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Abstract: Cloud-fog computing is a wide range of service environments created to provide quick,
flexible services to customers, and the phenomenal growth of the Internet of Things (IoT) has
produced an immense amount of data on a daily basis. To complete tasks and meet service-level
agreement (SLA) commitments, the provider assigns appropriate resources and employs scheduling
techniques to efficiently manage the execution of received IoT tasks in fog or cloud systems. The
effectiveness of cloud services is directly impacted by some other important criteria, such as energy
usage and cost, which are not taken into account by many of the existing methodologies. To resolve the
aforementioned problems, an effective scheduling algorithm is required to schedule the heterogeneous
workload and enhance the quality of service (QoS). Therefore, a nature-inspired multi-objective task
scheduling algorithm called the electric earthworm optimization algorithm (EEOA) is proposed in
this paper for IoT requests in a cloud-fog framework. This method was created using the combination
of the earthworm optimization algorithm (EOA) and the electric fish optimization algorithm (EFO)
to improve EFO’s potential to be exploited while looking for the best solution to the problem
at hand. Concerning execution time, cost, makespan, and energy consumption, the suggested
scheduling technique’s performance was assessed using significant instances of real-world workloads
such as CEA-CURIE and HPC2N. Based on simulation results, our proposed approach improves
efficiency by 89%, energy consumption by 94%, and total cost by 87% over existing algorithms for
the scenarios considered using different benchmarks. Detailed simulations demonstrate that the
suggested approach provides a superior scheduling scheme with better results than the existing
scheduling techniques.

Keywords: electric fish optimization; earthworm optimization algorithm; internet of things; HPC2N;
CEA-CURIE

1. Introduction

The Internet of Things (IoT) is a modern invention that has a significant impact on
information and communication technologies (ICT). The IoT and its related technologies,
such as machine-to-machine (M2M) advancements, expand Internet access to a variety
of gadgets and household objects (such as artifacts, devices, automobiles, and residential
complexes), enabling them to carry out a range of applications and functions (e.g., vehicular
networking, energy management, traffic control, medical treatment, and health care) [1–4].
Incredible amounts of data are being produced by these smart devices, which must be
maintained, processed, and analyzed to gain important ideas and make them accessible to
end users and/or client software [5,6].

Fog computing has developed as a unique framework to complement cloud computing
and the fast evolution of the IoT [7–9]. To address the issue of data latency, the fog attempts
to extend the cloud to the network’s edge, near where IoT data are generated. For delay-
sensitive, energy-efficient, high-privacy, and security applications, data are processed at
edge nodes, and the high volumes of data are transferred to the cloud for processing and
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storage. Both computing paradigms are very important for all types of IoT data [10]. In
addition to that, the edge-to-cloud continuum improves the quality of service (QoS) [11].

Resources in the fog can be globalized, just like in cloud computing. In light of this,
a fog node might be a virtual machine (VM) [12–14]. The processing capacity of the fog
resources is often constrained, in contrast to the cloud computing model.

The QoS and financial cost are both greatly impacted by the work scheduling issue in
collaborative fog-cloud computing systems [15–17]. There are numerous latency-sensitive
and latency-tolerant IoT applications with various requirements in the real world. This
makes organizing and scheduling them more difficult. As a result, we must offer an
effective method of task scheduling in this situation [18–20]. Additionally, the cost of
computation and communication for scheduling workflows is significant, especially for
science-related workloads that deal with areas such as space exploration and the natural
sciences, two of the most well-liked cloud platforms.

Service providers offer customers distinct functions in cloud computing at different
prices. Usually, quicker resources are costlier than stronger [21,22]. The scheduler therefore
has a range of resources for workflow, resulting in a range of runtimes and prices as well
as a range of user limitations. The deadline makes sure that the procedure is finished
in the allotted time. The cost constraint guarantees that the expense does not exceed
the customer’s spending limit. The ideal answer balances these two demands [23–25].
Additionally, when defining the problem, the majority of the existing techniques fail to
consider the system’s violation cost.

Therefore, in this study, we take into account the importance of tasks based on their
cost, duration, and energy consumption when scheduling them in fog-cloud computing.
To accomplish this, an efficient hybrid approach based on the electric fish and earthworm
optimization algorithms, termed the electric earthworm optimization algorithm (EEOA), is
created to perform cost and energy-conscious job scheduling in cloud/fog environments.
The benefits of both metaheuristic algorithms are used to execute efficient scheduling while
taking SLA requirements into account.

The following list summarizes the article’s contributions:

• To execute efficient task scheduling in cloud-fog environments, a hybrid evolutionary
algorithm called EEOA is proposed. This algorithm combines the adaptive EOA
technique with the fundamental EFO methodology to enhance convergence speed and
searching explorations.

• Creating an energy-efficient cost model that takes into account the QoS requirements
and energy requirements of IoT tasks sent for processing in a cloud-fog framework.

• Assessing the proposed scheduling method’s efficiency to other strategies on real-
world workloads such as HPC2N and CEA-Curie in terms of makespan, task execution
cost, and power consumption.

The remainder of the article is organized as follows. In Section 2, the study on existing
work scheduling techniques is covered. The system design is detailed in Sections 3 and 4
and describes the problem formulation and objective function. In Section 5, the suggested
EEOA job scheduling algorithm is explained. The effectiveness of the EEOA technique is
shown in Section 6. The conclusion and the work’s future focus are presented in Section 7.

2. Literature Review

To establish an effective scheduling method for integrating software applications in a
cloud-fog framework, Arshed et al. [26] presented a genetic-algorithm-based scheduling
technique. The suggested method first encodes the problem’s chromosome-based represen-
tation by taking into account the application and fog device attributes. The solutions were
then evolved utilizing a variety of parameter modifications using genetic-algorithm-based
crossover and mutation operators. In terms of run time, bandwidth, and financial cost, the
suggested technique has been assessed and contrasted against existing techniques.

Ghafari and Mansouri [27] developed a task scheduling technique for the cloud system
that maps workloads through the resources available using a grey wolf optimizer. This



Sensors 2023, 23, 2445 3 of 20

paper’s main objective was to reduce execution costs, energy use, and make-up time. This
involves sending input tasks to the cloud system job queue. The VM controller subsequently
received incoming tasks from the job queue. The VM management team then evaluates the
resource situation. The tasks were assigned to the existing VMs if it was practicable to do
so; otherwise, new VMs were generated.

Arshed and Ahmed [28] suggested the resource aware cost-efficient scheduler (RACE),
which allocates the received application modules to fog systems that increase the utilization
of resources at the fog layer and lower the cost in the cloud with the least amount of
bandwidth utilization. There are two algorithms in this RACE. The arriving application
modules were categorized by the module scheduler in RACE based on their computing
and bandwidth needs and are subsequently positioned by a compare module.

Sindhu and Prakash [29] presented the CBTSA algorithm to symmetrically balance
energy efficiency, cost, and task scheduling. First, this technique uses a directed acyclic
graph to represent the priority of the workload that is accepted for processing. A node
was chosen to process the workloads that had been given the highest priority. The tasks
are handled on a fog or cloud node based on an optimal efficiency factor that yields the
completion time, expense, and power. Along with the reinforcement learning algorithm, a
Markov decision process was used to figure out where the best resources should go.

A multi-swarm particle swarm optimization (MS-PSO) technique was created by
Subramoney and Nyirenda [30] to enhance the schedule of scientific activities in cloud-
fog frameworks. The classic PSO has an early convergence issue that results in less-
than-ideal outcomes. MS-PSO attempts to solve this issue. This method divided the
particles into swarms, each with its own intellectual and socialization factors. It also
developed a multi-criteria optimal task scheduling solution with four goals: load balancing
for cloud and fog layers, price, power, and computation time. The GA-PSO, differential
evolution, genetic algorithm, and conventional PSO methodologies were all used to assess
the strategy’s effectiveness.

A multi-queue priority-based scheduling task was created by Fahad et al. [31] to
perform a balanced task allocation for latency-sensitive fog applications and programs
that can accept a certain degree of processing delay. This method classifies jobs as short or
lengthy based on their burst time during execution. Each job category was maintained in
its own task queue by the MQP algorithm, which also dynamically updates the preemption
time slot value. It decreases reaction times for data-intensive applications in the fog
computing environment, including both latency-sensitive jobs and those that are less
latency-sensitive, thereby resolving the hunger issue for less latency-sensitive workloads.

Chhabra et al. [32] introduced a hybrid oppositional differential evolution-enabled
WOA (h-DEWOA) technique to reduce task duration and energy consumption. It extends
the capabilities of the traditional WOA method by incorporating the fitness-based balancing
method, differential evolution, opposition-based learning, and chaotic maps. This leads to
an adequate exploration/exploitation tradeoff, quicker convergence, and improved explo-
ration throughout the algorithm’s execution. In addition, to enhance resource assignment,
an allocation technique was incorporated into the h-DEWOA technique. The performance
of scheduling methods was assessed using HPC2N and CEA-Curie workloads. To compare
performance, two sequences of tests were performed. One uses WOA-based heuristics, and
the other uses non-WOA-based metaheuristics.

Authors in [33] developed a task scheduling model which avoids local search problem
and improves the scheduling performance in cloud environment by improving makespan,
energy consumption. For this simulation, authors used improved cuckoo and OBL ap-
proaches by adding a differential evolution parameter to improve searching capability
and thereby improvement of scheduling approach. Simulation carried out on Cloudsim
and workload traces captured from HPC2N and evaluated against existing metaheuris-
tic approaches and observed improvement over existing baseline approaches for above
mentioned parameters.
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In [34], authors formulated a task scheduling mechanism to improve the Quality
of Service and minimize energy consumption. For this to happen, authors used CSPSO
approach by improving velocity of cuckoo search. This simulation carried out on Cloudsim
by taking supercomputing work logs and compared over existing baseline approaches and
from simulation results, it was revealed that FARA outperforms existing approaches by
minimizing makespan, energy consumption and improves quality of service.

In [35], authors worked on scheduling process in cloud environment with HPC work-
loads and they addressed the problem of generating scheduling decisions in HPC cloud
environment by addressing energy performance trade-off. They used genetic algorithm as
their methodology to generate schedules for their parallel computational tasks. It was im-
plemented on Cloudsim and they compared their model with existing baseline approaches
and finally results revealed that their approach greatly minimizes energy consumption and
improved the performance of the scheduler.

Electric fish optimization (EFO) is a meta-heuristic algorithm that functions based on
the electrolocation and electrocommunication capabilities of electric fish [36]. Electric fish
have the ability to use electrolocation to sense their surroundings and identify potential
prey. Active electrolocation and passive electrolocation are the two main branches that
explore the electrolocation capacity of electrified fish. This algorithm is mainly used to
solve high-dimensionality problems, and task scheduling in fog computing is a highly
dynamic scenario. Therefore, it can be helpful to solve task scheduling problems in fog
computing. By using this electric fish optimization, the process in the solution space is
balanced between local search and global search.

Wang, Gai-Ge et al. [37] proposed a bio-inspired metaheuristic algorithm for consistent
and discrete constrained optimization problems. The earthworm’s beneficent effect on
the natural world served as inspiration. Natural type 1 reproduction never produces
hybrids between different species. It is possible to reproduce with multiple species using
Reproduction 2. The EOA method can find optimal solutions on a global and a local scale.

From the above classification mentioned in the Table 1, we clearly observed that earlier
authors used parameters such as makespan, energy consumption, and SLA-based trust
parameters in cloud computing paradigms. In order to schedule tasks effectively in a fog
environment, we proposed an effective cost and energy-concerned electric earthworm
optimization algorithm (EEOA), which addresses makespan, total cost, and energy con-
sumption by using EFO and EOA approaches. The proposed approach is really helpful in
the real-time applications, i.e., smart cities, and it also helps greatly in scheduling latency
sensitive applications such as vehicular networks.

Table 1. Analysis of scheduling parameters in the related works.

Authors Technique Used Parameters Addressed

[26] GA-IRACE Execution time

[27] GWOTS Makespan, cost, energy consumption

[28] RACE Execution time, bandwidth

[29] ECBTSA-IRA Schedule length, cost, energy

[30] MS-PSO Load balance, power consumption,
computation time

[31] MQP Latency

[32] h-DEWOA Task duration, energy consumption

[38] MOTSWAO Makespan, SLA-based trust parameters,
energy consumption

[39] TAFFA Makespan, SLA-based trust parameters.

Proposed algorithm EEOA Makespan, total cost, and energy
consumption
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3. System Architecture

Figure 1 depicts the three-layer architecture of the cloud-fog computing framework.
The IoT devices (i1, i2, . . . , in) that make up the first layer acquire data and deliver them
to the immediate upper layer for processing. Fog nodes (f 1, f 2, . . . , fg) that are fitted with
computers, mini-servers, and smart gateways make up the intermediate fog layer. With
constrained computing, storage, and internet connectivity, each fog node serves as a smart
device. The tasks that a fog node Fg receives are atomic and independent of one another;
they do not contain any data that can be shared with tasks from other fog devices. Fog node
F transmits data that cannot be handled locally to a distant cloud for additional processing
and analysis. High-performance servers with adequate processing and storage capacity
make up the top cloud layer, as depicted in Figure 1. Each server is made up of a number
of virtual machines, such as (VM1, VM2, . . . , VMk). Each virtual machine has a memory
and processing speed that define it.
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Figure 1. System Architecture.

Depending on the request made at the time of processing, data can transfer from fog
to cloud as well as from cloud to fog. The fog layer has a task scheduler and a cloud fog
manager (CFmanager), which collects all the resources and tasks. The job is transferred
after the task-scheduling strategy decides whether it will be carried out in the cloud node
or the fog. The task’s execution result is returned to the CF manager. All of the results are
combined by the CF manager before being sent to the IOT systems. To create an effective
job execution schedule, the proposed task-scheduling algorithm is installed in CFmanager.

4. Problem Formulation

The scheduling system is represented as a direct acyclic graph (DAG) as shown in
Figure 2, in which T stands to the vertex and denotes the collection of n tasks t1, t2, . . . ,
tn, and E is the collection of directed edges, which denotes the dependency or priority
restrictions among jobs in the workflow. A complete graph G = (P, EG) can also be used to
depict the cloud-fog network’s processors.
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Figure 2. Cloud and fog workflow diagram.

Assume Pcn and Pfn stand for the numerous cloud nodes and fog nodes, respectively.
Then, P = Pcn∪Pfn can be used to represent the total number of nodes. When pr = 1, 2, . . . ,
m, the processing rate and bandwidth of a processor are denoted as Pprt[pr] and Pba[pr],
respectively. The processing rates of each heterogeneous cloud and fog processor vary.
Although the fog nodes are placed in one layer and far from the cloud, their bandwidth
is equivalent to that of the cloud nodes because of this. It is assumed that a task that is
transferred to the cloud will begin running right away without having to wait in line.

In Figure 2, we take the fog computing processors as Pf 1, Pf 2, . . . , Pfn and cloud
computing processors as Pc1, Pc2, . . . , Pcn, with eight dependent tasks (T1, T2, . . . , Tn)
represented in a DAG. The input tasks are initially processed by fog nodes and then by
cloud nodes as well as the results of earlier actions. The main goal is to allocate jobs to the
processing units in a way that maximizes system performance while minimizing energy
and cost usage. Here, our task scheduler takes into account all of these factors when
scheduling tasks on processors.

4.1. Objective Functions

The main goal of this article is to reduce costs, energy use, and makespan to boost
customer happiness and enhance the service provider’s profit. So, the following is how the
objective functions are calculated.

4.1.1. Makespan

The length of time it takes to execute a workflow from beginning to end is known as
its makespan. As a result, makespan, MKS, is determined as follows:

MKS = max{FSTti, ti ∈ T} −min{SRTti, ti ∈ T} (1)
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Here SRTti and FSTti stand for task ti beginning and concluding times in a work-
flow, respectively.

4.1.2. Energy Consumption

The active and idle parts of the energy consumption model are represented by Eact
and Eide, respectively. The term “Eact” describes the power used when a job is being
performed and “Eide” refers to the energy spent when a resource is idle. The active energy
is determined using

Eact =
n

∑
i=1

α f rivl2
i (FSTti − SRTti) (2)

Here, the supply voltage and frequency for the resources of task i is represented by
vl2

i and fri, and α is a constant. The resource enters a state of sleep during the time it is
not being used, where the relative frequency and voltage supply level are at their lowest
levels. As a result, the following equation is used to calculate the amount of energy used
while inactive:

Eide =
m

∑
j=1

∑
idej∈IDEj

α f rminjvl2
minjLNj (3)

Here, frminj and vl2
minj are denoted as the frequency and lowest supply voltage on

resource j, correspondingly, and the length of idling time for idej is denoted as LNj. The
total amount of energy (TE) used by the cloud-fog system to complete the full operation is

TE = Eact + Eide (4)

4.1.3. Computation Cost

There is a monetary cost associated with each work that one computing node com-
pletes. There are two components to the computing cost of a given task: processing and
memory costs, which can be estimated as follows.

CScmp
i =

m

∑
j=1

(csp
j × Eij+csm

j × Tmem
i )× xij, ∀i ∈ {1, . . . . . . n} (5)

Here, xij is zero or one; if cloud and fog nodes are available for task ti, the xij value is
1, otherwise the xij value is 0, and csm

j csp
j are constants that indicate the cost of using the

RAM and CPU for node Nj, respectively. The amount of main memory needed for task Ti
is denoted by Tmem

i . This equation leads to the following definition of the total computing
cost TCmp for a set of n tasks,

TCmp =
n

∑
i=1

CScmp
i (6)

4.1.4. Communication Cost

The cost of communication is included for a particular task in addition to the com-
putation cost. The total size of the task’s output and input items as well as the price of
bandwidth utilization per node data unit determine this cost. Let csb

j be the node Nj’s cost

of bandwidth usage per data unit and Tbdw
i the task Ti’s bandwidth requirement in bytes.

The following is how the task Ti communication cost is determined.

CScomu
i =

m

∑
j=1

(csb
j × Tbdw

i )× xij, ∀i ∈ {1, . . . . . . n} (7)

Consequently, the following equation gives the total cost of communication for all
n tasks.
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TComu =
n

∑
i=1

CScomu
i (8)

4.1.5. Total Cost

Now we can obtain the total cost using the following equation.

TCost = TComu + TCmp (9)

Finally, from the above description, the objective function is defined as

Obj = min(MKS + TE + TCost) (10)

5. Proposed Task Scheduling Algorithm

Due to the numerous parameters and requirements in the objective function, schedul-
ing the task problem in cloud-fog computing is challenging to solve in polynomial time.
We combined the benefits of the electric fish optimization (EFO) and earthworm optimiza-
tion algorithms (EOA) to build a hybrid heuristic algorithm that minimizes the latency
of all jobs and lowers the energy consumption of nodes. It fixes the cloud-fog computing
environment’s optimal job scheduling complexities.

The fitness value and random sample serve as the basis for the execution of the EEOA
algorithm. The objective function of the strategy is connected with a random value that
was originally assigned. If FNi > rnd, the EFO algorithm’s active electrolocation is used for
position updating; otherwise, EOA is used in place of passive electrolocation to enhance
the effectiveness of the suggested strategy.

The position of the electric fish’s prey and its communication patterns are taken
into account when developing the EFO algorithm. Here, the search space (cloud-fog
environment) in which the electric fish population N (number of VMs) is produced is
generated randomly (11).

f ni,j = f nminj + δ( f nmaxj − f nminj) (11)

In the population of size |N|, where i = 1, 2, . . . |N| and an arbitrary value is called
that ranges among [0, 1], the position of the ith element is expressed as fni,j in the search
area. In Equation (11), fnminj and fnmaxj denote the lower and upper boundaries correspond-
ingly. Based on the fitness value given in Equation (12), an individual’s frequency value
(makespan, energy, and cost) is calculated

f rt
i = f rmin +

(
FNt

wrst − FNt
i

FNt
wrst − FNt

bst

)
+ ( f rmax − f rmin) (12)

Electric fish are significantly nearer to the food supply, in the range of fnminj to fnmaxj,
and have their frequency values determined at time t. The best and worst fitness values,
which are determined by individuals in the population at iteration t, are denoted as FNt

bst
and FNt

wrst, respectively. A probability computation is then performed using the frequency
values frmax and frmin, which are fixed t 0 and 1, respectively. The amplitude of the ith
element is determined at time t utilizing the weight of the individual’s prior amplitudes as
indicated in Equation (13).

Ampt
i = α•Ampt−1

i + (1− α) f rt
i (13)

Here, a constant value is denoted as α, which is located between [0, 1]. Here each
individual’s starting frequency value fri is allocated to their starting amplitude value. By
taking into account each person’s frequency value across all iterations, the population is
divided into two sets. The algorithm adheres to “both passive and active electrolocation”
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energetic electrolocation NActive: The EFO algorithm’s ability to leverage local search is
dependent on active electrolocation. In the following equation, the amplitude parameter
Ampi is utilized to compute the active range of each fish.

aci = Ampi( f nmaxj − f nminj) (14)

To locate nearby individuals (B|B ⊂ N) within the sensing or active range, it is
necessary to determine the distance between the ith individual and the remainder of the
population N. The distance (ds) between people i and k are calculated using the Cartesian
distance formula, as stated in Equation (15).

dsik = ‖ f ni − f nk‖ =

√√√√ d

∑
j=1

( f nij − f nkj)
2 (15)

Equation (16) is utilized if there is just one neighbor in the active sensing field; other-
wise, Equation (17) is used.

f ncnde
ij = f nij + δ( f nkj − f nij) (16)

f ncnde
ij = f nij + δ•aci (17)

A randomly selected individual, k, is obtained from the ith individual neighbor set
in Equation (17), where δ∈ [−1, 1], dsik ≤ aci, and k ∈ B. This f cnde

ij is then depicted as a
feasible solution for the ith individual. The mathematical modeling presented in Equation
(18) is utilized, where the jth variable value is greater than the problem space border.

f ncandidate
ij =


f nminj f ncnde

ij < f nminj

f ncnde
ij f nmaxj > f ncnde

ij > f nminj

f nmaxj f ncnde
ij > f nmaxj

(18)

The passive electrolocation is updated using the EOA algorithm to boost the per-
formance of the suggested method. It was created using the earthworms’ contribu-
tion to nature as its model. Since earthworms are hermaphrodites, a young earthworm
can be born to just one parent. Equation (19) has a mathematical formulation of the
reproduction process.

ERl1.m = ERmax.m + ERmin.m − ηERl.m (19)

where the earthworm is located, the lower and upper positions of the earthworm are
designated by ERmax.m and ERmin.m, respectively. The new location of the lth earthworm
is represented by ERl1.m. The number l is denoted by ERl.m. The symbol stands for the
similarity factor, which establishes how far off the parent and child are from one another.
When there is little similarity between them, their distance from one another is minimal.
When ERl1 is close to ERl, a local search is conducted. If η = 0, there is a significant distance
between them, as shown in Equation (20).

ERl1.m = ERmax.m + ERmin.m (20)

When the similarity factor has a value of η = 1(Equation (21)), a global search is
initiated. This is also referred to as the optimal-based learning approach.

ERl1.m = ERmax.m + ERmin.m − ERl.m (21)

In the reproduction process, making adjustments to the value of η balances the ex-
ploration and exploitation stages. The passive electrolocation is then updated using the
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EOA method. The tasks are assigned based on the updated value, which also identifies the
optimal fitness values.

The EEOA’s pseudo-code is provided by Algorithm 1.

Algorithm 1: The EEOA’s pseudo-code

Input: Tn, N, Pcn, Pfn
Output: optimal mapping of tasks by minimizing MKS, TE, TCost
Initialize the population N (no. of VMs)
Calculate each individual’s fitness FN
Determine frequency values x (energy, cost, makespan) and amplitude Amp by Equations (12)
and (11)

for every iteration t ∈ N
if FNi > rnd

updating the solution using the EFO algorithm's active electrolocation
select at random j for the adjustment
Calculate active range aci by Equation (13).
Compute distance dsik by Equation (14)
Recruit nearby residents in the B sensing area.
if B 6= ϕ

Select a random individual k in the search space
change jth parameter using Equation (15)

else
change jth parameter using Equation (16)

end if
else

update the passive electrolocation solution based on EOA using Equation (19)
end if
Identify and upgrade the optimum result

end

6. Results and Discussion

This section describes the experimental setting and compares our suggested EMCS
algorithm to a few other current methods to evaluate it. The algorithms used in this work
were tested and put into place using the CloudSim 3.0.3 simulator with Java on a personal
computer with an i7-8550U CPU running at 1.80–2.0 GHz (8 Cores), 16 GB of RAM, and the
Windows 10 operating system.

The data workflows for the performance assessment of the suggested method are
extracted from two real-world supercomputing sites. They are the High-Performance
Computing Center North (HPC2N) and Curie supercomputers executed at the CEA re-
search center (CEA-Curie) in Sweden (https://www.cs.huji.ac.il/labs/parallel/workload,
accessed on 14 October 2022). The implementation traces generated from the process-
ing of concurrent HPC tasks are contained in such workload logs. Table 2 provides an
overview of these workload logs. To shorten the execution duration of the simulations in
this investigation, we built 10 workloads using these HPC2N and CEA-Curie task logs.

Table 2. Description of real workloads.

Workload Log Duration Parallel Tasks Users CPUs File

HPC2N July 2002–January 2006 202,871 257 240 HPC2N-2002-2.2-cln.swf

CEA-Curie February 2011–October 2012 312,826 582 93,312 CEA-Curie-2011-2.1-cln.swf

We take into account both fog and cloud nodes with various processing, cost, and
energy rates. The processing speed of each node is determined by its MIPS (million
instructions per second) and communication costs. Cloud networks have VMs and servers

https://www.cs.huji.ac.il/labs/parallel/workload
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with increased processing speeds and bandwidth, but the fog nodes have low bandwidth
and processing speeds, which places a price on the use of the processors. The fog nodes
have a wider bandwidth than the cloud nodes. Grid Dollars (G$) are used to indicate the
cost. Table 3 displays the configuration information for the presented work.

Table 3. Configuration details.

Parameter Cloud Fog Unit

Number of VMs [10, 15, 20] [15, 20, 35] VM
Computing power [3000:5000] [1000:2000] MIPS

RAM [5000:20000] [250:5000] MB
Bandwidth [512:4096] [128:1024] Mbps

Cost [0.6:1.0] [0.2:0.5] G$

6.1. Simulation Results

The effectiveness of the implemented task scheduling techniques was compared to
other existing scheduling techniques using simulation experiments. These scheduling poli-
cies included cuckoo search particle swarm optimization (CSPSO), cuckoo search and dif-
ferential evolution algorithm (CSDEO), hybrid oppositional differential evolution-enabled
whale optimization algorithm (h-DEWOA) [32], and blacklist matrix-based multi-objective
algorithm (BLEMO). To eliminate uncertainty from the investigational data acquired, every
simulation trial was performed 30 times while maintaining the identical workload and test
settings. The average of the 30 measurements was then recorded.

6.2. CEA-Curie Workload Results

Table 4 and Figure 3 display the makespan outcome for all scheduling techniques
for CEA-Curie workloads. Due to its failure to take advantage of the diversity of virtual
machines, CSPSO produced the worst outcomes. CSDEO was also unable to get good
results because it did not have a reason for how jobs were assigned and how task orders
were made.
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Figure 3. Graphical representation of best makespan values on CEA-Curie workloads.

Additionally, it can be shown in Figure 3 that the results obtained by h-DEWOA
and BLEMO are often fairly similar and do not exceed the proposed approach. This
indicates that the scheduling decisions made by these algorithms regarding the distribution
of resources or the sequencing of jobs have little impact on the makespan results. The
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combination of EFO and EOA, which directs the algorithm toward position updating
without compromising the computational cost, is responsible for the performance observed
with our suggested approach. This strategy aids in the quickest possible return of the
local best answer by our suggested method. Additionally, it contributes to enhancing the
quality of solutions at the end of the search process, making it more effective for cloud
task scheduling.

Table 4. Makespan results for CEA-curie workloads.

CEA-Curie
Workloads Statistics h-DEWOA CSDEO CSPSO BLEMO Proposed

EE01

Best 10,275.90 10,969.92 12,675.80 10,200.10 9987.45

Average 11,660.04 12,482.34 14,134.60 13,165.61 10,526.87

Worst 14,435.67 15,499.38 16,988.50 20,732.08 12,498.12

EE02

Best 12,679.97 13,850.81 16,376.80 11,700.21 10,102.87

Average 15,109.39 15,889.18 17,221.90 16,597.74 14,187.21

Worst 18,477.35 18,831.50 20,454.50 24,840.16 16,932.67

EE03

Best 6829.378 7442.08 10,311.67 7200.21 6456.78

Average 9560.564 10,186.98 12,798.60 10,413.30 8843.67

Worst 11,850.62 13,173.06 15,224.90 16,350.10 10,631.33

EE04

Best 17,764.81 18,177.46 20,445.71 16,650.21 14,933.78

Average 20,896.71 21,676.68 22,658.40 22,875.85 17,005.87

Worst 24,003.90 25,609.87 26,113.80 32,400.10 20,947.23

EE05

Best 13,416.31 14,758.71 17,523.90 13,005.17 11,673.20

Average 16,508.44 17,108.33 19,543.20 17,552.51 14,498.56

Worst 20,937.46 19,959.83 22,665.43 24,444.68 17,837.98

EE06

Best 3620.954 4203.09 5209.51 3798.96 3046.78

Average 4684.121 5109.55 6754.31 5483.11 4991.76

Worst 6140.261 6733.47 8991.11 8535.21 5821.65

EE07

Best 8277.555 8843.01 9411.80 8771.46 7712.96

Average 10,371.22 11,153.84 12,774.12 12,950.13 9623.12

Worst 12,517.62 13,390.13 15,934.89 20,400.21 11,178.39

EE08

Best 3208.096 3653.73 4788.31 3180.21 2749.81

Average 4008.443 4451.31 5683.80 4967.06 3912.78

Worst 6041.973 5876.96 6371.51 8325.21 5129.21

EE09

Best 4308.133 4929.97 6783.11 5400.1 4200.12

Average 5599.78 6093.44 7416.8 7770.17 4984.98

Worst 7020.00 8509.48 9003.7 14,850.21 6793.76

EE10

Best 3988.775 4368.56 6987.6 4500.21 3122.56

Average 6481.927 6876.61 8564.9 7282.67 5952.34

Worst 7672.408 7924.87 10,277.6 11,250.10 6932.77

A comparison based on energy consumption is shown in Figure 4. The proposed
method uses the least amount of energy across all workloads, as would be predicted. H-
DEWOA and BLEMO achieve comparable energy usage in all workloads, whereas CSPSO
and CSDEO perform poorly in the majority of workloads. The proposed approach achieves
significantly more energy consumption on the EE02 and EE05 workloads as contrasted
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to all other workloads. However, it uses the least amount of energy when compared to
existing methods. The CSPSO performs poorly on the EE04 and EE05 tasks, while the
CSDEO and H-DEWOA perform similarly. The CSPSO records the highest overall energy
use. This further demonstrates how unreliable and ineffective the CSPSO algorithm is. It
uses a single homogeneous population, which is the cause of this. Thus, the potential for
early convergence is always present.
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Figure 4. Comparison of energy consumption on CEA-Curie workloads.

Figure 5 shows the cost of communication, calculation, and overall execution. These
figures show that each job has a different total execution cost. The presented EEOA task
scheduling algorithm operates better and outperforms the h-DEWOA, CSDEO, CSPSO,
and BLEMO task allocation algorithms in terms of minimizing execution costs. The results
obtained further demonstrate the scalability and ability of the suggested approach to
schedule large jobs in a heterogeneous environment while incurring the minimum execution
costs. For EE01 and EE10 workloads, our proposed EEOA algorithm improves the quality
of its solutions by allocating tasks to the finest VMs with the lowest execution costs.

6.3. HPC2N Workload Results

Results for the HPC2N workload in terms of makespan, cost, and energy usage are
shown in this section. Table 5 and Figure 6 show the makespan results of the proposed
methodology compared with other algorithms. It shows how much better makespan is
than the existing algorithms for workload situations. This is because the EOA algorithm
has been hybridized into the EFO algorithm, which provides a balance between global and
local search, improving the result globally.

The graphical representation of the best makespan results for all scheduling strategies
is shown in Figure 6 and was obtained by running the EE01–EE10 workloads of the HPC2N
trace. The graph makes it clear that, out of all scheduling strategies, the proposed technique
leads to the lowest makespan findings. It provides compelling evidence of the proposed
scheme’s stability and robustness. The worst outcomes, which include unanticipated
terrible behavior, are produced by other meta-heuristic techniques such as CSPSO and
BLEMO, which are notably different from the others. However, compared to these methods,
the h-DEWOA meta-heuristic produced better results.
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Figure 5. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of CEA-
Curie workload.
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Table 5. Makespan results for HPC2N workload.

HPC2N
Workloads Statistics h-DEWOA CSDEO CSPSO BLEMO Proposed

EE01
Best 18,801.74 20,036.63 22,109.82 21,000.10 17,612.91

Average 21,579.70 22,258.71 24,562.89 27,397.33 20,561.23
Worst 33,700.98 35,291.42 27,988.71 41,259.62 26,333.98

EE02
Best 14,953.21 16,522.34 19,822.77 14,644.01 13,451.72

Average 17,567.38 18,941.76 21,753.88 19,552.95 16,812.56
Worst 22,324.56 22,696.08 24,123.77 28,848.91 20,712.40

EE03
Best 16,649.19 17,810.82 20,237.12 16,650.10 15,512.89

Average 19,329.17 20,308.97 23,521.98 22,961.31 18,490.21
Worst 26,644.20 29,312.09 25,988.25 33,907.60 22,651.48

EE04
Best 13,366.98 14,515.07 17,452.86 13,522.67 12,911.47

Average 16,207.58 17,188.48 20,343.71 17,200.76 15,741.49
Worst 20,203.84 20,332.90 22,329.21 22,965.20 18,490.28

EE05
Best 9972.00 11,616.94 14,117.48 10,650.25 8328.61

Average 12,274.21 13,067.45 15,876.22 13,953.94 10,953.47
Worst 14,380.36 14,915.63 16,432.21 18,150.31 13,723.91

EE06
Best 3704.70 4017.70 6843.91 4200.10 3208,11

Average 5320.46 5576.38 8410.39 5930.53 4879.94
Worst 7980.15 7468.60 9988.78 11,625.10 6247.56

EE07
Best 7581.52 7828.44 11,447.30 8287.76 7032.81

Average 9821.84 10,110.14 13,256.89 10,553.76 8892.02
Worst 12,118.86 11,991.02 14,952.12 15,232.71 10,871.45

EE08
Best 3338.51 3778.44 5623.54 3825.10 2988.52

Average 5137.35 5380.60 6782.13 5910.08 4693.29
Worst 7803.77 7980.22 8705.65 9450.17 7302,27

EE09
Best 2969.94 3006.86 4336.83 3600.10 2100.82

Average 3834.73 3964.54 6123.98 4738.25 3319.82
Worst 5808.41 7878.97 7398.21 21,937.59 4847.62

EE10
Best 1875.20 2130.94 3581.54 2250.10 1211.39

Average 3436.67 3697.48 4769.21 4657.41 2931.73
Worst 5548.10 7232.97 7932.42 20,970.09 4831.29
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Figure 6. Best makespan result for HPC2N workload.
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The same evaluation was carried out to see how much energy the strategies saved.
When employing EEOA, the system used 10% less energy than when using the other
approaches for the HPC2N workloads in Figure 7. This implies that it reduced both energy
and food consumption. This is because of an efficient hybrid mechanism that combines the
EFO and EOA algorithms’ superior searching capabilities. The suggested hybrid policy
had access to effective and varied schedules at every generation owing to hybridization,
and the EEOA algorithm’s final iterations showed no loss of variety.
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Figure 7. Comparison of energy consumption for HPC2N workload.

The entire amount that the clients pay to the service supplier depending on the number
of resources utilized is known as the execution cost. Figure 8 displays the communication
cost, computation cost, and total cost figures for the various algorithms. The EEOA
algorithm can reduce the cost for a variety of workloads while improving performance
more than any other method.

It has been noted that CSPSO has the highest cost, EEOA has the lowest cost, and
CSDEO and BLEMO have the average cost of using cloud and fog for EE01 and EE10
workloads, as illustrated in Figure 8. While ignoring additional prices and energy, CSPSO
concentrates on the task’s processing time. Therefore, its price is the highest. h-DEWOA
can save more on average cost when compared to CSDEO; it can save 25.38% of the average
cost of CSPSO and 3.5% of the average cost of CSDEO. This is because the suggested
technique shortens overall execution time by assigning the work to the resource that can
perform it most quickly, which can also help lower costs.

As demonstrated in Table 6, the suggested EEOA approach generated good schedul-
ing solutions with appropriate convergence speeds for both workloads. The suggested
scheduling policy’s time requirements are lower than those of the h-DEWOA and CS-
DEO meta-heuristic-based scheduling strategies. The computation time of the h-DEWOA
algorithm is quite higher than that of other techniques. However, it is feasible despite
the significant makespan, cost, and energy consumption. Finally, the proposed method-
ology gives the best results in terms of efficiency, cost, and energy usage with the least
amount of computing time when compared to the other methods. As a result, it can be
said that the EEOA has proven to be a potent and successful solution for resolving complex
task-scheduling issues on a large scale.
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Figure 8. Comparison of (a) communication cost, (b) computation cost, and (c) total cost of
HPC2N workload.
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Table 6. Execution time for two workloads.

Techniques CEA-CURIE (s) HPC2N (s)

h-DEWOA 14.87 15.59
CSDEO 11.63 15.97
CSPSO 10.73 15.07
BLEMO 7.95 11.47

Proposed 7.12 10.86

7. Conclusions and Future Work

The management of the allocation and execution of IoT jobs in a cloud-fog computing
environment proves the effectiveness of the cost-aware task scheduling system. To solve the
job scheduling problem, we suggest a novel adaptive algorithm in this article that integrates
the earthworm optimization algorithm (EOA) with the electric fish optimization algorithm
(EFO). The goal of the provided EEOA approach was to increase the fundamental EFO
algorithm’s capacity for use. The effectiveness of the proposed algorithm was assessed
using several assessment criteria and compared to that of the other metaheuristics already in
use. The presented scheduling method performs better than alternative methods in general
across all scientific workflows and all performance measures according to the results. It
holds its own against other procedures reasonably well and produces the best outcomes in
the shortest amount of time. The proposed mechanism is applied in real-time applications,
i.e., smart cities, and it also helps greatly in scheduling latency sensitive applications such
as vehicular networks. One of the limitations we discovered in our current research is that
our algorithm cannot predict upcoming workloads and cannot decide whether or not to
offload the task. As a result, in the future, the scheduling algorithm will need to incorporate
a machine learning model that predicts upcoming workloads and intelligently offloads
tasks at the fog nodes. Furthermore, we will test our proposed work in an edge-cloud
environment to determine the efficiency of our algorithm.
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