetic micro-organism (Spirulina
platensis) by pressure measurement. Biotechnol. Lett. 2001, 23, 1309–1314. [CrossRef]

19. Bulgarea, G.; Boukadoum, M. A high-performance instrumentation system to measure the fluorescence kinetics of plants for in
vivo photosynthesis research. IEEE Trans. Instrum. Meas. 2001, 50, 679–689. [CrossRef]

20. Meireles, L.A.; Azevedo, J.L.; Cunha, J.P.; Malcata, F.X. On-line determination of biomass in a microalga bioreactor using a novel
computerized flow injection analysis system. Biotechnol. Prog. 2002, 18, 1387–1391. [CrossRef]

21. Chen, X.; Goh, Q.Y.; Tan, W.; Hossain, I.; Chen, W.N.; Lau, R. Lumostatic strategy for microalgae cultivation utilizing image
analysis and chlorophyll a content as design parameters. Bioresour. Technol. 2011, 102, 6005–6012. [CrossRef]

22. Uyar, B. A novel non-invasive digital imaging method for continuous biomass monitoring and cell distribution mapping in
photobioreactors. J. Chem. Technol. Biotechnol. 2012, 88, 1144–1149. [CrossRef]

23. Sarrafzadeh, M.H.; La, H.J.; Lee, J.Y.; Cho, D.H.; Shin, S.Y.; Kim, W.J.; Oh, H.M. Microalgae biomass quantification by digital
image processing and RGB color analysis. J. Appl. Phycol. 2015, 27, 205–209. [CrossRef]

24. Winata, H.N.; Nasution, M.A.; Ahamed, T.; Noguchi, R. Prediction of concentration for microalgae using image analysis.
Multimed. Tools Appl. 2021, 80, 8541–8561. [CrossRef]

25. Drabycz, S.; Stockwell, R.G.; Mitchell, J.R. Image Texture Characterization Using the Discrete Orthonormal S-Transform. J. Digit.
Imaging 2008, 22, 696–708. [CrossRef]

26. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York,
NY, USA, 2009.

27. Mehr, A.D.; Gandomi, A.H. MSGP-LASSO: An improved multi-stage genetic programming model for streamflow prediction. Inf.
Sci. 2021, 561, 181–195. [CrossRef]

28. Oberdorf, F.; Stein, N.; Flath, C.M. Analytics-enabled escalation management: System development and business value assessment.
Comput. Ind. 2021, 131, 103481. [CrossRef]

29. Nguyen, D.K.; Nguyen, H.Q.; Dang, H.T.T.; Nguyen, V.Q.; Nguyen, L. A low-cost system for monitoring pH, dissolved oxygen
and algal density in continuous culture of microalgae. HardwareX 2022, 12, e00353. [CrossRef]

30. Masojídek, J.; Kopecký, J.; Giannelli, L.; Torzillo, G. Productivity correlated to photobiochemical performance of Chlorella mass
cultures grown outdoors in thin-layer cascades. J. Ind. Microbiol. Biotechnol. 2010, 38, 307–317. [CrossRef]

31. Dekking, F.M.; Kraaikamp, C.; Lopuhaa, H.P.; Meester, L.E. A Modern Introduction to Probability and Statistics: Understanding Why
and How; Springer: London, UK, 2005.

32. Park, C.S. 2D Discrete Fourier Transform on Sliding Windows. IEEE Trans. Image Process. 2015, 24, 901–907. [CrossRef]
33. Susan, S.; Hanmandlu, M. A non-extensive entropy feature and its application to texture classification. Neurocomputing 2013,

120, 214–225. Image Feature Detection and Description. [CrossRef]
34. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,

SMC-3, 610–621. [CrossRef]
35. Silva, L.E.; Duque, J.J.; Felipe, J.C.; Murta Jr, L.O.; Humeau-Heurtier, A. Two-dimensional multiscale entropy analysis: Applica-

tions to image texture evaluation. Signal Process. 2018, 147, 224–232. [CrossRef]
36. Onchis, H.D.M. A deep learning approach to condition monitoring of cantilever beams via time-frequency extended signatures.

Comput. Ind. 2019, 105, 177–181. [CrossRef]
37. Pan, X.; Xu, Y. A safe reinforced feature screening strategy for lasso based on feasible solutions. Inf. Sci. 2019, 477, 132–147.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.biotechadv.2022.107931
http://www.ncbi.nlm.nih.gov/pubmed/35202746
http://dx.doi.org/10.1016/j.compag.2021.106678
http://dx.doi.org/10.1109/TIM.2021.3119142
http://dx.doi.org/10.1023/A:1010521406607
http://dx.doi.org/10.1109/19.930440
http://dx.doi.org/10.1021/bp020283u
http://dx.doi.org/10.1016/j.biortech.2011.02.061
http://dx.doi.org/10.1002/jctb.3954
http://dx.doi.org/10.1007/s10811-014-0285-7
http://dx.doi.org/10.1007/s11042-020-10052-y
http://dx.doi.org/10.1007/s10278-008-9138-8
http://dx.doi.org/10.1016/j.ins.2021.02.011
http://dx.doi.org/10.1016/j.compind.2021.103481
http://dx.doi.org/10.1016/j.ohx.2022.e00353
http://dx.doi.org/10.1007/s10295-010-0774-x
http://dx.doi.org/10.1109/TIP.2015.2389627
http://dx.doi.org/10.1016/j.neucom.2012.08.059
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1016/j.sigpro.2018.02.004
http://dx.doi.org/10.1016/j.compind.2018.12.005
http://dx.doi.org/10.1016/j.ins.2018.10.031

	Introduction
	Data Collection
	Monitoring System
	Preprocessing Data

	Feature Design
	Averages of Color Channels
	Mean Intervals of Color Channels
	Spatial Frequency
	Entropy

	L1-Regularization Based Estimation Method
	LASSO
	Penalty Term Learning
	Microalgal Density Estimation

	Experimental Result Analysis
	Single Feature Combinations
	Two-Feature Combinations
	Three and Four-Feature Combinations
	Higher-Order and Nonlinear Entropy Features
	Estimation Results

	Conclusions
	References

