
Citation: Bouazizi, M.; Lorite Mora,

A.; Ohtsuki, T. A 2D-Lidar-Equipped

Unmanned Robot-Based Approach

for Indoor Human Activity Detection.

Sensors 2023, 23, 2534. https://

doi.org/10.3390/s23052534

Academic Editor: Luigi Patrono

Received: 20 January 2023

Revised: 17 February 2023

Accepted: 22 February 2023

Published: 24 February 2023

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A 2D-Lidar-Equipped Unmanned Robot-Based Approach for
Indoor Human Activity Detection
Mondher Bouazizi 1 , Alejandro Lorite Mora 2 and Tomoaki Ohtsuki 1,*

1 Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
2 Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
* Correspondence: ohtsuki@ics.keio.ac.jp

Abstract: Monitoring the activities of elderly people living alone is of great importance since it allows
for the detection of when hazardous events such as falling occur. In this context, the use of 2D light
detection and ranging (LIDAR) has been explored, among others, as a way to identify such events.
Typically, a 2D LIDAR is placed near the ground and collects measurements continuously, and a
computational device classifies these measurements. However, in a realistic environment with home
furniture, it is hard for such a device to operate as it requires a direct line of sight (LOS) with its
target. Furniture will block the infrared (IR) rays from reaching the monitored person thus limiting
the effectiveness of such sensors. Nonetheless, due to their fixed location, if a fall is not detected
when it happens, it cannot be detected afterwards. In this context, cleaning robots present a much
better alternative given their autonomy. In this paper, we propose to use a 2D LIDAR mounted
on top of a cleaning robot. Through continuous movement, the robot is able to collect distance
information continuously. Despite having the same drawback, by roaming in the room, the robot
can identify if a person is laying on the ground after falling, even after a certain period from the fall
event. To achieve such a goal, the measurements captured by the moving LIDAR are transformed,
interpolated, and compared to a reference state of the surroundings. A convolutional long short-term
memory (LSTM) neural network is trained to classify the processed measurements and identify if a
fall event occurs or has occurred. Through simulations, we show that such a system can achieve an
accuracy equal to 81.2% in fall detection and 99% in the detection of lying bodies. Compared to the
conventional method, which uses a static LIDAR, the accuracy reaches for the same tasks 69.4% and
88.6%, respectively.

Keywords: activity detection; healthcare; 2D Lidar; deep learning; machine learning

1. Introduction

With the population pyramid in most countries of the world shifting towards a con-
strictive shape, more and more pressure is being put on healthcare staff to monitor elderly
people. Elderly people, in particular ones living alone, need continuous monitoring to
make sure they are in good condition and not going through hazardous events. Falling, for
the most part, is considered to be one of the most dangerous events that would occur. This
is because the elderly person might lose consciousness or suffer from other issues, which
might be either the root cause of falling (e.g., heart attack, etc.) or a direct consequence
(e.g., injuries). A report from the World Health Organization [1] showed that 37.3 million
falls that are severe enough to require direct intervention happen every year. Over 684,000
of these are fatal and constitute the second main cause of death due to unintentional in-
jury, second only to road traffic injuries. Even though the remainder of the falls are not
lethal for the most part, they contribute to over 38 million disability-adjusted life years
(DALYs). Detecting such an event is, therefore, of great importance to avoid long-term
lethal consequences.

Sensors 2023, 23, 2534. https://doi.org/10.3390/s23052534 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052534
https://doi.org/10.3390/s23052534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7055-9318
https://orcid.org/0000-0002-8704-1248
https://orcid.org/0000-0003-3961-1426
https://doi.org/10.3390/s23052534
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052534?type=check_update&version=1

Sensors 2023, 23, 2534 2 of 25

With that in mind, the detection of falls, and more generally the activities of elderly
people living alone, has been a hot topic of research. In this context, the expression
“activity detection” has been conventionally used to refer to the detection of one’s actions,
intentionally or unintentionally performed [2,3]. The level of precision of the activities
being detected varies widely. A coarse-grained classification aims to classify the activity
“fall” from any other activity, whereas a fine-grained one aims to identify the activity at
a very fine level, such as whether the person is walking, standing, sitting, etc. Several
approaches have been proposed in the literature to perform activity detection [4–9]. Such
approaches usually rely on sensing devices placed in the environment of the monitored
person or attached to their body. For instance, with the development of smart wearable
devices, multiple approaches make use of the gyroscopes and accelerometers installed in
devices such as smartphones and smartwatches to perform classification tasks aiming to
identify whether or not a person falls/is falling [10–12]. However, their requirement to
be maintained and well placed all the time presents a burden for the monitored person
and might not be very reliable. This makes approaches that rely on sensors placed in the
environment and attached to a continuous source of electrical power a more attractive
option. Over the years, approaches relying on cameras, sensors, and even ambient signals
have been proposed [2,13–15]. Such approaches have their limitations as we will explain
later in Section 2.1. However, these can be summarized into the following: (i) coverage
problems, (ii) privacy problems, (iii) practicality problems, and (iv) cost problems.

On a different topic, robotics are considered to be some of the trendiest, most popular
and fastest growing technologies today [16]. Thanks to their capabilities, mobile robots
can replace or operate alongside humans in numerous environments. Mobile robots can
move independently in an industrial facility, laboratory, house, etc., that is, without aid
from external human operators. In recent years, such robots have seen a raise in usage in
houses, mostly for cleaning purposes. Roaming in the house and cleaning the floor has
been the objective of many such robots that have been a commercial success over the last
few years [17]. However, the applications of such robots (i.e., cleaning robots) could be
extended to tasks beyond their basic ones, namely the topic of this paper’s research: human
activity recognition (HAR). These robots can be equipped with sensors and computation
devices that could be tuned to identify the activities of people in indoor environments. This
is thanks to the advances in both sensing technologies and artificial intelligence (AI) [18–20].

In this context, the Robot Operating System (ROS) [21] refers to a set of open-source
software libraries and tools that simplify the process of building robot applications, allowing
for the integration of new components into the robot without interfering with its basic
functioning. This work is dependent on the ROS to provide the basic functionalities of
mobile robots during our simulations. In addition, physics simulations are fundamental
for robotics research and industry alike and constitute the second main component of our
simulations. Physics simulators allow the reproduction of real-world environments since
they give an environment that is affordable and provides users access to several desired
robots without the problem of deteriorating or harming the physical platform.

Our current paper falls in the intersection between these key research areas: HAR and
robotics simulations. We introduce our in-house-built simulator to reproduce the behavior
of autonomous robots and the functioning of the sensors used for our work. Our simulator
makes use of a realistic physics engine [22–24] to recreate a real-world-like environments in
which subjects and robots can move and act as they would in the real world. Our simulator
is then used to simulate several scenarios in which a person is performing several activities
in a room while a cleaning robot equipped with a 2D light detection and ranging (LIDAR)
cleans the room. The robot is simulated to be equipped with a computation device, which
uses the information collected by the 2D LIDAR (hereafter referred to as “2D Lidar” or
simply “Lidar”) to classify, in real time, the activities performed by the person.

The novelties of this paper can be summarized as follows:

• We introduce a novel approach for indoor HAR using an unmanned robot equipped
with a 2D Lidar. Unlike conventional methods [4,8], which rely on static 2D Lidars

Sensors 2023, 23, 2534 3 of 25

placed on the ground, we rely on a moving robot (such as a cleaning robot) to achieve
this goal, making the approach more practical.

• We address the different challenges that come along with such an approach, namely
(i) the continuous movement of the Lidar, which makes it hard to keep track of the
location of the subject, (ii) the cases when the fall activity might occur when the falling
person is hidden by obstacles, and (iii) the fact that the manifestation of an activity
from the Lidar’s perspective varies greatly depending on the relative position between
the subject and the Lidar.

• Through simulations, we demonstrate the effectiveness of our proposed approach by
comparing it to the conventional approaches [4,8].

• We evaluate different tuning parameters for our proposed approach and derive the
optimal configuration for better activity detection.

• We introduce a novel simulator that simulates the behavior of cleaning robots equipped
with sensors in the presence of a humans in indoor environments.

The remainder of this paper is structured in the following order. In Section 2, we
describe some of the state-of-the-art work related to the current task that we are researching
and introduce our motivations for this work. In Section 3, we introduce the key concepts
allowing for a better understanding of our proposed approach. In Section 4, we present
how our simulator is built. In Sections 5 and 6, we describe in detail our proposed method
for localization and activity detection and evaluate it using our simulator, respectively.
Finally, in Section 7, we conclude this paper and present directions for a future work.

2. Related Work and Motivations
2.1. Related Work

A key concept in HAR is the detection of existing people in the first place and the
identification of their location. Many approaches for localizing a person from a mobile
robot using one or multiple sensors have been studied over the past years [25].

Most of these approaches rely heavily on privacy-threatening devices, namely common
RGB cameras and depth cameras, to recognize the humans, locate them, and identify their
activities. To address the privacy issues of RGB and RGB-D cameras, we aim to perform
two of these tasks, namely localization and activity recognition using non-privacy-invasive
devices. In particular, a 2D Lidar has been used in a previous work of ours [4] to localize
people and recognize their activities. In that paper [4], we proposed a novel approach that
uses 2D Lidar and DL to perform activity recognition, namely fall detection. The 2D Lidar
is placed on the ground so that some feet points are seen. Throughout our experiments, we
demonstrated that it is possible to accurately identify up three different people, to detect
unsteady gait (i.e., when the person is about to fall or feeling dizzy), and to distinguish
between four other activities: walking, standing, sitting, and falling. The three classification
tasks have reset al.ults of over 90% accuracy. One of the limitations in that work is the
small amount of data used, which does not promise the generalizability of the proposed
approach. Another limitation is the environments used. Only five different empty rooms
with a few obstacles were used, in which the 2D Lidar was static and only a single person
was present at a time.

In a similar way, Luo et al. [8] proposed a Lidar-based approach that recognizes the
activities performed by multiple people simultaneously by classifying their trajectories.
In their work, the authors implemented a Kalman filter and built two neural networks.
The proposed temporal convolutional network (TCN) achieved the best result of 99.49%
in overall accuracy. Their work, however, defines “activity” quite differently from what
is conventionally agreed on. Rather than identifying the nature of the action itself, they
identify movements from one point in the room to another or standing in one point for a
certain period. This does not only exclude the objective defined here (i.e., identifying the
action performed) but it also means that the approach cannot generalize unless retrained in
every new encountered environment.

Sensors 2023, 23, 2534 4 of 25

Okusako et al. [26] proposed an approach that tracks humans walking around a
mobile robot using a 2D Lidar in real time by converting the data captured by the Lidar
in polar coordinates (r, θ) to a 2D image with (x, y) coordinates. Then, human tracking is
achieved via block matching between templates, i.e., appearances of human legs, and the
input polar coordinates data. A particle filter is also employed to increase the robustness
in case of occlusions. This approach, however, requires the human to be within a limited
range from the 2D Lidar to be accurately detected. In addition, similar to [4], this approach
is not capable of detecting the human when it is out of its line of sight (LoS). Finally, this
approach is not meant to detect the activity of the human, but solely to locate them, leaving
the task of activity detection a task to be performed by other means.

The approaches by Arras et al. [27] and by Taipalus et al. [28] define a person as a
model composed of two legs and use Kalman filters, constant velocity motion models, and
a multi-hypothesis data association strategy to track the person using a 2D Lidar as well.

Finally, one of the most widely known methods for detecting legs on mobile robots is
based on [7] and is implemented as a ROS package with the name of “Leg Detector” (https:
//github.com/marcobecerrap/edge_leg_detector (accessed on 1 February 2023)). Although
the original paper implements multi-sensor data fusion techniques, which combine an
onboard laser range finder (LRF) to detect the legs and a camera to detect the face, the
ROS package only uses the 2D Lidar as the input to detect the legs. A newer approach
by Leigh et al. [29] uses a different algorithm that uses only a 2D Lidar. The algorithm
is validated in varied surroundings, both indoor and outdoor, and on different robot
platforms: the intelligent power wheelchair and a Clearpath Husky. The method is also
released as a ROS package (https://github.com/angusleigh/leg_tracker (accessed on 1
February 2023)). Finally, this algorithm was improved again in [30] to become named
PeTra. This time, an offline trained full CNN is used to track the pairs of legs in cluttered
environments. This method is also published as a ROS package [31] and has become the
default approach for detecting legs using a 2D Lidar from a mobile robot. These, however,
do not address the task of activity detection in the way we do in this current work.

2.2. Motivations

Given the limitations of the works described in Section 2.1, we aim to tackle the task of
activity recognition, in its broader meaning, in a realistic room environment where a person
performs all sorts of activities using the Lidar technology. Other works [4,8] require the
Lidar to be placed in a well-chosen single location, which allows it to capture the person’s
data points all the time. This is not practical, and there is usually no guarantee that such a
place exists in the first place, in particular where a variety of furniture exists. Nonetheless,
these approaches require a dedicated sensor to be used. This leads us to believe that the use
of an already-existing device in the environment could be a much more practical solution.
For instance, cleaning robots are getting more and more commonly used in houses and their
cost has been decreasing over the past years. Being able to use them to perform HAR would
make them a great alternative for the usage of dedicated sensors. Nevertheless, having the
ability to roam in the house allows the robot to detect dangerous activities, such as falling,
even in remote places, which might be beyond the coverage areas of conventional sensors.
Another merit for using sensors on a moving robot is the ability to detect fall activities even
after they occur. Unlike conventional techniques that require the detection when the event
happens by relying on changes in the environment during the event of falling, it is possible
for the robot-mounted 2D Lidar to detect the rough shape of a person lying on the ground
and recognize that a fall has occurred even several seconds/minutes later.

With that in mind, our objective is to use mobile robots to exploit their capability
of roaming freely in indoor environments to perform HAR, namely the detection of fall
events. For this sake, we built a simulator that allowed us to recreate realistic indoor
environments and simulate the behavior of a 2D Lidar mounted on top of a robot. We used
our built simulator to create a multitude of scenarios in which a person performs all sort of
activities, which we identified using a DL-based classifier. For the data to be classified by

https://github.com/marcobecerrap/edge_leg_detector
https://github.com/marcobecerrap/edge_leg_detector
https://github.com/angusleigh/leg_tracker

Sensors 2023, 23, 2534 5 of 25

the DL-based classifier, they were cleaned up via a clustering algorithm, interpolated using
a customized algorithm to make them independent of the robot’s location, and divided
into small segments, each to be classified based on the activity performed. These steps will
be clarified in much detail in Section 5.

In the following section, we introduce some of the key concepts related to this work.
We clarify how 2D Lidars and mobile robots operate and explain the principle of the ROS.
Afterwards, we proceed to introduce our simulator, our proposed method for HAR, and
the simulation results obtained.

3. Key Concepts
3.1. Lidar Technology

A Lidar is a device that measures the distance to the nearest obstacles by emitting light
and measuring the time it takes to reflect from objects and reach the receiver.

Knowing the location and orientation of the Lidar itself in an absolute referenceand the
coordinate of the point of reflection can be derived. A 2D Lidar is simply a Lidar mounted
on a rotating device, allowing it to perform the emission/reception and computation
procedure numerous times, thus building up a 2D map (typically along a horizontal plane)
made up of all the points that the Lidar captured. Depending on the rotation speed, the
refresh frequency of the detection can range from 1 Hz (i.e., for 1 rotation per second) to
100 Hz (i.e., for 100 rotations per second). In a similar way, the angular resolution of the
Lidar reflects how precise the 2D Lidar can be on its rotating range. Regardless of the
required precision, farther objects are always represented by fewer points compared to
closer objects. Moreover, objects that are behind another object from the Lidar are not hit
by the ray so they are not seen by the Lidar.

In Figure 1, a simplified pictorial representation of the functioning of the 2D Lidar is
shown. The position of an object’s point p in Cartesian coordinates xp and yp with reference
to the 2D Lidar position and orientation can be obtained using the following formula:

xp = rp · cos(θp),

yp = rp · sin(θp),
(1)

where rp and θp are the distance and the angle from the 2D Lidar to the point p, respectively.

Figure 1. A simplified scheme of 2D Lidar’s functioning.

Sensors 2023, 23, 2534 6 of 25

Typical Lidars available in the market have a range of detection from 0.2 to 25 m, with
an error of between 1% and 2% depending on the measured distance (that is, the higher the
distance is, the higher the error is).

3.2. Mobile Robots

In our work, we assume that our 2D Lidar is mounted on an autonomous mobile robot.
In practice, such a robot can be a cleaning robot (e.g., a robot vacuum cleaner). An autonomous
mobile robot is capable of perceiving its environment through its sensors, processing that
information using its onboard computer, and responding to it through movement.

A simple differential drive robot with two fixed standard individually motorized
wheels and a castor wheel is used for the sake of our work. To specify the position of
the robot on the plane, we establish a relationship between the global reference frame of
the plane and the local reference frame of the robot, as shown in Figure 2. The way the
robot keeps track of its location in the global reference is not discussed here. However, the
relationship is assumed to be modeled mathematically and is part of the simulator library.
The robot internals and mechanics are not discussed here either. However, further details
about autonomous mobile robots can be found in [32,33].

Figure 2. A simplified scheme of a differential drive mobile robot.

While out of the scope of the current paper as we will use pre-built packages for
controlling the robot, it is important to mention that the robot behavior and motion are not
targeted towards detecting the human’s location or activity, but rather towards performing
its original task, namely cleaning the house. Therefore, it is safe to assume that the robot
roams arbitrarily, though its path should cover the same place multiple times as little
as possible.

3.3. Robot Operating Systems (ROS) and Unity ROS Simulation

Mobile robots are complex systems that combine motors, sensors, software, and
batteries, which must all work together seamlessly to perform a task. A set of open-source
software libraries and tools that simplify the process of building robot applications is the
ROS [21]. The ROS supports hardware interfaces for many common robot components,
such as cameras, Lidars, and motor controllers. This allows us to focus on addressing
specific problems and implementations by not reinventing the wheel for the rest of the
modules. The ROS 2 is an updated version of the ROS containing more features and
components allowing for covering more of the functionalities of mobile robots [23].

Sensors 2023, 23, 2534 7 of 25

The Unity ROS Simulator [34] is used in this work to generate synthetic data. Starting
from August 2021, Unity added official support for the Robot Operating System 2 (ROS 2) [23,34]
on top of many already existing plugins and solutions for simulating real-life environments.
This allows the use of mobile robots packages from the ROS that include communication
modules, navigation, simultaneous localization and mapping (SLAM), and multiple sensor
implementations and visualization such as 2D and 3D Lidars. Even if some robotics
characteristics are not as precise as in other simulators, the requirement of creating hundreds
of variations of humans performing everyday life activities in randomized scenarios is
crucial for this application, which cannot be achievable by using other simulators.

In this work, the Unity Perception package is used to simplify and fasten the process of
generating synthetic data sets for computer vision applications by delivering an easy-to-use
and highly configurable toolbox. This open-source application enhances the Unity Editor
and engine components to provide correctly annotated examples for numerous typical
computer vision tasks.

4. Simulator

In this section, we will describe the process of building the customized simulator that
we used in the rest of this paper.

The first step in this work is to create a simulator program that generates realistic
2D Lidar data from a mobile robot while a person is performing different activities in
an automated form. By automated, we mean that the simulator can run one scenario
after another while communicating with the ROS 2 and saving the data from the different
scenarios automatically.

Needless to say, in the field of robotics, several simulators have been very successful
and were used in several works to simulate autonomous robots. Gazebo [35], in particular,
has been attracting most of the attention given its rich libraries and the community behind
it supporting its features and iterating over them. Other simulators, such as MuJoCo [36]
and CARLA [37], received less attention, though they have their respective applications.
Our early experiments that led to this work were conducted using Gazebo and were later on
discarded. This is because our work does not only require a faithful simulation of the robot
behavior and mechanics, but also a similarly faithful simulation of the human behavior
and motion, which was not possible given the focus of Gazebo in robotics. Nevertheless, to
create a decently sized data set and automate the process of such a creation, while satisfying
a certain degree of randomness in the scenarios created, Gazebo, despite being usable, is
not flexible enough to allow the automatic implementation of such scenarios.

That being the case, we opted for using a simulator based on top of a realistic physics
engine that reproduces the human motion and activities faithfully, while supporting
robotics simulations.

Throughout our work, the Unity game engine and its recently added Robotics Simula-
tion package with the Robot Operating System 2 (ROS 2) [38] were the most suitable for
creating more complex, realistic, and useful scenarios.

4.1. Activity-Related Data Collection

The first step towards building the simulations is to create a set of 3D animations
representing the activities using a 3D modeling tool that can be imported and used. In this
context, the Archive of Motion capture As Surface Shapes (AMASS) database of human
motion [39] is used. The data are input to Unity. The animations of the human bodies
are manually labeled specifying for each frame the nature of the activity being performed.
By connecting activities to one another seamlessly, Unity can recreate a real human set of
activities with no sudden changes in the positions of the body parts.

4.2. Physics Engine

As stated above, throughout this work, we use Unity to run our scenarios and sim-
ulations. While Unity is basically a game engine made to allow creators to create games

Sensors 2023, 23, 2534 8 of 25

scripted in C#, it has other usages, including building simulators for robotics, autonomous
cars, etc. [23,24]. In this context, our simulators falls in the first category (i.e., robotics)
while exploiting more features in Unity, namely the physics engine PhysX and its two
features raycast and raytracing. These latter two features allow us to reproduce, faithfully,
the behavior of a Lidar. At any given moment, it is possible to cast a ray originating from
the Lidar’s supposed emitter and have realistic reflections, which are then captured by
the receiver and used to measure the distance to the surroundings in a given direction.
This simulates the behavior of the Lidar more perfectly than in real-world scenarios as
our experiments in [4] have shown. In real-world scenarios, noise and multiple reflections
lead to erroneous measurements and the detection of points that do not actually exist. To
account for this realistic behavior of light, we introduce several parameters to our simulator
to have similar patterns. These parameters are the following:

• The distance measurement error derror, referring to the inaccuracy in the estimation of
the distance and presented in the percentage of the actual distance measured by the
simulation Lidar.

• Missing data points Nlost, referring to the number of points for which the Lidar emits
a light beam but does not receive the reflection, presented in the percentage of data
points that are lost due to bad reflection.

• Wrong data points Nextra, referring to the number of points where the laser beam
was reflected on multiple objects and was received in the wrong angle, leading to a
wrongly detected point.

• Angle inaccuracy θerror, referring to how different the measured angle is from the
actual one. This is because the Lidar keeps on rotating, and while we assume the exact
same angles for each rotation, this is not the case in the real world. It is also presented
in an interval of error [− θerror

2 , θerror
2].

4.3. Robot Simulation

Regarding the robot, the TurtleBot3 Pi mobile robot [40] is used because it is mechani-
cally similar to a commercial vacuum robot while being open-source and ROS-compatible.
It is widely used in the research community in robotics areas, such as autonomous naviga-
tion, manufacturing monitoring, healthcare, education, etc. Plugins for these sensors have
been developed by the active ROS community and the corresponding simulators for the
simulation environments and the real sensors were integerated. In order to use this robot in
the Unity simulator, an imported Unified Robot Description Format (URDF) file is loaded
to Unity using the URDF-Importer package from Unity. Then, the user must modify the
generated model in case of problematic mesh issues and add custom sensors’ scripts. The
localization algorithm proposed in the next section requires a map of the room where the
simulations take place. This map can be retrieved from the ROS 2 Nav2 package by simply
calling a ROS 2 Service.

4.4. Additional Features

A couple of additional features have been implemented in the simulations. First,
a low-resolution video is recorded from a corner of the room so that it is easy to then
manually check the simulations in case some data are not correct. Second, the ground-truth
pose of the human (position and orientation) is saved on a file to later compare it to the
localization algorithm. Third, two more 2D Lidars have been added to the robot at different
heights so that their data can be compared in the future. They are located at ground level at
a height equal to 0 cm and at a height equal to 25 cm, respectively. For reference, the main
Lidar used in our work is placed at a height equal to 10 cm.

4.5. Simulator Output
4.5.1. Naming Convention

For a good understanding of the simulator output, we use the following terminology
that was adopted in previous works [4]:

Sensors 2023, 23, 2534 9 of 25

• Measurement point:A measurement point p is the individual point measured at a
time t by the Lidar. It is represented as the tuple p = (r, θ), where r is the measured
distance and θ is the angle of measurement. This measurement point is measured
from the Lidar’s perspective.

• Scan: A scan is the set of measurement points within a single rotation of the Lidar.
Given the high speed of rotation ρs (i.e., over 10 Hz), we could assume that all
measurement points taken during one rotation correspond to a single point in time t.
A scan S(t) can therefore be represented as the tuple

S(t) = {pi = (ri, θi), i = [1, · · · , N]}, (2)

where pi is the ith measurement point and N is the total number of measurement
points during the rotation. Theoretically, N is dependent on the rotation, as the number
of measurement points collected in one rotation is not always the same; therefore, N
should rather be referred to as N(t). However, in our work we do normalize the scans
via interpolation to have exactly N = 720 so that, for each 0.5°, a measurement point
is recorded (i.e., θi ∈ {0◦, 0.5◦, 1◦, · · · , 359.5◦}).

4.5.2. Output Data

With that in mind, we could proceed with defining the simulator’s output. In summary,
for each scenario, the simulator outputs two sets of information that we use either for
running our approach or as a ground truth to evaluate it.

The information generated that is used by our algorithm is the following:

• Lidar-generated data points: They include the scans that the Lidar mounted on the
robot generate. This is a set of scans S = {S(t), t = [0, · · · , Nt]}, where Nt is the
number of rotations performed by the Lidar during the entire duration Tscenario of the
scenario. Nt = Tscenario × ρs.

• Lidar location during the scenario: This is interpolated in a way where a pair of
coordinates (xl(t), yl(t)) is generated every time a scan is generated; that is, the
location of the Lidar is reported alongside with each individual scan. This is a set
Ll = {(xl(t), yl(t)), t = [0, · · · , Nt]}. The Lidar location is supposed to be known
at any given moment, as the robot is expected to be self-aware of its position within
the house/room for cleaning purposes.

The information generated that is used for evaluation is the following:

• Subject’s location: Similar to the way we generate the coordinates of the Lidar, for
every time step t (the time of the scan collected by the robot), the location of the subject
is reported. This is also a set of coordinates Lgt

s = {(xgt
s (t), ygt

s (t)), t = [0, · · · , Nt]}.
• The activities performed by the subject: During the annotation, each activity happens

over a certain duration of time, and all scans that took place during that duration
will be given the label associated with that activity. This translates into the set Agt =
agt(t), t = [0, · · · , Nt]}, where agt(t) is the ground-truth activity performed during
the time step t of the scenario.

• Room map: This is a simple matrix-shaped image, with a certain degree of precision
indicating whether or not there is an obstacle in a given position. Each pixel contains
a value set to 1 or 0, indicating whether or not there is an obstacle in the location of
the room corresponding to that pixel. A map of shape Xpx ×Ypx pixels for a room of
dimensions dlength × dwith indicates that each pixel represents a rectangle of the room

of the size
dlength

Xpx
× dwidth

Ypx
.

Sensors 2023, 23, 2534 10 of 25

5. Proposed Method for Human Localization and Activity Detection

In this section, we introduce our methods for human localization and activity detection.

5.1. Localization

The first step in the proposed method is to localize the human regardless of the activity
being performed, even behind objects. The localization of the subject is a very important
task on its own. It also allows for a reliable classification task later on. Our algorithm
consists basically of two steps: (i) knowing the Lidar’s coordinates and orientation, we
locate the data points collected from the surroundings relative to the Lidar and transform
them to absolute ones in a reference attached to the room and (ii) use previous knowledge
and/or a clustering algorithm to locate the user-related data point. The input data to this
algorithm is what has been described in the previous section (i.e., the Lidar-generated data
points and its location during the scenario) as well as any previous knowledge acquired
from previous scans.

A flowchart of the proposed algorithm for the location identification is given in
Figure 3. We first transform the coordinates of the data points in a given scan S collected
by the Lidar into absolute coordinates. This is straightforward knowing the location of
the Lidar itself. Given the location of the Lidar (xl(t), yl(t)) and a data point pj in the scan
whose polar coordinates are (rj(t), θj(t)), the Cartesian coordinates of the data point j in
the absolute reference are calculated as follows:

xj(t) = xl(t) + rj(t) cos(θj(t)),

yj(t) = yl(t) + rj(t) sin(θj(t)).
(3)

Previously found
locationCurrent scan Robot location Empty Scan

Transform the Lidar scan into absolute
coordinates

Identify "potential" subject related data points

Identify and confirm the subject data points

Clean Scan Subject locationSubject data
points

Figure 3. A simplified flowchart of the steps performed for location identification.

By doing this, we are able to transform the scan S from polar coordinates with reference
to the Lidar to a set of points with their absolute Cartesian coordinates. For simplicity, we
refer to this new set as a scan as well.

Afterwards, we use a slight alteration of the algorithm we previously proposed in [4]
to clean the scan, discard noisy data points, identify the subject’s related data points,
and derive their location. Algorithm 1 shows how this is peformed. The algorithm first
compares the data points of the current scan to an empty scan taken when no person was
in the room. The data points that are not within a range of δd to the ones of the empty scan
are considered as newly found points and are saved in a separate list S∗. The clustering
algorithm DBSCAN [41] is used to find clusters of newly found points. Depending on the

Sensors 2023, 23, 2534 11 of 25

number of clusters and the potentially found location in the previous scans, the subject’s
location is retrieved and is used to isolate the subject’s data points in the current scan.

Algorithm 1: Location identification
Input: Se: empty scan

S: actual scan
cn−1: previous location found, default = (0, 0)
N: number of data points in a scan
δd: threshold to consider a data point as non-room-related
ε, mins: parameters of DBSCAN
∆r: min distance to the centroid

Output: S′: scan cleaned
cn: user location

S∗ ← []; cn ← (0, 0);
for p in S do

for pe in Se do
r ← Distance(pe, p);
if r < δd then S[i][1]← 0;
;

end
end
S∗ ← Minimize(S);
C ← DBSCAN(S∗, ε, mins);
if size(C) = 1 then

cn ← centroid(C[1])
end
else

clist = [];
for c in C do

if |c− cn−1| < 2 · δd & cn−1 6= (0, 0) then clist.insert(c) ;
end
cn ← centroid(clist);

end
S′ ← [];
for p in S∗ do

if Distance(p, cn) < Deltar then
S′.insert(p);

end
end
return S′, cn;

5.2. Activity Recognition

The second step in the proposed method in this work is to recognize the activities
performed from the person’s points identified by the Lidar placed on top of a mobile robot
(i.e., the output of the previous step). Identifying the activity performed by the subject
requires the localization algorithm to perform well. The quality of the output generated by
the algorithm affects largely the performance of the activity identification. Our approach
uses deep learning techniques for classifying the following human activities: crawling,
falling down, getting up, lying down, running, sitting down, standing, walking, and
walking unsteadily. Only one type of network is used: a long short-term memory (LSTM)
neural network architecture. This type of network deals with the data after pre-processing
and interpolation. LSTM networks are basically an improved version of conventional
recurrent neural networks (RNN), made to learn and keep in memory long sequences
of input data and learn the dependencies between them. In this work, three different

Sensors 2023, 23, 2534 12 of 25

variations of a similar LSTM model are proposed by using three different inputs. The
architecture of the models is very simple, containing only a few layers. Although infinite
input data can be generated from the simulations, the animations used for some activities
are scarce. Therefore, a simpler architecture is preferred to avoid overfitting.

Some other works using a static 2D Lidar, such as [4], use the output of the scans in
their original polar coordinates for the input. In our case, however, this is not possible as
the 2D Lidar is moving all the time and the ranges of the angles change. For instance, in
cases where the robot is moving and the subject is standing, the position of the subject
from the Lidar’s perspective is changing, which, in [4], is an indication that the subject
is moving.

For the three variations of our model, the input is the cleaned-up scan S′ showing a
map containing only the subject’s data points in Cartesian coordinates as returned by the
localization algorithm. As the input shape has to be constant, a certain interpolation is used
to create a fixed input type/size. Therefore, we apply a simple technique, with 3 variations
to transform the set of coordinates representing the data points of the user in a single scan
into a 2D image. This, in return, means that a sequence of scans could be transformed into
a sequence of 2D images (i.e., an animation) that can be processed by a convolutional LSTM
(ConvLSTM) network. The variations of the transformations of the individual scans are
conducted as follows:

• Boolean grid: in this variation, we create a grid of a fixed size supposedly fitting the
largest room possible, similar to how we described a map in Section 4.5.2, given a
certain required degree of precision, each pixel indicating whether or not there is a
data point in the part of the map that corresponds to that pixel. In other words, each
pixel contains a value set to 1 or 0, indicating whether or not there is an obstacle in the
location of the room corresponding to that pixel. A map of shape Xpx ×Ypx pixels for
a room of dimensions dlength × dwith indicates that each pixel represents a rectangle of

the room of size
dlength

Xpx
× dwidth

Ypx
.

• Image with Circles: in this variation, we assume a white image with a size of Xpx×Ypx
pixels. Assuming a larger image size in this variation, plotting small dots indicating
the user data points make them almost invisible. We therefore plot each data point
with a circle whose center is the coordinates of the data points and with a radius Rc
large enough to make it visible in the image.

• Image with ellipses: this variation is similar to the previous one. The only difference
is that we use ellipses with radii (Ra, Rb) whose centers are the coordinates of the data
points themselves.

For the classification, not only do the images need to have the same size, but the
lengths of their sequences themselves need to be the same. Therefore, we use a sliding
window with a fixed length to cut the sequences into equal sizes. Later, when we run the
evaluation, we will describe in more detail the data acquisition.

For the first variation of the technique, we use a grid of a size equal to 60 × 60 pixels.
For a room of 6 × 6 m2, this translates into a precision of 10 × 10 cm2 per pixel, meaning
that every 10 × 10 cm2 of the room is represented by a single pixel As for the other two
variations, we assume different image sizes, though the reported results will be when using
1200 × 1200 pixels. While this is a technical detail that we will elaborate on later in the next
section, we mentioned it to explain why we use a different number of convolutional layers
in our ConvLSTM network.

The first variation uses the neural network architecture shown in Figure 4. It consists
of a single time-distributed convolution with 32 filters whose size is 3 × 3, followed by a
time-distributed 2 × 2 max pooling layer. The output of the max pooling layer is flattened
and fed to the LSTM layer, which has 40 cells. The LSTM output is connected to 2 fully
connected layers that have, respectively, 100 and NC neurons. NC represents the total
number of classes of activities.

Sensors 2023, 23, 2534 13 of 25

In
pu

t

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(3
2

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 M
ax

Po
ol

in
g

(2
×2

)

LSTM

LSTM

LSTM

LSTM

B
at

ch
 N

or
m

al
iz

at
io

n

Fl
at

te
n

Convolution sub-network LSTM sub-network FC layers

Figure 4. Architecture of the neural network used for classifying sequences generated by the variation
1 of our classification algorithm.

The second and third variations use the neural network architecture shown in Figure 5.
It consists of 3 blocks of time-distributed convolutions, where each block has 2 time-
distributed convolutional layers followed by a single max pooling layer. The number of
filters as indicated in the figure for the layers in order is (64, 64, 32, 32, 32, 32). All filters
have a size equal to 3 × 3. The time-distributed max pooling layers use a pool of size 2 × 2.
The output of the max pooling layer in the third block is flattened and fed to the LSTM
layer, which has 40 cells, which is followed by 2 dense layers of the same dimension as the
previous ConvLSTM.

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(3
2

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 M
ax

Po
ol

in
g

(2
×2

)

LSTM

LSTM

LSTM

LSTM

B
at

ch
 N

or
m

al
iz

at
io

n

Fl
at

te
n

Convolution sub-network LSTM sub-network FC layers

In
pu

t

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(3
2

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(6
4

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 M
ax

Po
ol

in
g

(2
×2

)

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(6
4

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(3
2

Fi
lte

rs
)

Ti
m

e
di

st
rib

ut
ed

 M
ax

Po
ol

in
g

(2
×2

)

Ti
m

e
di

st
rib

ut
ed

 C
on

vo
lu

tio
n

(3
2

Fi
lte

rs
)

Figure 5. Architecture of the neural network used for classifying sequences generated by variations 2
and 3 of our classification algorithm.

6. Evaluation of the Proposed Approach

In this section, the evaluation of the proposed methods using our simulations is
described. The simulations are set up following the methodology explained in the previous
section. The rooms designed for these simulations have medium sizes (i.e., no more
than 6 × 6 m2—see Appendix A). As previously stated, we assume the robot is equipped
with a 2D Lidar. However, for a better evaluation, within the same scenario, we use three
Lidars placed at three different heights (0.03 m, 0.12 m, and 0.25 m, respectively). None
of the Lidars interfere with the others, and they are just used for comparison. During
the simulation of a single scenario, the simulated person performs different activities,
seamlessly transitioning between them.

In the remainder of this section, we introduce the simulation parameters used and
the data acquired. We then show the hyper-parameters of our neural networks, before
proceeding with the evaluation of our proposed method.

Sensors 2023, 23, 2534 14 of 25

6.1. Simulation Parameters

As previously described in Section 4, the Lidar simulator is meant to have a high flexi-
bility and to be able to reproduce the behavior of a real-world Lidar. Thus, we introduced a
certain number of parameters. The values used for these parameters are given in Table 1.

Table 1. Parameters of the simulations meant to imitate real-world Lidars.

Parameter Signification Value

derror The error in the distance measurement 2%

Nlost The percentage of measurement points lost 4%

Nextra The percentage of non-real points detected 2%

θerror The error in the estimation of the angle 0.04°

Apart from these parameters, the Lidar and environments themselves have their own
parameters. These are given in Table 2.

Table 2. Main Parameters of the Simulations.

Parameter Signification Value

Scan rate The frequency of rotation of the Lidar 20 Hz
N The number of measurements per rotation 720
Vrobot The maximum velocity of the robot 0.2 m/s
Vhuman The maximum velocity of the human 1 m/s

Regarding our proposed approach, we have introduced a few parameters for our
method given in Algorithm 1. These parameters’ values are given in Table 3.

Table 3. Parameters used for Algorithm 1.

Parameter Signification Value

δd The threshold to consider a data point as non-room-related 0.2 m%
∆r The min distance to a centroid for a point to be considered 0.8 m

Finally, we trained our neural networks for 500 epochs each, using a batch size equal
to 16 and a learning rate equal to 0.001 with an Adam optimizer.

6.2. Simulation Results
6.2.1. Output Visualization

For a better understanding, a visualization of the detection using a 2D Lidar is given
in Figure 6. In the figure, we show an empty room with four static Lidars placed in the
corners in addition to mobile Lidars. To recall, we equipped our robot with three Lidars at
different heights for comparison. As can be seen from the figure, each of the Lidars detect
the data from their own perspective. In addition, it is obvious from the figures in the blue
area that the height of the Lidar affects the detection of the person when laying down on the
ground (after a fall, for example); thus, the choice of the height of the Lidar is very crucial.

In Figure 7, we show a more realistic set of data collected in our actual scenarios. Here,
the blue area shows the frames captured as seen from the Lidar’s perspective. In other
words, in the center of the disks shown is the Lidar. The blue and red dots correspond to
the detected data points. For these same frames, in the absolute reference, we show the data
points detected by the mobile Lidar in their raw format (orange area), after transformation
using the variations 1, 2, and 3 of the technique of transformation (green, gray, and red
areas, respectively).

Sensors 2023, 23, 2534 15 of 25

Robot’s high 2D LIDAR

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Unity Simulator

Robot’s middle 2D LIDAR

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Robot’s low 2D LIDAR

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Static LIDAR 1

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Static LIDAR 2
Y

 (
m

m
)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Static LIDAR 3

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Static LIDAR 4

Y
 (

m
m

)

X (mm)

6000

4000

2000

-2000

-4000

-6000

-7500 -5000 -2500 2500 5000 7500 10,0000

0

Unity Simulator Data Robot 2D Lidars Data Static 2D Lidars Data

Figure 6. An example of an empty room with 4 static Lidars placed in the corners in addition to a
mobile Lidars.

Sensors 2023, 23, 2534 16 of 25

Figure 7. An example of data acquisition and transformation using our proposed technique.

Sensors 2023, 23, 2534 17 of 25

6.2.2. Data Acquisition

Given the parameters set for our simulations, we created scenarios including all the
activities. In our scenarios, we assumed a room of size 6 × 6 m with some obstacles. The
data were performed continuously. Using a sliding window of frames, we created a data
set of short samples of data, each lasting 2 s. The data set obtained is given in in Table 4.
Being scarce, some activities are present in very few samples in the training and test sets.
This is due to the fact that the original set of animations acquired does not have all the
activities equally existing. To avoid problems of overfitting or data leakage, we did not use
the same animation in the training and testing scenarios.

Table 4. The data set acquired through our simulations.

Activity Training Test

Crawling forward 376 94

Falling down 340 85

Getting up 1460 365

Lying down 3608 902

Running 1112 278

Sitting on the floor 1580 395

Standing 3196 799

Walking 2948 737

Walking unsteadily 2760 690

6.2.3. Evaluation Metrics

In our work, the terms true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) for activity recognition are defined for a given activity as follows:

• True positive = the predicted label of the sample is the same as the label of the activity
in question.

• False negative = the sample of the activity in question was wrongly given the label of
another activity.

• True negative = a sample from a different activity was indeed given a label that is not
that of the activity in question.

• False positive = a sample from a different activity was wrongly given the label of the
activity in question.

Unsing these terms, we define our evaluation metrics as follows:

• Accuracy: The accuracy reflects how good the overall classification is. It shows how
many samples are correctly classified compared to the total number of samples. It is
expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4)

• Precision: The precision reflects how good the classifier is at identifying a certain class
without confusing it with another. For the instances classified as belonging to that
class, it computes the ratio of those that indeed belong to it. It is expressed as follows:

Precision =
TP

TP + FP
. (5)

Sensors 2023, 23, 2534 18 of 25

• Recall: The recall reflects how good the classifier is at classifying the instance of a
given class. In other words, out of all the instances of a given class, it computer the
ratio of those that were classified as belonging to it. It is expressed as follows:

Recall =
TP

TP + FN
. (6)

• F1-Score: The F1-score is a metric that combines both the precision and recall, to ad-
dress issues related to the misleading values of these two metrics when an unbalanced
data set is use. It is defined as follows:

F1-score = 2 · Precision · Recall
Precision + Recall

. (7)

6.2.4. Classification Results

In this subsection, we evaluate the performance of our proposed approach on the test
set. As previously stated, we trained our neural networks for 500 epochs each, using a
batch size equal to 16 and a learning rate equal to 0.001. The results reported are for the
final epoch.

(a) Data representation techniques comparison

We first evaluate our approach using the three different variations of data transforma-
tion described in Section 5.2. Using these three variations, the validation set performance
metrics are shown in Table 5. Despite being simpler and despite using a smaller image size,
the Boolean grid variant performs better than the other two as validated in this table. The
values for all the performance metrics are higher. This goes along with our initial intuition
because there are many more features in this type of representation of the points than in the
other two. While all the points are grouped in a single cluster in the circles and the ellipses
cases, the Boolean grid variant groups the points in multiple clusters (one for each cell in
the grid).

Table 5. Classification results for the activity detection using the 3 variants of data representation.

Boolean Grid Circles Image Ellipses Image

Accuracy 91.3% 78.8% 78.3%

Precision 91.3% 77.2% 76.4%

Recall 91.3% 78.8% 78.3%

F1-score 91.3% 76.5% 76.9%

(b) Proposed method classification results

Since the Boolean grid technique has given the highest accuracy, we report its results
in the rest of this work. We first report the performance results on test sets.

In Tables 6 and 7, we show the performance metrics per class as well as the confusion
matrix of the classification. As can be seen, the overall accuracy reaches 96.8%, whereas the
individual activities’ accuracy ranges from 73.0% for the activity “Running” to 99.0% for
the activity “Lying down”.

From the confusion matrix, we can see that some activities tend to be confused with
one another. In particular, the class “Running” seems to be confused with the classes
“Walking” and “Unsteady walk”. This is because these activities have similar patterns.
From the robot’s perspective, the data points of the subject are moving over time. Since the
window of time used is equal to 2 s, it is challenging for the LSTM network to correctly
distinguish these activities. In addition, the direction in which the subject moves and that
in which the robot moves affect the accuracy of the detection.

Sensors 2023, 23, 2534 19 of 25

Table 6. Classification results for the activity detection on the test set.

Activity Accuracy Precision Recall F1-Score

Crawling 88.3% 91.2% 88.3% 89.7%

Falling down 81.2% 88.5% 81.2% 84.7%

Getting up 93.4% 90.0% 93.4% 91.7%

Lying down 99.0% 99.3% 99.0% 99.2%

Running 73.0% 77.5% 73.0% 75.2%

Sitting 93.9% 95.1% 93.9% 94.5%

Standing 97.4% 95.3% 97.4% 96.3%

Walking 83.4% 87.0% 83.4% 85.2%

Unsteady walk 89.1% 85.1% 89.1% 87.0%

Overall 91.3% 91.3% 91.3% 91.3%

Table 7. Classification confusion matrix for the activity detection on the test set.

Activity Classified as
(A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)

Crawling (A1) 83 2 5 2 0 0 0 0 2

Falling down (A2) 5 69 1 2 0 5 1 2 0

Getting up (A3) 1 3 341 1 0 5 5 1 8

Lying down (A4) 1 2 3 893 0 2 0 0 1

Running (A5) 0 0 2 0 203 1 1 49 22

Sitting (A6) 0 1 5 1 1 371 5 4 7

Standing (A7) 1 0 4 0 2 0 778 2 12

Walking (A8) 0 1 5 0 44 1 15 615 56

Unsteady walk (A9) 0 0 13 0 12 5 11 34 615

More importantly, we can notice that the activity “Falling down” has an accuracy
equal to 81.2% and a precision equal to 88.5%. While this is low compared to other activities,
it is important to notice that the event of falling occurs in a short period of time. In some
instances, the person is blocked by some obstacles, making it impossible for the Lidar to
detect them. That being said, it is still possible to identify such a fall given that the accuracy
of the detection of the activity “Lying down” is equal to 99.0%. This activity naturally
happens after the fall activity, and, even if the fall is not detected in real-time, the person
can be identified later on as lying on the ground.

(c) Comparison with the conventional method [4]

Our work can be compared directly to the work [4], which uses a static Lidar placed in
the environment. During our simulations, we placed four other Lidars in different positions
in the room. This allows us to compare our method that uses the mobile robot to [4] under
the exact same conditions.

In Table 8, we compare the performance of our proposed approach compared to that
of [4]. Here, two of the four fixed Lidars’ results are reported: the one with the highest
accuracy and the one with the lowest accuracy. As can be seen from the table, our proposed
method by far outperforms [4]. The accuracy improvement is about 8% in the best case
for [4] and higher than 16% for the worst case.

Sensors 2023, 23, 2534 20 of 25

Table 8. Comparison of the classification metrics between our proposed method and that of [4].

Proposed Fixed Lidar (Highest) Fixed Lidar (Lowest)

Accuracy 91.3% 82.9% 74.0%

Precision 91.3% 83.8% 75.5%

Recall 91.3% 82.9% 74.0%

F1-score 91.3% 83.4% 74.7%

(d) Comparison with other existing method [8]

In addition to the work [4], we evaluated our proposed method to the one proposed
in [8]. The approach was re-implemented in two different variations to fit with our data
set format and specificities. In the first variation, we assume that a single Lidar fixed is
used, whereas the second uses two Lidars located at opposite locations in the room. In this
second variation, points of a single Lidar are taken into account at a time for a given sample.
The Lidar taken into account is the one where the subject visibility is the highest. However,
this could be misleading as the data format and type of scenarios we performed differ
drastically. Therefore, we report for these methods their performance indicators in their
data set as well. In Table 9, we show the performance of our proposed method against [8]
with its different variations. Here, “Luo et al. [8]—original” refers to the performance
metrics of the method [8] as reported in their original paper.

Table 9. Comparison of the classification metrics between our proposed method and that of
Luo et al. [8].

Accuracy Precision Recall F1-Score

Luo et al. [8]—variation 1 77.3% 78.4% 77.9% 77.9%

Luo et al. [8]—variation 2 82.7% 82.1% 82.7% 82.4%

Luo et al. [8]—original 99.4% 99.4% 99.5% 99.5%

Proposed method 91.3% 91.3% 91.3% 91.3%

As can be seen, our proposed method, by far, outperforms the exiting method on our
data set. This is to be expected given this method [8] has very strict constraints to perform
well, namely the subject needs to be always in the Lidar’s field of view. The performance
reported in [8] in the original work shows the potential of such approaches when such a
requirement is satisfied.

6.3. Complexity Analysis

In addition to the evaluation metrics related to the performance of detection, if the
proposed approach is to be implemented in real-world applications, the complexity of
calculations and their being run on small, embedded devices needs to be addressed as
well. Therefore, we evaluate our proposed method from this perspective. In summary, the
algorithm of our proposed system is composed of three main steps:

• Step 1: the clustering of measurement points for every scan.
• Step 2: data transformation for every scan.
• Step 3: the classification of the entire sample.

We measure the individual complexities of these steps as follows:

6.3.1. Complexity of Step 1

As seen in Algorithm 1, there are two nested loops iterating over the number of
measurement points N in a scan, which present a complexity O(N2), followed by the
algorithm DBSCAN, which has a complexity O(N2). Let us denote the number of rotations
for a sample to classify Nr. The overall complexity of step 1 is then O(Nr × N2). We need

Sensors 2023, 23, 2534 21 of 25

to recall that the number of measurement points N is at most equal to 720 in our work and
does not go to higher values. Similarly, the number of frames (i.e., scans) Nr per sample is
equal to 100 at most for 10 s worth of data.

6.3.2. Complexity of Step 2

The way we transform the data relies on the grid size. Basically, for each data point in
the cleaned-up scan (whose number of measurement points does not equal the number
N defined in the previous step. Given a certain grid of size Xpx × Ypx (referring to the
number of pixels along the length and width axes), the pixel where one measurement
point is located is given a value equal to 1, whereas a pixel where no measurement point is
located is given a value equal to 0. Rather than iterating over the two axes’ pixels (which
results in a complexity equal to O(Xpx × Ypx)), we simply divide the coordinates of the
measurement point by the length or width of 1 pixel, to directly derive its location. This
reduces the complexity of this particular step (i.e., step 2) from O(N2) to O(N).

6.3.3. Complexity of Step 3

The classification complexity is measured in way that is different from the previous
steps. The complexity of the neural network used to classify sequences of images is
measured by evaluating the number of parameters, which reflects, in return, the number of
operations performed. Given that the input of our neural network is a sequence of length
Nt of images of size Xpx ×Ypx, we use the following formulas to evaluate the number of
parameters. For a convolutional layer, the number of parameters is equal to the following:

PCONV =
(
hinput × winput × (np f ilters + 1)

)
× n f ilters, (8)

where hinput and winput are the dimensions of the input images, np f ilters is the number of
filters in the previous layer, and n f ilters is the number of filters of the layer in question. Note
that we use a single layer in our case; thus, the value of np f ilters will be set to 1. However,
we will keep the general formula.

For the LSTM layer, the number of parameters is equal to the following:

PLSTM = (ninput × nhidden) + (nhidden × noutput) + nhidden + noutput, (9)

where ninput is the input size, nhidden is the size of hidden layer (number of neurons in the
hidden layer), and noutput is the output size (number of neurons in the output layer).

The number of parameters of a dense layer is equal to the following:

PDENSE = ncurrent × (nprevious + 1), (10)

where ncurrent is the number of neurons in the current layer, and nprevious is the number of
values returned by the previous layer, be it another dense layer or a flattened output from a
convolutional layer.

With all that in mind, our neural network architecture includes a time-distributed
convolution (32 filters), one LSTM layer (with a hidden layer size equal to 40), and two
dense layers (with 100 and 9 neurons at most).

Given a size of grid equal to 60× 60 pixels, the total number of parameters is roughly
equal to 18M. Note that the vast majority of the operations are when performing the
computations in the LSTM layer. To put that in perspective, the total number of parameters
of networks of image classifications, such as VGG16 and ResNet34, are equal to 138 M and
63.5 M, respectively.

6.3.4. Overall Complexity

Given the complexities retrieved in the previous subsections, it is obvious that the
classification step is the most consuming computation, the one that would present a
bottleneck for the proposed system. However, there are a few things to keep in mind.

Sensors 2023, 23, 2534 22 of 25

For one, while the computation measured is performed for a given sample, in real-world
implementation, the LSTM will process the frames sequentially, and return the output for
every frame. In other words, for a new decision to be made, the computations performed to
process all the scans (except the new one) will be reused. In addition, while computationally
expensive for the embedded computer’s central processing unit (CPU), such computations
are parallelized and can run much faster on its graphical processing unit (GPU).

6.4. Discussion

Given the nature of the task in hand, several challenges are yet to be addressed. While
the proposed approach manages to identify the activity with an accuracy equal to 91.3%, the
current work made a few assumptions that are not always valid. It assumes the subject and
the robot to be in the same room all the time. Realistically, a cleaning robot in a multi-room
living place means that the robot might be away from the subject for an extended period. In
addition, multiple people could be present (e.g., an elderly couple), and our current study
has not addressed the task of person identification based on the gait, nor do the models
trained identify the activities of multiple people present simultaneously.

A more interesting point to address is the level of faithfulness of the simulations to
the real world. A few assumptions were taken during the simulations. Even though we
reproduced the behavior of the 2D Lidars in terms of inaccuracies and data loss, a few
other aspects were not addressed. For instance, real-world Lidars do not work well in
the presence of black objects, as the infrared light is not reflected; thus, the distance to
these objects in not measured. In addition, the effect of multi-reflections is considered to
be minimal, when in reality it could create several wrong points in the presence of highly
reflective objects (e.g., mirrors, etc.).

Finally, the results and findings of this work are yet to be validated in a real-world
robot. Through simulations, several aspects of the algorithm, processing, and classification
could be tested in order to find the optimal values and representations. These are to be
tested in real-world scenarios to prove their validity. While the acquisition of real-world
data is very challenging, mainly for hazardous activities such as falling, models built
through simulations could be evaluated on small real-world data sets for validation.

7. Conclusions

This paper aimed to develop a robust solution for human localization and human
activity recognition (HAR) using a 2D light detection and ranging (Lidar) sensor on top of
a mobile robot. Throughout this paper, we introduced our simulator, which we created and
used to run our simulations and validate our proposed algorithms for human localization
and activity recognition. Our approach uses the data collected by the Lidar mounted on top
of the robot. The data captured by the Lidar are transformed, interpolated, and compared to
a reference state of the surroundings. A customized algorithm is used to locate the subject
in the room. A convolutional LSTM neural network is then trained to classify the processed
measurements and identify if a fall event occurs or has occurred. Through simulations, we
showed that such a system can achieve an accuracy equal to 81.2% in fall detection and
99.0% in the detection of lying bodies. Compared to a conventional method, which uses a
static Lidar, the accuracy reaches for the same tasks 69.4% and 88.6%, respectively. This
translates into an improvement of over 10% in the detection accuracy of both activities.

Author Contributions: Conceptualization, M.B., A.L.M. and T.O.; methodology, M.B. and A.L.M.;
software, A.L.M.; validation, M.B., A.L.M. and T.O.; formal analysis, M.B. and A.L.M.; investigation,
A.L.M.; resources, A.L.M.; data curation, A.L.M.; writing—original draft preparation, M.B. and
A.L.M.; writing—review and editing, M.B., A.L.M. and T.O.; visualization, A.L.M.; supervision,
T.O.; project administration, T.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 2534 23 of 25

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AMASS Archive of Motion capture As Surface Shapes
ConvLSTM Convolutional Long Short-Term Memory
CNN Convolutional Neural Network
DALY Disability-Adjusted Life Year
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DL Deep Learning
EKF Extended Kalman Filter
FN False Negative
FP False Positive
HAR Human Activity Recognition
HOG Histogram of Oriented Gradients
IR Infrared
LIDAR LIght Detection And Ranging
LOS Line Of Sight
LRF Laser Range Finder
LSTM Long Short-Term Memory
RGB Red Green Blue (color channels)
RGB-D Red Green Blue Depth (color + Depth channels)
ROS Robot Operating System
RNN Recurrent Neural Network
SLAM Simultaneous Localization and Mapping
SSD Single-Shot Multibox Detector
SVM Support Vector Machine
TCN Temporal Convolutional Network
TN True Negative
TP True Positive
URDF Unified Robot Description Format

Appendix A

Appendix A.1

In Figure A1, we show an example of a room with four static Lidars placed in different
locations (in the red circles) and one mobile Lidar roaming in the room (in the green circle).
The static lidars are placed as far as possible from the center of the room while offering
good coverage.

Figure A1. An example of a room where the subject performs the activities.

Sensors 2023, 23, 2534 24 of 25

Appendix A.2

In Figure A2, we show an example of the output of the mobile Lidar (right side). The
green dots represent the Lidar’s instantaneous detected points, whereas in gray is the area
detected by the slam while the robot is roaming in the room. The subject’s footprint, as
detected by the Lidar, can be seen in the upper-left part of the generated map.

Map Generated by the 2D Lidar

Figure A2. An example of the Lidar’s generated map with different obstacles.

References
1. WHO. Falls; World Health Organization: Geneva, Switzerland, 2021.
2. Nakamura, T.; Bouazizi, M.; Yamamoto, K.; Ohtsuki, T. Wi-Fi-Based Fall Detection Using Spectrogram Image of Channel State

Information. IEEE Internet Things J. 2022, 9, 17220–17234. [CrossRef]
3. Bouazizi, M.; Ye, C.; Ohtsuki, T. Activity Detection using 2D LIDAR for Healthcare and Monitoring. In Proceedings of the 2021

IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [CrossRef]
4. Bouazizi, M.; Ye, C.; Ohtsuki, T. 2D LIDAR-Based Approach for Activity Identification and Fall Detection. IEEE Internet Things J.

2021, 9, 10872–10890. [CrossRef]
5. Muthukumar, K.A.; Bouazizi, M.; Ohtsuki, T. A Novel Hybrid Deep Learning Model for Activity Detection Using Wide-Angle

Low-Resolution Infrared Array Sensor. IEEE Access 2021, 9, 82563–82576. [CrossRef]
6. Bouazizi, M.; Ye, C.; Ohtsuki, T. Low-Resolution Infrared Array Sensor for Counting and Localizing People Indoors: When Low

End Technology Meets Cutting Edge Deep Learning Techniques. Information 2022, 13, 132. [CrossRef]
7. Bellotto, N.; Hu, H. Multisensor-Based Human Detection and Tracking for Mobile Service Robots. IEEE Trans. Syst. Man Cybern.

Part B (Cybernetics) 2009, 39, 167–181. [CrossRef] [PubMed]
8. Luo, F.; Poslad, S.; Bodanese, E. Temporal Convolutional Networks for Multiperson Activity Recognition Using a 2-D LIDAR.

IEEE Internet Things J. 2020, 7, 7432–7442. [CrossRef]
9. Gori, I.; Sinapov, J.; Khante, P.; Stone, P.; Aggarwal, J.K. Robot-Centric Activity Recognition ‘in the Wild’. In Proceedings of

the Social Robotics; Tapus, A., André, E., Martin, J.C., Ferland, F., Ammi, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 224–234.

10. Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory
monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [CrossRef]

11. Joseph, C.; Kokulakumaran, S.; Srijeyanthan, K.; Thusyanthan, A.; Gunasekara, C.; Gamage, C. A framework for whole-body
gesture recognition from video feeds. In Proceedings of the 2010 5th international Conference on Industrial and Information
Systems, St. Louis, MI, USA, 12–15 December 2010; IEEE: New York, NY, USA, 2010; pp. 430–435.

12. Yang, J.; Lee, J.; Choi, J. Activity recognition based on RFID object usage for smart mobile devices. J. Comput. Sci. Technol. 2011,
26, 239–246. [CrossRef]

13. Iosifidis, A.; Tefas, A.; Pitas, I. View-invariant action recognition based on artificial neural networks. IEEE Trans. Neural Netw.
Learn. Syst. 2012, 23, 412–424. [CrossRef] [PubMed]

14. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; IEEE: New
York, NY, USA, 2005; Volume 1, pp. 886–893.

15. Chaquet, J.M.; Carmona, E.J.; Fernández-Caballero, A. A survey of video datasets for human action and activity recognition.
Comput. Vis. Image Underst. 2013, 117, 633–659. [CrossRef]

http://doi.org/10.1109/JIOT.2022.3152315
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685470
http://dx.doi.org/10.1109/JIOT.2021.3127186
http://dx.doi.org/10.1109/ACCESS.2021.3084926
http://dx.doi.org/10.3390/info13030132
http://dx.doi.org/10.1109/TSMCB.2008.2004050
http://www.ncbi.nlm.nih.gov/pubmed/19068442
http://dx.doi.org/10.1109/JIOT.2020.2984544
http://dx.doi.org/10.1016/S0747-5632(99)00037-0
http://dx.doi.org/10.1007/s11390-011-9430-9
http://dx.doi.org/10.1109/TNNLS.2011.2181865
http://www.ncbi.nlm.nih.gov/pubmed/24808548
http://dx.doi.org/10.1016/j.cviu.2013.01.013

Sensors 2023, 23, 2534 25 of 25

16. Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications.
Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [CrossRef]

17. Kim, J.; Mishra, A.K.; Limosani, R.; Scafuro, M.; Cauli, N.; Santos-Victor, J.; Mazzolai, B.; Cavallo, F. Control strategies for cleaning
robots in domestic applications: A comprehensive review. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419857432. [CrossRef]

18. Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019,
21, 2568–2599. [CrossRef]

19. Möller, R.; Furnari, A.; Battiato, S.; Härmä, A.; Farinella, G.M. A Survey on Human-aware Robot Navigation . Robot. Auton. Syst.
2021, 145, 103837. [CrossRef]

20. Fu, B.; Damer, N.; Kirchbuchner, F.; Kuijper, A. Sensing technology for human activity recognition: A comprehensive survey.
IEEE Access 2020, 8, 83791–83820. [CrossRef]

21. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.

22. Haas, J.K. A history of the unity game engine. Diss. Worcest. Polytech. Inst. 2014, 483, 484.
23. Hautamäki, J. ROS2-Unity-XR interface demonstration. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022.
24. Wang, Z.; Han, K.; Tiwari, P. Digital twin simulation of connected and automated vehicles with the unity game engine. In

Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China,
15 July–15 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–4.

25. Linder, T.; Breuers, S.; Leibe, B.; Arras, K.O. On multi-modal people tracking from mobile platforms in very crowded and dynamic
environments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 5512–5519. [CrossRef]

26. Okusako, S.; Sakane, S. Human Tracking with a Mobile Robot using a Laser Range-Finder. J. Robot. Soc. Jpn. 2006, 24, 605–613.
[CrossRef]

27. Arras, K.O.; Grzonka, S.; Luber, M.; Burgard, W. Efficient people tracking in laser range data using a multi-hypothesis leg-tracker
with adaptive occlusion probabilities. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation,
Pasadena, CA, USA, 19–23 May 2008; pp. 1710–1715. [CrossRef]

28. Taipalus, T.; Ahtiainen, J. Human detection and tracking with knee-high mobile 2D LIDAR. In Proceedings of the 2011 IEEE
International Conference on Robotics and Biomimetics, Phuket, Thailand, 7–11 December 2011; pp. 1672–1677. [CrossRef]

29. Leigh, A.; Pineau, J.; Olmedo, N.; Zhang, H. Person tracking and following with 2D laser scanners. In Proceedings of the 2015
IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 726–733. [CrossRef]

30. Higueras, Á.M.G.; Álvarez-Aparicio, C.; Olivera, M.C.C.; Lera, F.J.R.; Llamas, C.F.; Martín, F.; Olivera, V.M. Tracking People in a
Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments. Front.
Neurorobot. 2019, 12, 85. [CrossRef] [PubMed]

31. Pantofaru, C.; Lu, D.V. ROSPackagesleg_detector - ROS Wiki; ROS org: San Martin, CA, USA, 2014.
32. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press: Cambridge, MA, USA, 2011.
33. Mataric, M.J. The Robotics Primer; MIT Press: Cambridge, MA, USA, 2007.
34. Miller, D.; Navarro, A.; Gibson, S. Advance Your Robot Autonomy with ROS 2 and Unity; ROS org: San Martin, CA, USA, 2021.
35. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the 2004

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; (IEEE
Cat. No. 04CH37566); IEEE: New York, NY, USA, 2004; Volume 3, pp. 2149–2154.

36. Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; IEEE: New York, NY, USA,
2012; pp. 5026–5033.

37. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; PMLR: London, UK, 2017; pp. 1–16.

38. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the
wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]

39. Mahmood, N.; Ghorbani, N.; Troje, N.F.; Pons-Moll, G.; Black, M.J. AMASS: Archive of motion capture as surface shapes. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 5442–5451.

40. Pyo, Y.; Shibata, Y.; Jung, R.; Lim, T.R. Introducing the Turtlebot3. In Proceedings of the ROSCon Seoul 2016, Seoul, Republic of
Korea, 8–9 October 2016; Open Robotics: Mountain View, CA, USA, 2016. [CrossRef]

41. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. Density-based spatial clustering of applications with noise. In Proceedings of the
International Conference of Knowledge Discovery and Data Mining, Portland, OR, USA, 13–17 August 1996; Volume 240.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/1729881419839596
http://dx.doi.org/10.1177/1729881419857432
http://dx.doi.org/10.1109/COMST.2019.2911558
http://dx.doi.org/10.1016/j.robot.2021.103837
http://dx.doi.org/10.1109/ACCESS.2020.2991891
http://dx.doi.org/10.1109/ICRA.2016.7487766
http://dx.doi.org/10.7210/jrsj.24.605
http://dx.doi.org/10.1109/ROBOT.2008.4543447
http://dx.doi.org/10.1109/ROBIO.2011.6181529
http://dx.doi.org/10.1109/ICRA.2015.7139259
http://dx.doi.org/10.3389/fnbot.2018.00085
http://www.ncbi.nlm.nih.gov/pubmed/30670960
http://dx.doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
http://dx.doi.org/10.36288/ROSCon2016-900770

	Introduction
	Related Work and Motivations
	Related Work
	Motivations

	Key Concepts
	Lidar Technology
	Mobile Robots
	Robot Operating Systems (ROS) and Unity ROS Simulation

	Simulator
	Activity-Related Data Collection
	Physics Engine
	Robot Simulation
	Additional Features
	Simulator Output
	Naming Convention
	Output Data

	Proposed Method for Human Localization and Activity Detection
	Localization
	Activity Recognition

	Evaluation of the Proposed Approach
	Simulation Parameters
	Simulation Results
	Output Visualization
	Data Acquisition
	Evaluation Metrics
	Classification Results

	Complexity Analysis
	Complexity of Step 1
	Complexity of Step 2
	Complexity of Step 3
	Overall Complexity

	Discussion

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

