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Abstract: In recent years, different deep learning frameworks were introduced for hyperspectral
image (HSI) classification. However, the proposed network models have a higher model complexity,
and do not provide high classification accuracy if few-shot learning is used. This paper presents an
HSI classification method that combines random patches network (RPNet) and recursive filtering (RF)
to obtain informative deep features. The proposed method first convolves image bands with random
patches to extract multi-level deep RPNet features. Thereafter, the RPNet feature set is subjected to
dimension reduction through principal component analysis (PCA), and the extracted components
are filtered using the RF procedure. Finally, the HSI spectral features and the obtained RPNet–RF
features are combined to classify the HSI using a support vector machine (SVM) classifier. In order
to test the performance of the proposed RPNet–RF method, some experiments were performed on
three widely known datasets using a few training samples for each class, and classification results
were compared with those obtained by other advanced HSI classification methods adopted for small
training samples. The comparison showed that the RPNet–RF classification is characterized by higher
values of such evaluation metrics as overall accuracy and Kappa coefficient.
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1. Introduction

Currently, HSI classification is used to solve many Earth remote sensing problems,
such as identifying tree species [1,2], estimating crop yields [3,4], and oil spill detection [5,6].
Good HSI classification results are obtained if there is sufficient labeled data for training.
However, gathering sufficient labeled training data is often too expensive in terms of
economic costs and time. For this reason, in many practical applications, small training
samples have to be used for HSI classification. The imbalance between the large number
of HSI spectral bands and the limited availability of training samples can be the cause of
the Hughes phenomenon, which leads to the risk of overfitting the training data. In this
regard, studies aimed to obtain good HSI classification results on small training samples is
attracting more and more attention.

The key steps of HSI classification are feature extraction and representation [7,8].
Before the widespread application of deep learning methods, HSI classification is based
on the use of hand-crafted (shallow) features, such as local binary patterns [9,10], mor-
phological features [11,12], and fractal-based features [13,14]. However, shallow feature
extraction techniques often require careful engineering and domain knowledge of experts,
which limits their applications. In contrast, deep learning techniques aim at automatically
extracting high-level features from raw data in a hierarchical manner. These features are
more discriminative, abstract, and robust than shallow features [8].

In recent years, deep learning methods based on convolutional neural networks
(CNNs) have been increasingly applied to HSI classification, because CNNs can effectively
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capture features from HSI pixels by exploiting the shape, layout, and texture of ground
objects, which combines the spatial and spectral information. All CNN-based HSI classifi-
cation methods can be divided into the following three types: spectral CNN, spatial CNN,
and spectral-spatial CNN. For small sample HSI classification, spectral-spatial CNN-based
methods are generally applied. These methods make it possible to explore the spectral and
spatial HSI information in a unified framework using 2D-CNN [15], 3D-CNN [16–18], or
some combinations of 1D-CNN, 2D-CNN, and 3D-CNN [19–21]. Deep CNN-based models
increase the accuracy of HSI classification. However, training becomes harder as network
depth increases. Moreover, deeper CNNs easily lead to overfitting with limited training
samples. In this regard, in some papers [22–24], texture features extracted from the HSI
or principal components (PCs) of the HSI are applied as input to the CNN to improve the
performance of the network.

Instead of CNNs, generative adversarial networks (GANs) can be used to classify HSIs
under the condition of limited training samples. GAN is built by combining a generator
and a discriminator. The generator attempts to generate samples that approximate real
samples, and the discriminator attempts to distinguish whether the inputs are generated or
real samples. Thus, in [25], a 3D-GAN method based on the use of both spatial and spectral
HSI information is presented. [26–28] propose semi-supervised GAN-based methods for
HSI classification. Some GAN-based methods combine GAN with traditional techniques,
such as 3D bilateral filters [26] and conditional random fields [29]. An effective GAN-
based method for small sample HSI classification is proposed in [30], which presents a
symmetric convolutional GAN based on collaborative learning and attention mechanism
(CA-GAN). In CA-GAN, a generator using both collaborative and competitive learning
generates high-quality samples. Moreover, in CA-GAN, the discriminator captures global
spectral dependencies instead of local correlation captured by convolutional kernels in
existing GANs. As shown in [30], CA-GAN outperforms other advanced GAN-based HSI
classification methods when the number of training samples is limited. The drawback of
GAN-based methods is that GANs are hard to train because the generator and discriminator
models are trained simultaneously in a game.

Rich opportunities for small sample HSI classification open up semi-supervised and
active learning methods that can use unlabeled training samples in addition to a limited
set of labeled samples. These methods are based on the assumption that there is no severe
shift between the two data distributions, which are the target domain data and the source
domain data. Thus, in [31–34], graph-based semi-supervised and active learning methods
are presented and analyzed, which are characterized by high classification accuracy with
limited training samples. In [35], Hu et al. propose a 3D VS-CNN method that uses
active learning to construct valuable training samples, which improves the small sample
classification. However, semi-supervised and active learning methods do not take into
account the domain shift problem (due to different environmental conditions, such as light
or atmosphere, the target and source domains usually have a significant spectral shift).

To overcome the domain shift problem, deep cross-domain methods can be used,
which are based on transfer learning and apply characteristics of the source domain to the
target domain. Thus, Ref [36] proposes a multitask deep learning method that simulta-
neously conducts classification and reconstruction in an open world (called MDL4OW)
where unknown classes may exist. Ref [37] introduces deep cross-domain few-shot learning
(DCFSL) method that combines few-shot learning and a domain adaptation strategy in a
conditional adversarial manner together to address the issue that there may be different
data distributions between target and source domains. In addition, few-shot learning
is executed in source and target classes at the same time, which can not only discover
transferable knowledge in the source classes, but also learn a discriminative embedding
model to the target classes. However, an open problem of all cross-domain methods is the
fitness of external datasets.

In order to solve the few-shot learning problem without involving external datasets,
metric learning can be used [38–40]. Metric learning allows exhibiting a relationship
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between two samples through mapping these samples into a metric space. In the metric
space, the distance between the samples of same classes will be as close as possible, and
the distance between the samples without the same classes is as large as possible. As
shown in [39], when the number of training samples is 50 per class, good HSI classification
results are obtained using a similarity-based deep metric model (S-DMM) that provides
a classification accuracy very close to 100% on test datasets. A disadvantage of metric
learning methods is that they are usually very time-consuming.

In the last few years, Transformer-based methods have also been used to classify HSIs
with limited training samples [41–45]. A Transformer is a recently proposed deep-learning
model that adopts a self-attention mechanism that weights the significance of each part
of input data differently. Unlike CNNs, which are suitable for extracting local features,
Transformers are better suited to capture global (long-range) contextual relationships. If
very small training samples are used for each class, excellent HSI classification results
are obtained by the Transformer-based method from [42]. This method does not use
external datasets and combines a GAN, Transformer encoder (TE), and Convolution block
in a unified framework that can be denoted as TC-GAN. The proposed method has both
a global receptive field provided by the TE and a local receptive field provided by the
convolution block. The drawbacks of the Transformer-based methods are that Transformers
are generally less capable for extraction of fine-grained local feature patterns [46], and do
not fully utilize spatial information [45].

In this paper, a deep learning method is proposed for small sample HSI classification,
which is based on the use of RPNet. RPNet was first presented in [47], and regards random
patches taken from images as convolution kernels. RPNet does not require training and
avoids the over-fitting problem. However, the discrimination ability of random patches is
not guaranteed and classification maps generated by RPNet are always noisy [48]. In this
regard, instead of RPNet features, RPNet–RF features are introduced for HSI classification.
These features can be derived from RPNet feature sets for HSIs. For this, RPNet feature sets
are subjected to dimension reduction using PCA and the extracted components are filtered
using the RF procedure from [49]. During the HSI classification, the RPNet–RF features are
stacked with the spectral HSI features and the obtained spectral-spatial feature vectors are
classified by SVM.

The main contributions of this paper are as follows:

(1) RPNet is combined with RF to generate RPNet–RF features for HSI classification,
which have more discrimination power than RPNet and RF features.

(2) A method is proposed, which uses RPNet–RF features for SVM classification of HSIs.
The proposed method is not time-consuming, because RPNet does not require any
training, and RF can be implemented in real-time.

(3) Using experiments with three widely known datasets and small training samples for
each class, it is shown that the proposed RPNet–RF method gives good classification
results and outperforms other advanced HSI classification methods (including few-
shot learning methods) in terms of overall accuracy and Kappa coefficient.

The remainder of this paper is organized as follows: Section 2 briefly describes the
proposed RPNet–RF method. Subsequently, Section 3 exhibits experimental results and
their analysis. Finally, some conclusions are drawn in Section 4.

2. Method

This Section introduces the RPNet–RF method for HSI classification (Figure 1). The
proposed classification method consists of the following steps: (1) RPNet feature extraction,
(2) RPNet–RF feature extraction, (3) combining HSI spectral features and RPNet–RF features,
and (4) SVM classification by spectral and RPNet–RF features.
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Figure 1. Schematic of the proposed RPNet–RF method for HSI classification.

2.1. RPNet Feature Extraction

At the first step of the HSI classification by the proposed method, deep features are
extracted from the original HSI H using RPNet proposed in [47]. In order to obtain the first
layer RPNet features, the following actions are performed:

PCA is first applied to H, and only the first p PCs are extracted. The dimension-reduced
data can be denoted as HP ∈ Rr×c×p, where r and c are the number of rows and columns
of HP, respectively. After that, to decrease the correlation between different bands of HP
and obtain a similar variance for the bands, the whitening operation is applied to HP [50].
The obtained whitening data can be denoted by HW ∈ Rr×c×p.

Convolution operations in RPNet are performed using random patches taken from
the whitening data HW and regarded as convolution kernels. To obtain k random patches, k
pixels are randomly selected from HW , and a patch is taken from around each pixel. Thus, if
k random patches P1, P2, . . . , Pk ∈ Rw×w×p are taken, then k feature maps can be generated
by convolving the whitening data HW with the random patches:

Mi =
p

∑
j=1

H(j)
W ∗ Pi

(j), i = 1, 2, . . . , k, (1)

where ∗ denotes the 2D convolution operator,Mi ∈ Rr×c is the ith feature map, H(j)
W ∈ Rr×c

is the jth dimension of HW , and Pi
(j) ∈ Rw×w is the jth dimension of the ith random patch.

The obtained feature maps M1, M2, . . . , Mk are stacked into M ∈ Rr×c×k. After that,
M is reshaped to 2D matrix M ∈ Rrc×k in order to further apply the activation function. For
improving the sparsity of features from M, the rectified linear units (ReLU) are used as the
activation function. Using ReLU, features in the first layer are defined as:

F(1) = max(0, M− D) (2)

where D ∈ Rrc×k is the mean matrix composed by k replications of d2, and d2 ∈ Rrc×1

is the mean vector of M in the second dimension. Finally, F(1) ∈ Rrc×k is reshaped to
F(1) ∈ Rr×c×k.
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The second layer RPNet features are obtained by assuming that F(1) is a new input H
and performing the first-layer actions. In a similar manner, features in the lth layer can be
obtained for all l ∈ [2, L], where L is the network depth. Thus, if F(l−1)(l ≥ 2) is the (l – 1)th
layer features, then lth layer features F(l) can be obtain by assuming that F(l−1) is a new
input H and using the feature extraction process from the first layer.

Finally, the RPNet feature set F is formed by combining features from all layers, i.e.,
F =

{
F(1), F(2), . . . , F(L)

}
.

2.2. RPNet–RF Feature Extraction

As follows from Figure 1, the RPNet feature set F is used to extract so-called RPNet–
RF features. For this, F is first subjected to dimension reduction through PCA, and only
first Q PCs are extracted. The number Q of the extracted PCs is defined such that these
components preserve 99.95% of the variance of the RPNet feature set.

After that, for each of the extracted PCs, edge-preserving filtering is performed using
the transform domain recursive filter [49]. This filter provides that two pixels on the same
side of a strong edge have close coordinates, while pixels on opposite sides of a strong edge
are far apart. For a discrete 1D signal I[n] = I(xn), a recursive edge-preserving filtering
can be defined in the transformed domain Ωω as:

J[n] = (1− ad)I[n] + ad J[n− 1] (3)

where J[n] is the filtered result, a = e−
√

2/δs ∈ [0, 1] is a feedback coefficient with the
spatial parameter δs, and d = ct(xn)− ct(xn−1) is the distance between neighbor samples
xn and xn−1 in the transform domain Ωω, ct : Ω→ Ωω is a domain transform (DT) used
to compute the distance d.

The DT ct(u) for u ∈ Ωω, as follows from [49], can be defined as:

ct(u) =
u∫

0

1 +
δs

δr
|I′(x)|dx (4)

where I’(x) is the derivative of I(x), and δs and δr are the spatial and range parameters.
Figure 2 shows the use of the DT for filtering an 1D signal I.
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Figure 2. 1D edge-preserving filtering using DT ct(u). GF is the Gaussian filter.

Since the extracted PCs are 2D images, the 1D filtering operation for each of the PCs is
performed separately along each PC dimension iteratively. In other words, 1D filtering is
first performed along each PC row, then along each PC column. As shown in [49], three
iterations of 1D filtering are sufficient to obtain satisfactory filtering results.

The influence of two parameters δs and δr on filtering results was analyzed in [49,51].
As δs and δr increase, the smoothing effect of filtering results becomes more obvious.
Moreover, the filtering result will tend to be extremely smooth, if δr becomes relatively large
(i.e., δr = 2). In this case, only a little useful information is preserved. In contrast, when δs
tends to infinity (e.g., δs = 1000), the recursive filter does not produce unlimited smoothing.

The features obtained using the feature extraction procedure described above are
derived from the RPNet feature set using the RF procedure. In this regard, these features
can be called as RPNet–RF features.
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2.3. SVM Classification by Spectral and RPNet–RF Features

At the last step of the HSI classification, the RPNet–RF features obtained for the
HSI H are stacked with the spectral features of H. Since H contains N spectral band, and
feature vectors from the RPNet–RF feature set are Q-dimensional, the resulting feature set
Z consists of (N + Q)-dimensional feature vectors.

To classify the resulting high-dimensional vectors of spectral and RPNet–RF features,
the SVM classifier is used. SVM aims to explore the optimal separable hyperplane between
various classes, and has shown robust performance in solving the high-dimensional and
few-shot learning problems [52,53]. Before HSI classification by SVM, all features from
Z are standardized. Finally, the standardized features are used to predict the class labels
through a SVM classifier. To obtain good classification results, Gaussian kernels and fivefold
cross-validation can be used for SVM classification. The procedure for HSI classification by
the proposed method is summarized in Algorithm 1.

Algorithm 1 HSI classification via the proposed RPNet–RF method.

Input: the HSI data H; the number of PCs p; the network depth L; the number of random patches
k; the size of random patches w; the spatial and range standard deviations δs and δr.
Output: Predicted class label.
For layer l = 1:L

1: Apply PCA to extract the first p PCs of H.
2: Calculate the whitening data HW .
3: Extract k random patches from the whitening data HW .
4: Obtain RPNet features F(l) by (1)–(2) (if l = 1) and (3)–(4) (if l > 1).
5: If l < L, renew H by F(l).

End

6: Form the feature set F by combining F(1), . . . , F(L).
7: Apply PCA to extract the first Q PCs C1, . . . , CQ of F, which explain 99.95% of the variance of F.

For q = 1:Q

8: Perform the transform domain RF for Cq.

End

9: Combine the obtained RPNet–RF features with the HSI spectral features to make up the final
features.

10:Standardize the features.
11:Classify the whole image via SVM.

As can be seen from Algorithm 1, the proposed HSI classification method is easy
to implement. In addition, the RPNet–RF method has a small number of parameters to
be determined. It should also be noted that the RPNet–RF feature extraction procedure
is not time-consuming. This is due to the following facts: RPNet does not require any
training [47], and RF can be implemented in real-time [49].

3. Experiments
3.1. Dataset Description

Experimental studies were carried out on the Pavia University (PU) dataset, the Indian
Pines (IP) dataset, and the Kennedy Space Center (KSC) dataset.

The PU dataset (Table 1) was acquired by the reflective optics system imaging spec-
trometer (ROSIS) over an urban area surrounding the University of Pavia (Italy). This
dataset has 103 spectral bands of size 610 × 340 pixels. It has a spectral coverage from 0.43
to 0.86 µm, and a spatial resolution of 1.3 m. The ground truth of the PU dataset contains
nine classes, most of which are man-made building objects.
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Table 1. Ground truth classes and per-class samples for the PU dataset.

Class No. Class Name Labeled Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

The IP dataset (Table 2) was recorded by the airborne visible infrared imaging spec-
trometer (AVIRIS) over an agricultural area of Northwestern Indiana in 1992. The image has
220 bands with a spatial resolution of 20 m per pixel. After removing the water absorption
channels, 200 bands are available. The ground truth of the IP dataset contains 16 land cover
classes, and most of these classes are different types of crops.

Table 2. Ground truth classes and per-class samples for the IP dataset.

Class No. Class Name Labeled Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

The KSC dataset (Table 3) was gathered by AVIRIS in 1996, and has 224 bands. The
size of the dataset is 512 × 614. The band’s visible and infrared spectra range from 400 nm
to 2500 nm, and the ground resolution of this dataset is 18 m. Due to water absorption,
some affected and low signal-to-noise bands were abandoned and 176 spectral bands were
extracted. The KSC dataset ground truth contains 13 upland and wetland classes.

3.2. Experimental Setup and Evaluation Metrics

All experiments in this paper were performed with an Intel Core i5-11400F 4.2-GHz
processor with 32 GB of RAM and a NVIDIA GT730 graphic card. For the HSI classification
by the proposed method, a MATLAB R2021b environment was used, and SVM parameters c
and γ were set to 1024 and 0.01, respectively (our source code is available at https://github.
com/UchaevD/RPNet-RF, accessed on 31 October 2022). To evaluate the classification
performance in our experimental studies, the following evaluation metrics were used [54]:
class accuracy (CA), overall accuracy (OA), average accuracy (AA), and Kappa coefficient.
Here, CA is the percentage of correctly classified pixels for each class, which refers to
the user’s accuracy; OA is the percentage of correctly classified pixels; AA is the mean
of the percentage of correctly classified pixels for each class, the Kappa coefficient is the
percentage of correctly classified pixels corrected by the number of agreements that would

https://github.com/UchaevD/RPNet-RF
https://github.com/UchaevD/RPNet-RF
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be expected purely by chance. CA, OA, AA, and Kappa coefficient values were obtained by
averaging estimates from several independent experiments.

Table 3. Ground truth classes and per-class samples for the KSC dataset.

Class No. Class Name Labeled Samples

1 Scrub 761
2 Willow swamp 243
3 CP hammock 256
4 CP/oak 252
5 Slash pine 161
6 Oak/broadleaf 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

3.3. Effect of Parameter Values on Classification Performance

As follows from Algorithm 1, results of HSI classification by the proposed method
depend on values of the following parameters: p is the number of PCs extracted from
the HSI, L is the network depth (the number of RPNet convolutional layers), k is the
number of random patches, w is the size of patches, and δs and δr are the spatial and range
standard deviations. In this regard, the influences of p, L, k, w, δs, and δr on the classification
performance were analyzed.

To evaluate the classification performance, 15 training samples for each class were
randomly selected from the ground truth data, and OA was used as an evaluation metric.
First, for each of the six analyzed parameters, intervals of most acceptable values were
chosen, which are Ip = [1, 6], IL = [1, 6], Ik = [10, 70], Iw = [11, 21], Iδs = [10, 70], and
Iδr = [0.5, 2.5]. After that, the influence of each parameter on OA values was analyzed.
For this, we fixed value of one parameter and changed values of other parameters (values
for p, L, k, w, δs and δr were taken from intervals Ip, IL, Ik, Iw, Iδs , and Iδr , respectively).
As a result, those values for the analyzed parameters were selected, which provide the
minimum value of OA (i.e., this is the minimum of a function of six variables). In order to
illustrate the effect of parameter values on OA, dependencies of OA values on parameter
values are shown in Figures 3 and 4. Each of these plots was obtained under the condition
that values of other analyzed parameters are set equal to those found.

As a result of the analysis of effect of parameter values on classification performance,
the following conclusions can be drawn:

(a) With an increase in the number of PCs, the classification accuracy first tends to
increase, then to a stable change. In particular, as can be seen from Figure 3a, after the
number of PCs reaches 4, OA values for the PU, IP, and KSC datasets do not change
significantly after that. Thus, we can set the parameter p as 4.

(b) The network depth L is that parameter, which has various effect on classification
accuracy. The reason of this phenomenon is the following: as the layer gets deeper, the
network not only extracts more abstract and robust features, but also leads to information
loss. As can be seen from Figure 3b, when L increases from 1 to 6, OA changes only slightly
for the PU and KSC datasets. In contrast, for the IP dataset, OA grows as long as L ≤ 4.
Therefore, we can set L equal to 4.

(c) Too few random patches cannot provide a high classification accuracy. Figure 3c
shows that k can be taken equal to 50, since at k = 50 OA reaches its highest values for the IP
and KSC datasets (the OA values for the PU dataset fluctuate around 95% when k increases
from 10 to 60).
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(d) A larger w also increase the possibility of over-smoothing phenomenon. Depen-
dencies of OA on w values, which are presented in Figure 3d, show that OA for the PU
dataset decreases over the interval [11,19], while OA for the IP and KSC datasets reaches a
maximum value at w = 15. Thus, we can conclude that 15 is better suited for w.

(e) Small values of δs provides low classification accuracy because it means that only
very limited local spatial information is considered in the feature extraction process. Plots
in Figure 4a are confirmed this conclusion and show that OA grows as δs values increases
from 10 to 50, then (for δs > 50) decreases slightly for the PU and KSC datasets or slightly
increases for the IP dataset. Based on this fact, we can set δs to 50.

(f) A large δr will reduce classification accuracy because recursive filtering with a large
δr will produce extremely smooth feature images [51]. In this regard, we propose to take 0.5
for δr. As can be seen from Figure 4b, for the PU, IP, and KSC datasets, OA values decrease
as δr increases from 0.5 to 2.
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Based on the parameter analysis results, we have summarized the recommended
parameter values in Table 4.

Table 4. Recommended values of parameters for the proposed classification method.

Parameter Description Value

p Number of PCs 4
L Network depth 4
k Number of patches 50
w Size of patches 15
δs Spatial standard deviation 50
δr Range standard deviation 0.5



Sensors 2023, 23, 2499 10 of 20

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 3. Effect of number of PCs (a), network depth (b), number of patches (c), and size of patches 
(d) on classification OA. OA values were obtained by averaging accuracy estimates obtained after 
20 independent runs. 

 
Figure 4. Effect of RF parameters δs  (a), and δr  (b) on classification OA. OA values were obtained 
by averaging accuracy estimates obtained after 20 independent runs. 

As a result of the analysis of effect of parameter values on classification performance, 
the following conclusions can be drawn:  

Figure 4. Effect of RF parameters δs (a) and δr (b) on classification OA. OA values were obtained by
averaging accuracy estimates obtained after 20 independent runs.

3.4. Classification Results

Classification results by our method were obtained for the PU, IP, and KSC datasets.
For this, 15 labeled training samples for each class were taken from the ground truth data,
and parameter values from Table 4 were used for classification.

To demonstrate advantages of the proposed RPNet–RF method, the obtained HSI
classification results were compared with results obtained by other recently proposed HSI
classification methods that are adopted to solve the few-short learning problem. For the
comparison with the proposed method, the following HSI classification methods were
chosen: IFRF [51], 3D-CNN [16], RPNet [47], CA-GAN [30], DCFSL [37], 3D VS-CNN [35],
S-DMM [39], and TC-GAN [42]. All of these methods (excluding IFRF) are deep-learning
methods and produce good classification results for small labeled training samples. A
detailed overview of some features and parameter setting for the compared methods is
presented below.

For IFRF [51], it is necessary to determine the spatial standard deviation (δs), the range
standard deviation (δr), and the number of IFRF features (k). In our experiments, for δs, δr,
and k, we set the values recommended in [51]; namely, δs and δr, which characterize results
of filtering, were set to 200 and 0.3, respectively, and k was set to 20, since this provides
good classification accuracy and relatively low computing burden.

In 3D-CNN [16], two 3D convolution layers (C1, C2), one fully connected layer and one
classification layer are used. For 3D convolution layers, 3D kernels should be determined
(so, in our experimental studies on the PU and IP datasets, C1 contained two 3 × 3 × 7
kernels, and C2 contained four 3× 3× 3 kernels). By applying 3D kernels to HSIs, 3D-CNN
can learn the local signal changes in both the spatial and spectral dimension of the feature
cubes, exploiting important discrimination information for classification.

For RPNet [47], the following parameters should be manually set: the number of
PCs extracted from the HSI (p), the network depth (L), the number of random patches
(k), and the size of patches (w). In our experimental studies, to obtain classification maps
comparable to RPNet–RF maps, the above-mentioned RPNet parameters were assigned
the values used for the proposed RPNet–RF method, i.e., p = 4, L = 4, k = 50, and w = 15.

In CA-GAN [30], four transposed convolutional layers (TCL) are used for the generator.
Each TCL is constructed based on the convolutional 5 × 5 kernel. Before each TCL, the
joint spatial-spectral hard attention module is incorporated into the generator. The sizes of
generated feature maps inputting to each attention module are 2 × 2 × 128, 4 × 4 × 64,
7 × 7 × 32, and 14 × 14 × 16, respectively. In the discriminator of CA-GAN, real samples
and generated samples of the same size of 27 × 27 × 20 are input. To extract hierarchical
features, four convolutional layers with the convolutional kernel size of 5 × 5 are used in
the discriminator. The sizes of the extracted feature maps are 14 × 14 × 16, 7 × 7 × 32,
4 × 4 × 64, and 2 × 2 × 128, respectively.
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For DCFSL [37], 9 × 9 neighborhoods are chosen as the spatial size of the input cubes.
DCFSL is trained via Adam optimizer, and the number of the training iterations can be set
to 10 000, which is enough to train the network. Since labeled training data of each class is
used in DCFSL to learn a C-class classification model, C was set to the class number of the
target dataset (i.e., C = 9 for the PU dataset, C = 16 for the IP dataset, and C = 13 for the
KSC dataset).

In 3D VS-CNN [35], the SVM is used as a selector to iteratively select some of the most
valuable training samples. To construct valuable training samples, active learning is used.
After that, spectral-spatial HSI information is extracted by 3D CNN.

For S-DMM, as follows from [39], the following two parameters should be manually
set: patch size of a pixel sample (P), and number of convolution filters in the network (D).
In our experiments on the test datasets, P was fixed to 5, and D was set to 64.

In TC-GAN [42], dual-channel blocks are used to extract spatial and spectral features.
Each of the blocks will learn the spatial information and spectral information around the
label pixel, and compress the input 3D cube with size of W ×W × N (here W is used to set
the width and height of the cube, and N is the number of spectral bands) to an appropriate
size. In particular, for the IP dataset, as shown in [42], the 3D cube can have a size of
15 × 15 × 200.

IFRF and RPNet classification results were obtained by MATLAB toolboxes from the
sources: https://www.mathworks.com/matlabcentral/fileexchange/68966-a-demo-for-
hyperspectral-image-classification?s_tid=prof_contriblnk (accessed on 15 October 2022),
https://github.com/YonghaoXu/RPNet (accessed on 17 October 2022). Other HSI classifi-
cation results were taken from [42].

For each of the compared methods, classification results were obtained 10 times, then
means for CA, OA, AA, and Kappa were estimated. The resulting accuracy estimates for the
test datasets are shown in Tables 5–7. Figures 5–7 preceding these tables show classification
maps obtained by all compared methods for the PU (Figure 5d–l), IP (Figure 6d–l), and
KSC (Figure 7d–l) datasets.

Table 5. Classification accuracies for the proposed and compared HSI classification methods on the
PU dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per class were
randomly selected for training.

Class
No. IFRF 3D-CNN RPNet CA-GAN DCFSL 3D

VS-CNN S-DMM TC-GAN RPNet–
RF

1 95.42 70.41 91.70 60.16 74.55 83.27 96.97 89.07 97.37
2 97.78 73.10 95.44 72.83 97.20 76.96 81.15 97.57 99.37
3 74.73 73.80 62.90 98.03 80.57 81.91 92.69 67.08 98.19
4 86.70 89.37 97.05 89.44 94.62 86.86 97.50 88.03 79.86
5 99.08 96.39 99.74 99.70 100.0 99.55 100.0 100.0 98.85
6 75.34 69.68 64.15 79.94 90.37 82.81 84.73 93.80 99.92
7 64.12 86.46 58.31 90.04 92.47 77.94 97.71 99.47 94.82
8 81.23 77.09 80.30 81.95 81.62 93.58 93.23 93.07 86.67
9 99.52 86.05 99.72 97.32 100.0 71.84 99.89 96.67 99.58

OA (%) 88.38 75.24 84.92 76.81 90.71 81.63 88.30 93.20 95.60
AA (%) 85.99 80.26 83.26 76.94 90.20 83.86 93.76 91.60 94.96

Kappa (%) 84.97 68.43 80.52 71.02 87.73 76.46 84.90 91.00 94.27

https://www.mathworks.com/matlabcentral/fileexchange/68966-a-demo-for-hyperspectral-image-classification?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/68966-a-demo-for-hyperspectral-image-classification?s_tid=prof_contriblnk
https://github.com/YonghaoXu/RPNet
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Table 6. Classification accuracies for the proposed and compared HSI classification methods on the
IP dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per class were
randomly selected for training.

Class
No. IFRF 3D-CNN RPNet CA-GAN DCFSL 3D

VS-CNN S-DMM TC-GAN RPNet–
RF

1 77.71 83.87 94.16 100.0 100.0 90.32 91.67 100.0 93.48
2 62.91 38.08 72.19 61.78 60.79 75.94 47.18 78.77 81.30
3 50.08 41.84 57.05 68.22 78.77 85.03 44.88 92.15 85.66
4 39.36 52.70 54.84 92.34 94.59 95.95 33.04 99.10 83.31
5 73.57 74.79 73.30 82.69 85.68 91.03 78.44 95.30 94.14
6 93.29 87.27 92.58 89.51 96.64 97.34 92.50 95.94 95.15
7 42.82 100.0 53.39 100.0 100.0 100.0 100.0 100.0 43.98
8 97.73 94.38 99.83 99.78 92.22 97.84 85.26 100.0 97.76
9 15.46 100.0 39.15 100.0 100.0 100.0 100.0 100.0 63.83

10 57.32 64.26 67.94 76.28 71.89 80.88 66.74 86.00 83.07
11 74.93 41.43 91.75 64.22 65.66 73.32 70.39 81.39 94.44
12 50.50 41.70 65.53 78.72 73.18 88.41 40.82 73.18 82.96
13 87.94 99.47 93.40 99.47 100.0 98.95 99.49 100.0 99.10
14 94.64 84.24 96.64 82.32 93.28 84.24 81.35 97.28 99.77
15 76.78 70.89 78.08 92.99 87.87 86.52 68.35 83.83 98.45
16 86.35 97.44 95.71 92.31 100.0 98.72 98.80 100.0 97.60

OA (%) 69.52 58.94 77.97 75.52 77.45 83.06 67.04 87.47 90.23
AA (%) 67.59 73.27 76.60 81.21 87.54 90.28 74.93 92.68 87.12

Kappa (%) 65.70 54.06 75.19 72.69 74.65 80.89 62.44 85.78 88.87

Table 7. Classification accuracies for the proposed and compared HSI classification methods on the
KSC dataset (the best accuracy in each row is shown in bold). Fifteen labeled samples per class were
randomly selected for training.

Class
No. IFRF 3D-CNN RPNet CA-GAN DCFSL 3D

VS-CNN S-DMM TC-GAN RPNet–
RF

1 98.16 89.41 99.12 88.20 96.92 97.15 96.01 99.87 99.46
2 93.54 86.40 83.79 85.53 86.40 91.28 88.84 100.0 96.20
3 94.38 85.06 94.94 95.02 98.76 80.09 99.19 96.68 97.54
4 86.12 54.01 88.47 90.72 82.28 42.29 54.96 86.08 98.32
5 79.89 83.56 84.79 90.41 91.78 58.09 80.79 93.84 95.90
6 83.66 76.64 92.38 94.39 97.66 70.59 96.35 100.0 91.53
7 85.99 100.0 98.16 100.0 100.0 70.00 100.0 97.78 100.0
8 93.97 92.55 94.28 86.78 100.0 62.81 99.29 96.63 98.14
9 96.72 60.59 97.28 86.73 100.0 74.55 100.0 99.60 98.52

10 94.11 93.32 94.28 86.12 99.74 61.48 100.0 99.49 99.06
11 99.75 93.07 100.0 92.57 100.0 78.68 100.0 100.0 99.80
12 98.49 93.85 99.73 88.52 99.18 78.24 98.99 97.95 99.16
13 99.51 100.0 99.85 100.0 100.0 99.89 100.0 100.0 99.95

OA (%) 95.07 87.18 95.83 91.17 97.59 80.15 95.83 98.39 98.51
AA (%) 92.64 85.27 94.39 84.64 96.36 74.24 93.42 97.53 97.97

Kappa (%) 94.51 85.73 95.36 90.20 97.31 77.81 95.35 98.20 98.33
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obtained by the compared methods on the PU dataset: (d) IFRF, (e) 3D-CNN, (f) RPNet, (g) CA-
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samples per class were randomly selected for training. 

Figure 5. PU dataset: (a) false-color image, (b) ground truth map, (c) legend. Classification maps
obtained by the compared methods on the PU dataset: (d) IFRF, (e) 3D-CNN, (f) RPNet, (g) CA-GAN,
(h) DCFSL, (i) 3D VS-CNN, (j) S-DMM, (k) TC-GAN, and (l) RPNet–RF. Fifteen labeled samples per
class were randomly selected for training.
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Figure 6. IP dataset: (a) false-color image, (b) ground truth map, (c) legend. Classification maps
obtained by the compared methods on the IP dataset: (d) IFRF, (e) 3D-CNN, (f) RPNet, (g) CA-GAN,
(h) DCFSL, (i) 3D VS-CNN, (j) S-DMM, (k) TC-GAN, and (l) RPNet–RF. Fifteen labeled samples per
class were randomly selected for training.
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Figure 7. KSC dataset: (a) false-color image, (b) ground truth map, (c) legend. Classification maps
obtained by the compared methods on the KSC dataset: (d) IFRF, (e) 3D-CNN, (f) RPNet, (g) CA-GAN,
(h) DCFSL, (i) 3D VS-CNN, (j) S-DMM, (k) TC-GAN, and (l) RPNet–RF. Fifteen labeled samples per
class were randomly selected for training.

During the performed experimental studies, the influence of the number of training
samples on the classification performance was also analyzed. For this, OA was used as an
evaluation metric, and dependencies of OA means on the number of training samples were
plotted for each of the test datasets (Figure 8). The OA means were obtained by OA values
for classification results in 10 independent experiments. A detailed analysis of all obtained
results is presented in the next section.
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4. Discussion

Based on the analysis of classification results obtained for the PU, IP, and KSC datasets
(Tables 5–7 and Figures 5–8), the following conclusions can be drawn.

As follows from Tables 5–7, the proposed RPNet–RF method outperforms other HSI
classification methods in terms of OA and Kappa. In particular, Table 5 with the HSI
classification results obtained for the PU dataset shows that our method, which combines
RPNet with RF, outperforms the RPNet method (by 11% in OA) and the IFRF method
(by 7% in OA), respectively. Moreover, it can be noted that our method produces better
classification results in cases where the ratio between the number of test and training
samples is large. In particular, for the PU dataset classes Asphalt, Meadows, and Bare Soil,
where the ratio between the number of test and training samples is huge, our method gives
the best classification accuracies (97.37%, 99.37%, and 99.92%, respectively). In general,
it can be said that when 15 training samples for each class is randomly selected from the
ground truth, then the proposed RPNet–RF method achieves the highest classification
accuracy for four PU dataset classes, four IP dataset classes, and three KSC dataset classes.
A significantly lower RPNet–RF classification accuracy were obtained for the PU dataset
class Trees and IP dataset classes Grass-pasture-mowed and Oats. This can be explained by
the following facts. In some cases, RPNet–RF cannot distinguish trees from meadows. A
similar conclusion can also be drawn for such HSI classification methods as IFRF and 3D
VS-CNN (see Figure 5i-j). Grass-pasture-mowed and Oats, as can be seen from Table 2, are
the smallest IP dataset classes for which the ratio between the number of test and training
samples is very small. As a result, user’s accuracy for these classes is greatly reduced when
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a few pixels from other classes are included in the classes. As can be seen from Figure 5l,
this is true for the RPNet–RF classification map, where the Grass-pasture-mowed class
contains some samples from the Grass-pasture class, and class Oats contains a few samples
from Grass-trees.

Figures 5–7 with classification maps obtained by compared methods show that the
proposed method is much better in removing “noisy pixels” than such HSI classification
methods as 3D-CNN, CA-GAN, DCFSL, 3D VS-CNN, and S-DMM. TC-GAN that com-
bines a generative adversarial network, transformer encoder, and convolution block also
produces classification maps without noise. However, it cannot distinguish well between
certain classes (e.g., PU dataset classes Meadows and Bare Soil, and IP dataset classes Oats
and Soybean-clean).

Some conclusions about the RPNet–RF performance can be drawn from the analysis of
the influence of training sample number on the classification accuracy (Figure 8). In partic-
ular, as follows from Figure 8a,b, for the PU and IP datasets, our method outperforms other
HSI classification methods that were used for comparison. For the KSC dataset (Figure 8c),
when the number of training samples for each class is greater than 15, our method provides
slightly lower OA values than TC-GAN and DCFSL. However, if 15 training samples per
class are used, the proposed method outperforms TC-GAN and DCFSL. Therefore, we can
say the following: when the number of training samples selected for each classes is quite
limited, then RPNet–RF is more suitable for HSI classification than other methods from
Figure 8.

5. Conclusions

In this paper, we propose a new HSI classification method that combines RPNet and
RF in a unified framework. This method consists of the following steps: RPNet feature
extraction, RPNet–RF feature extraction, combining HSI spectral features and RPNet–RF
features, and SVM classification by spectral and RPNet–RF features. The proposed RPNet–
RF classification method is easy to implement, has a small number of parameters to be
determined (number of PCs, network depth, number of random patches, size of random
patches, and spatial and range standard deviations), and is not time-consuming (because
RPNet does not require any training, and RF can be implemented in real-time).

Experiments with three widely known datasets demonstrate that when the number of
training samples per class is limited (from 5 to 25), our method outperforms (in terms of
OA and Kappa) other advanced HSI classification methods, including recently proposed
few-shot learning methods. Moreover, it is established that the RPNet–RF classification
method produces better classification results for such cases when the ratio between the
number of test and training samples is large.

In the future, we plan to conduct a comprehensive study to improve the proposed
HSI classification method. In particular, we would like to explore the possibilities of using
semi-supervised classifiers instead of SVM, which are better suited to solve the few-shot
learning problem.
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