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Abstract: As small commodity features are often few in number and easily occluded by hands, the
overall detection accuracy is low, and small commodity detection is still a great challenge. Therefore,
in this study, a new algorithm for occlusion detection is proposed. Firstly, a super-resolution algorithm
with an outline feature extraction module is used to process the input video frames to restore high-
frequency details, such as the contours and textures of the commodities. Next, residual dense
networks are used for feature extraction, and the network is guided to extract commodity feature
information under the effects of an attention mechanism. As small commodity features are easily
ignored by the network, a new local adaptive feature enhancement module is designed to enhance
the regional commodity features in the shallow feature map to enhance the expression of the small
commodity feature information. Finally, a small commodity detection box is generated through the
regional regression network to complete the small commodity detection task. Compared to RetinaNet,
the F1-score improved by 2.6%, and the mean average precision improved by 2.45%. The experimental
results reveal that the proposed method can effectively enhance the expressions of the salient features
of small commodities and further improve the detection accuracy for small commodities.

Keywords: image super-resolution; occlusion small commodity detection; residual dense block;
attention mechanism; feature pyramid network; feature enhancement

1. Introduction

In recent years, owing to the continuous development of technologies such as big
data and the Internet of Things, artificial intelligence has gradually matured. The govern-
ment has issued relevant policies to support the transformation of the retail industry to
digital platforms and further promote the development of an intelligent retail industry;
consequently, the offline retail market has witnessed continuous expansion. The global
retail industry market size reached 27 trillion USD in 2021, and as per estimates, artificial
intelligence will contribute additional growth of 2 trillion USD to retail by 2035, thereby
providing massive business value.

Currently, two main solutions exist for retail containers: non-visual and visual meth-
ods. Non-visual methods primarily include gravity sensing and radio frequency identifica-
tion technologies. However, these methods exhibit poor flexibility and increase the cost of
commodities. At present, numerous target detection methods are based on convolutional
neural networks (CNNs), such as faster-region-based CNNs (Faster-RCNN) [1], single-shot
detection (SSD) [2], YOLO [3], and RetinaNet [4]. Retail containers in the market are in-
creasingly using visual container technology [5] based on deep learning for commodity
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detection [6,7] and identification to realize the deduction of commodities purchased by
customers and corresponding settlements.

Owing to the influence of light, transmission equipment, and the surrounding envi-
ronment, the details of a video image can be substantially lost. Some researchers have
conducted studies related to image super-resolution (SR) [8] to solve the problem of im-
age blurring. For example, Noh divided an input low-resolution image into textured
and non-textured regions [9] and then interpolated the image according to the features
of local structures, thereby retaining the texture and structure information of the image
while ignoring the contour information. To reduce the number of parameters and ensure
good performance of the network, an ultra-lightweight SR network [10] was proposed to
retain high-frequency details. However, the restored images exhibit structural distortions.
Therefore, Ma [11,12] proposed a structure-preserving SR method with gradient guidance
to alleviate the geometric distortion prevalent in the SR results from perception-driven
methods. Additionally, a new module called feature texture transfer (FTT) [13] was used
to extract trusted regional details. A texture- and detail-preserving network [14] was
proposed, which can not only learn local and regional features but also pay attention to
texture and detail features and restore high-resolution ratio images with better perceptual
effects. In addition, some experts [15] decoupled the reference-based super-resolution from
a new perspective, eliminating the interference between the LR image and the reference
image. However, the generated image is easily lacking constraints with the original im-
age. In this article, we combine texture, content, and contour features to obtain rich SR
image information.

Recently, in terms of feature extraction, CNNs [16], residual networks [17,18], and
other networks have been used to extract the target features. As small commodities are
occluded [19], the effective features of such commodities are often missing, so image in-
painting [20] algorithms are usually used to repair the incomplete image. However, existing
studies can only display excellent results in accomplishing simple image structures and gen-
erating image content with a complex overall structure, and high fidelity of detail remains a
huge challenge. Therefore, optimized residual mapping [21] was used to improve the learn-
ing ability of the residual network. Zhang [22] used densely connected convolution layers
in residual dense blocks to extract rich local features. They reported that stacking additional
residual blocks enhances the normalization preservation of a network [23]. Although these
networks perform well at extracting features, they are extremely complex, resulting in
a significant loss of efficiency. Some scholars [24,25] have adopted residual learning to
gradually improve by learning the residual in each output, which can be achieved with
only a few convolution parameters, thereby achieving high compactness and efficiency. A
novel squeeze-and-excitation module (SENet) [26] was proposed. This attention mecha-
nism focuses on each input channel, and the network focuses on the important channel
after obtaining the weight of the corresponding channel, thus significantly improving the
performance of the CNN. Wang [27] designed an efficient channel attention module to
significantly improve model performance while using fewer parameters. Liu [28] proposed
a pixel-level context attention network for selectively focusing on the context location
information of pixels and generating an attention force to generate the context features of
salient targets. Compared to SENet [26], which focuses only on the attention mechanism of
the channel, Woo [29] conceived a lightweight convolutional attention module (CBAM).
This module infers an attention map from the channel and spatial dimensions in turn
and outputs refined features. Instead of simply using the residual network to perform
feature extraction, we add the attention module based on this, which makes the network
pay more attention to the detailed features of commodity regions, fully extracts the spatial
information of multi-scale feature maps, and realizes the interaction between important
features of cross-dimensional channels and spatial attention.

In the process of target prediction, small targets are easily ignored by the network
because of their relatively few features [30]. The detection effect for small targets can be sig-
nificantly improved by enhancing their features. However, the accuracy of target detection
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is unstable owing to uncertainty in the features of multiscale fusion. To efficiently express
small target features, a new enhanced feature pyramid network (FPN) [31] was proposed,
which can suppress redundant semantic information, ensure the enhancement of target
features, and significantly improve the detection performance of objects. To improve the
detection performance caused by weak features, neighborhood erasing and neighborhood
transmission modules [32] were introduced to erase the salient features of large targets and
emphasize the features of small and medium targets in shallow layers, respectively. Addi-
tionally, recognizing that boundary and texture features help to detect targets, researchers
use boundary and texture enhancement networks [33] to embed feature information into
object features to predict targets. Wang [34] proposed an “Attentive WaveBlock” module
that can be embedded in dual networks to enhance the complementarity between the two
parts and further suppress noise.

At present, object detection networks with deep learning as the mainstream are widely
used in intelligent retail containers [35], but there is still a lot of room for improvement
in the accuracy of commodity detection, especially in the detection of small commodities
occluded by hands. There are still problems such as a low detection rate, false detection,
and missed detection. Based on this, it is necessary to conduct in-depth and detailed
research on the detection of the occlusion of small commodities. In this article, aiming at the
detection of small commodities in a smart retail container, especially in the situation where
customers’ hands occlude commodities during the purchase process, this paper proposes a
feature enhancement occlusion detection algorithm for small commodities with SR. Since
the video needs to be compressed and uploaded to the cloud server for corresponding small
commodity detection to obtain high-definition images, it is processed with SR, and the
corresponding feature expression ability is enhanced to effectively improve the detection
performance of small commodities when the features of small commodities are occluded
during the detection process.

In summary, this study makes the following three contributions:

(1) During the experiments, we found that the image clarity of the video frames was
low; therefore, we processed the images with SR and image super-reconstruction to
recover clear images containing more detailed features of commodities;

(2) To obtain more information about commodity features, a convolutional attention
mechanism was used to guide the network to extract important features of the com-
modity while suppressing irrelevant features to fully extract the effective features of
the commodity;

(3) As small commodities have fewer features, extracting discriminative features is chal-
lenging. Therefore, we enhanced the contour and texture features of the commodity
regions to ensure that the features of small commodities could be efficiently expressed
and the detection accuracy could be improved.

The structure of this article is as follows: Section 2 describes the overall algorithm and
related theories. Section 3 presents the experimental details, including the experimental
platform, comparison experiment, ablation experiment, experimental results, and analysis.
Section 4 summarizes the proposed algorithm.

2. General Architecture

Figure 1 shows the small commodity detection method employed in this study. The
flowchart of the algorithm is divided into three primary steps: (1) preprocessing the input
video frame to obtain the SR image; (2) extracting features from SR images and extracting
feature information of different dimensions of commodities through the attention module;
and (3) enhancing the small commodity area of the shallow feature map in the feature
pyramid and classifying the commodities by adaptive regression through the fusion of the
multi-scale feature maps.
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Figure 1. Algorithm flow. (A) The input video frames are first preprocessed to obtain the SR images.
(B) Residual dense blocks are used to extract features from SR images and extract feature information
for different dimensions of commodities through the CBAM. (C) The feature pyramid network
enhances the small commodity region of the shallow feature map, and the fusion of multi-scale
feature maps is used to classify the commodities by adaptive regression. Downsample denotes the
downsampling operation on the feature map. Upsample denotes the upsampling operation on the
feature map.

2.1. Video Frame Preprocessing
SR Processing

Owing to the low number of pixels in an input video frame, the high-frequency
detail information in the image may be substantially missing. This is not conducive to
the small commodity detection task. Inspired by the FTT [13], the approach proposed in
this study extracts the corresponding semantic features of images through content, texture,
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and contour extractors and thus improves the resolution of content and texture features to
four times those of the original images. Simultaneously, it extracts the contour features of
the features extracted from the content. Subsequently, it stitches the content, texture, and
contour features together to obtain high-resolution features. Thus, it achieves the goal of
using low-resolution images to output high-resolution images. The network structure is
illustrated in Figure 2.
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Figure 2. The architecture of image super-resolution (SR) network. F1 denotes the content input, F2

denotes the texture input, and F3 denotes the outline input.

The structure consists of three parts corresponding to three functions, namely content
extraction, texture extraction, and outline extraction. F1 is the content input, F2 is the texture
input, and F3 is the outline input. Herein, sub-pixel convolution was used to perform
advanced spatial resolution processing on the input features. Subpixel convolution is a
transformation for processing pixels in the channel dimension, whereby F0 ∈ RH×W×C·l2

is
transformed into F0 ∈ RH·l×W·l×C. F1 extracts the image’s semantic features through the
content extractor and converts the output multi-channel feature map into a single-channel
feature map. F2 initially maintains its resolution and then fuses it with F1 for the feature
map. The semantic features play an important role in SR image restoration; however, the
generated video frames lack contour features. Therefore, in this study, an outline extractor
was added to represent the contour information. F3 was input into the outline extractor to
obtain contour features, and the output multi-channel feature map was converted into a
single-channel feature map. Then, we input the content feature map. Subsequently, the
content feature map, F2, and contour feature map were input into the texture extractor for
texture feature extraction. The generated feature map contains rich semantic information.
Finally, it was stitched with the feature map output using the content and contour extractors
to obtain the feature map Fs containing the texture, content, and contour information. The
expression is as follows:

Fs = RT(F2 ⊗ (RC(F1) ↑ 2×)⊗ RO(F3) ↑ 2×+RC(F1) ↑ 2×+RO(F3) ↑ 2×) (1)

where RC(·) is the content extraction module; RO(·) is the outline extraction module; and
RT(·) is the texture extraction module.

The original image and detailed feature map were fused, and Flow represents the
source image features, which were merged with Fs through the fusion layer and described
as follows:

Ff usion = HConcat(Flow + Fs) (2)

where HConcat denotes the fusion operation. The fusion layer is essentially a bottleneck
layer for providing feature fusion and increasing the nonlinear relationship between the
high- and low-resolution features. Subsequently, the merged image features are input



Sensors 2023, 23, 2439 6 of 24

into the image reconstruction network for high-quality SR image reconstruction [8]. The
formula is expressed as follows:

ISR = FIRN(Ff usion) (3)

where FIRN stands for image reshaping operation and ISR represents the reconstructed image.

2.2. Feature Extraction

In the feature extraction process, a residual network is used for feature extraction. To
fully extract the features of commodity regions, an attention mechanism is added to the
network to focus on commodity regions and extract fine commodity feature information.

2.2.1. Residual Network

In this study, a residual network comprising multiple residual units stacked together
was used. Owing to the general lack of small commodity features, the proposed approach
uses residual dense blocks to connect and supplement local features when extracting
features and reduces the number of network parameters through parameter sharing. The
network adds a skip connection between each residual unit and the next one and fuses the
output features of the different residual units. The skip connection in the residual block
helps maintain the norm of the gradient and ensures stable backpropagation.

Essentially, the feature map FW×H×C·l2
is sent to the three channels of the residual

network for effective feature extraction. The proposed network was divided into two parts:
the residual backbone network and the attention mechanism module [29]. In the backbone
network, a 3× 3 convolution kernel was used for feature extraction, and a F1, · · · , Fi, · · · , Fn
feature map was obtained. The map can be expressed as follows:

Fi = HConv(Fi−1) (4)

where HConv(·) includes the convolution layer, batch normalization (BN) layer, and rectified
linear unit (ReLU) function.

The residual dense blocks are fused in each branch to obtain a dense feature map. The
corresponding equation is as follows:

Fk+1,Ct = HConv,1×1(HConcat(Fk+1,C1 , · · · , Fk+1,Ct−1)) (5)

where HConcat(·) represents the feature fusion and HConv,1×1(·) is the convolutional layer,
BN layer, and a Relu nonlinear layer.

The output feature map Fk+2 was obtained by adding the input feature map Fk and
dense feature map Fk+1 [36]. The formula is as follows:

Fk+2 = Fk + Fk+1 (6)

The structure of the residual network is shown in Figure 3.
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2.2.2. Attention Mechanism Module

To address the problem of insufficient utilization of features in the middle of the
network, CBAM was introduced in the middle of the residual network [29] to enhance its
representational ability. To avoid the loss of salient features of small items in the extraction
process, an attention mechanism based on both channel and spatial attention was used. A
convolution operation was employed to mix the cross-channel and spatial information and
extract the important feature information of the small commodities. The structure of the
attention mechanism is shown in Figure 4.
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The input feature map F ∈ RC×H×W , one-dimensional channel attention map F ∈ RC×1×1,
and two-dimensional spatial attention map Ms ∈ R1×H×W are described as follows:

F′ = Mc(F)⊗ F (7)

F′′ = Ms(F′)⊗ F′ (8)

where ⊗ is the pixel-by-pixel multiplication and F′′ is the refined feature of the output.

2.3. Feature Fusion and Detection Frame Regression
2.3.1. Feature Pyramid Network

Existing object detectors have achieved good results for large objects; however, their
performance for small objects is unsatisfactory. In this study, to detect smaller commodities,
an image FPN was constructed to realize detection across the scale range. In particular, a
lightweight architecture that efficiently generates image feature pyramids in the detection
framework was used. The structure of the FPN is shown in Figure 5.
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The extracted features were sampled to obtain multi-scale feature maps, namely,
G1, G2, G3, G4. The feature maps of different scales were upsampled and fused to obtain
S1, S2, S3, S4. This approach can fully utilize different context regions to obtain global
information, including high-level semantic and shallow location information. The re-
gion proposal network adaptively generates proposal regions and sends them to the
subsequent network.

2.3.2. Feature Enhancement

Small commodities contain less information in the feature maps, and such information
can easily be ignored. To efficiently detect small commodities, the salient features of
commodities are emphasized and expressed, which is helpful in achieving the rapid
detection of commodities. By improving the neighborhood transmission module [32], a
feature enhancement network was designed herein. Compared to the deep feature map,
the shallow feature map contains richer information regarding the locations, textures, and
outlines of commodities. Therefore, the shallow feature map from the FPN was input into
the feature enhancement module to enhance the location, contour, and texture information
along with other features of small items to improve the detection accuracy and speed
performance. The feature enhancement network structure is shown in Figure 6.
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The feature enhancement module was used to enhance the features of small commodi-
ties, that is, to enhance the features of the shallow feature maps S1 and S2. First, S1 was
upsampled. Subsequently, spatial channels were generated using a gate function, and a
feature map S′1 was obtained based on the activation function. The input S2 underwent con-
volution by a 1× 1 convolution kernel, and S′2 was obtained by a gate function operation.
By multiplying the features of S′1 and S2, calculations were obtained as follows:

S′1 = σ(G(U(S1))) =
1

1 + e−G(U(S1))
(9)

S′2 = G(HConv,1×1(S2)) (10)

where σ(·) is the activation function; U(·) is the upsampling operation on the feature map;
and G(·) is the self-attention gate function, which generates a spatial channel to enhance
commodity features. The formula is as follows:

G(Si) = HConv(Si) (11)

The combination of the two results in Sp, which can be expressed as follows:

Sp = S′1 � S′2 (12)
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where� denotes the Hadamard product. These features were summed element-by-element
to obtain the details Sk, as follows:

Sk = S1 ⊕ HConv,1×1(D(Sp)) (13)

where ⊕ stands for a pixel-by-pixel summation; D(·) is the downsampling operation on
the feature map; and the detailed features of the commodity area are enhanced to facilitate
subsequent classification and detection box regression. Thus, enhanced feature maps Sk
and high-level feature maps S′1, S′3, and S′4, containing the location information, contour
information and center point of the commodity, were obtained. These can be used to
effectively predict different scales and to generate subsequent product detection frames.

2.3.3. Commodity Detection Frame

As our task was to generate a commodity detection box, a region proposal network was
introduced for commodity region regression. In the training phase, 10,000 regression boxes
with the highest scores were obtained through a non-maximum suppression operation,
and 1500 of them were selected as small-item proposals. In the test phase, 400 proposals
were selected from 10,000 regression frames. Owing to the occlusion of small commodities
and relatively few features, detection in regression detection frames can be easily missed.
Therefore, inspired by a previous study [37], a new loss function was proposed to train
the network. The loss function in this article consists of three parts. The first part is the
regression loss function, which has a great influence on the regression of the detection box
owing to the variety of shapes of the commodities. To solve this problem, the intersection-
over-union (IOU) factor |− log(IOU)|∣∣∣L1(v′kj ,vkj)

∣∣∣ was introduced to optimize positioning accuracy and

accurately return the detection box for commodities. The formula is as follows:

L1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

(14)

Lreg =
1
N

N

∑
i=1

∑
j∈{x,y,w,h}

L1(v′kj, vkj)∣∣∣L1(v′kj, vkj)
∣∣∣ |− log(IOU)| (15)

where L1 is the smoothing loss; N is the number of regression frames; and IOU represents
the overlap between prediction frames and real frames.

By regressing the size of the target commodity c, the regressed commodity width and
height were obtained as Sc = (x(c)2 − x(c)1 , y(c)2 − y(c)1 ). The second part is a loss function
for the commodity width and height. The loss function was used to measure the losses of
commodity width and height. The formula is described as follows:

Lh,w =
1

N2

N

∑
i=1

∣∣∣>Sreal − Sc

∣∣∣2 (16)

>
Sreal is the true width and height of the commodity.
The third part is the classification loss function, which comprises the cross-entropy

function, and is expressed as follows:

Lcls =
1
N

N

∑
i=1

log
eWT

Ci
xi+bCi

N
∑

i=1
eWT

j xi+bj

(17)

where WT
Ci

is the learned weight; and bj is the bias term.
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The formula for the total loss function is defined as follows:

Ltotal = λ1Lreg + λ2Lh,w + λ3Lcls (18)

Among them, the distribution of the super-parameters, λ1 = 1
3 , λ2 = 1

3 , λ3 = 1
3 con-

trols the weight of each loss function. Through the constraint of the loss function, an accurate
detection frame was derived, thereby completing the detection task for small commodities.

3. Experiments

The specific structure of the experimental content in this study is shown in Figure 7 and
is mainly divided into five parts: experimental setting, algorithm evaluation, comparison
study, ablation study, and experimental analysis.
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3.1. Experiment Setting
3.1.1. Dataset

In this study, self-made retail containers were used to collect 16 commodity datasets,
including training, validation, and test sets. Herein, the definition of the small commodity
is the size of the small commodity, which is related to the size of a human hand. In
particular, under extreme conditions, whether the entire hand of a consumer can fully
cover the features of the effective area of the commodity to the greatest extent such that the
commodity cannot be detected was determined. Commodities meeting this condition were
considered small commodities.

To facilitate the subsequent commodity inspection, the names of the commodities
were simplified, as shown in Table 1.

Table 1. The simplified table of commodity names.

Name of Commodity Simplification of Commodity Name

Canned Pepsi bskl_gz
Pepsi Cola bskl

Rainbow Popcorn chbmh
Red Bull hn

Fiber Drink jj
Kumquat Lemon jjnm

Small bottle of Coca Cola kkkl_s
Green Tea lc
Mirinda mnd

Canned Mirinda mnd_gz
Mai Xiang Chicken Flavor Block mxjwk

Nongfu Spring nfsq
Wang Zai Milk wz

Small bottle of Sprite xb_s
C’estbon yb_m

Small bottle of C’estbon yb_s

To illustrate the feasibility of the experimental data, commodity datasets were collected
under appropriate lighting conditions. The datasets for each commodity, including both
large and small commodities, are shown in Figures 8 and 9.
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3.1.2. Experimental Platform

In this work, the system platform was Windows 10, the GPU model was an NVIDIA
GeForce RTX 3060, the CPU was an I5-12400F, the memory was 16 GB, and the software
environment was Python3.7 and Pytorch2.3.
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3.2. Algorithm Evaluation
3.2.1. Index of SR Algorithm

To illustrate the processing results from the SR algorithm, two quantitative indicators,
namely the peak signal-to-noise ratio (PSNR) and structural similarity measure (SSIM),
were introduced. The PSNR formula is expressed as follows:

PSNR = 20× log10(
MAXI
MSE

) (19)

where MAXI represents the maximum pixel value in the image pixels; and MSE represents
the mean square error of the corresponding pixels between the generated image f ′ij and
original image fij. MSE is calculated as follows:

MSE =
1

M ∗ N

N

∑
i=1

M

∑
j=1

( fij − f ′ij)
2 (20)

SSIM is a measure of the similarity between two images, and it is calculated as follows:

SSIM(x, y) =
2µXµY + c1

µ2
X + µ2

Y + c1
∗ 2σXσY + c2

σ2
X + σ2

Y + c2
(21)

where, µX and µY are the pixel mean of image X and image Y, respectively; σX and σY are the
pixel variances of image X and image Y, respectively; c1 = (0.01 ∗ l)2; and c2 = (0.03 ∗ l)2.

Note that the higher the PSNR, the less distorted the processed image is. A higher
SSIM indicates higher image similarity and better image quality.

3.2.2. Index of Detection Algorithm

To evaluate the proposed algorithm, the average precision (AP) and mean AP (mAP)
were selected as evaluation indicators.

Accuracy =
TP + TN

TP + TN + FP + FN
(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

F1 − score = 2
Precise·Recall

Precise + Recall
(25)

APi =
1
i ∑ P·dr (26)

mAP =

N
∑
i

APi

N
(27)

where TP denotes a positive sample and a positive prediction result; TN denotes a positive
sample and a negative prediction result; FP denotes a negative sample and a positive
prediction result; and FN denotes a negative sample and negative prediction result; Accuracy
represents the proportion of all correct predictions. Precision represents the percentage of
true positive predictions; Recall denotes the proportion of true positives; AP is the area of
the Precision-Recall curve; and mAP is the mean average accuracy across all classes.

3.3. Comparative Study

The algorithm proposed herein has good completeness. The relevant parameters were
set to achieve high-performance small commodity detection. The total training batch was
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100, the epoch was 80, and the learning rate was set to 0.0001. The loss function curve is
shown in Figure 10.
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As can be seen from the figure, when the training reached approximately 80 iterations,
the loss function converged.

3.3.1. Effect of SR

To demonstrate the effectiveness of the SR method, it was compared to the SRGAN [38],
EDSR [39], and CARN [40] algorithms in the context of image blurring during the detection
process. The abovementioned experiments revealed that the image details processed by the
proposed method were richer, and the generated image had a high degree of similarity to
the original image. Table 2 lists the experimental results obtained by the different methods.

Table 2. Super-resolution results of different algorithms.

Method SRGAN EDSR CARN Ours

PSNR/dB 28.16 30.46 32.12 32.72
SSIM 0.889 0.887 0.858 0.894

Note: Bold is the best result.

Compared to the other methods, the method proposed herein was superior in terms
of index performance. The PSNR and SSIM values were the highest. The SR images
significantly restored the details of the original image, and the original image features
were retained to the greatest extent, thus demonstrating the feasibility and superiority of
this algorithm.

The experimental results are shown in Figure 11, with original images (a) and (c) and
SR images (b) and (d) obtained by the proposed method.
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Evidently, from the above figure, the SR processing retained the texture and structure
information of the original image and enhanced the high-frequency information, such as the
commodity contents and contours in the image. The semantic information of commodities
was restored, thereby avoiding the problem of image distortion (which led to a decline in
detection accuracy).

The SR processing not only retains the original image but also restores the commod-
ity contour and other features to a certain extent, thereby playing a positive role in the
subsequent commodity contour feature extraction.

3.3.2. Small Commodity Detection Performance

When consumers buy commodities, the camera captures different degrees of occlusion
of the commodities from its perspective, which can considerably affect the effects of small-
object detection. To verify the efficiency of this algorithm, the model was compared with
four other algorithms, and four types of commodities with different degrees of occlusion
were selected. These included slight occlusions (occlusion degrees of 0–10%), partial occlu-
sions (occlusion degrees of 10–20%), moderate occlusions (occlusion degrees of 20–30%),
and severe occlusions (occlusion degrees of 30–60%). The experimental results are listed
in Table 3.

Table 3. Comparison of detection performance of different algorithm models.

Occlusion Degree of Different
Commodity SSD Faster-RCNN YOLOv5 RetinaNet Ours

Red Bull (slight occlusion) 0.9667 0.9693 0.9682 0.9883 0.9891
Red Bull (partial occlusion) 0.9430 0.9451 0.9671 0.9554 0.9557

Red Bull (moderate occlusion) 0.8747 0.8366 0.8964 0.9189 0.9273
Red Bull (heavy occlusion) 0.6746 0.7529 0.8153 0.8482 0.8828
C’estbon (slight occlusion) 0.6758 0.9833 0.9634 0.9839 0.9857
C’estbon (partial occlusion) 0.5693 0.9408 0.9567 0.9673 0.9724

C’estbon (moderate occlusion) 0.5351 0.8021 0.8467 0.8017 0.9152
C’estbon (heavy occlusion) 0.4332 0.7475 0.7676 0.7631 0.8281

Sprite (slight occlusion) 0.8807 0.8863 0.9757 0.9603 0.9787
Sprite (partial occlusion) 0.8356 0.8525 0.9363 0.8592 0.9576

Sprite (moderate occlusion) 0.7221 0.7889 0.8485 0.7975 0.8972
Sprite (heavy occlusion) 0.4533 0.7218 0.7227 0.7919 0.8483

Wang Zai Milk (slight occlusion) 0.7507 0.9163 0.9574 0.9752 0.9793
Wang Zai Milk (partial occlusion) 0.7436 0.8011 0.9369 0.9239 0.9679

Wang Zai Milk (moderate occlusion) 0.6492 0.6125 0.7495 0.8702 0.9362
Wang Zai Milk (heavy occlusion) 0.4750 0.5382 0.6756 0.7647 0.8125 1

Note: Bold is the best result. 1 All results are the AP.

According to the above table, the proposed method was superior to the SSD, Faster-
RCNN, Yolov5, and RetinaNet algorithms in terms of detection accuracy on commodity
datasets with different degrees of occlusion. The horizontal comparison indicates that the
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proposed method performed well in terms of detection accuracy for different commodities.
Under severe occlusion, the detection accuracy of the proposed algorithm was improved by
more than 3% relative to the mainstream methods Yolov5 and RetinaNet. The longitudinal
comparison indicated that with an increase in the degree of occlusion, detection accuracy
exhibited a gradual downward trend. Compared with other algorithms, the detection
accuracy of the proposed method generally remained above 81%, and the proposed model
was relatively stable compared with the other models. In addition, the results demonstrated
the superiority of the proposed algorithm. In terms of detection speed, the proposed
model reached an average of 15.13 frames/s, thus meeting the requirements for real-
time performance.

3.3.3. Comparison of Model Complexity and Computation Time

To evaluate the computational complexity of each model, relevant comparison ex-
periments were performed in terms of the number of model parameters and training
time, and the results are shown in Table 4. The time indicates the training time. As
can be seen from the table, the Faster R-CNN model has the largest number of parame-
ters, while the RetinaNet model has a relatively small number of parameters. Compared
with other models, the number of parameters and training time of this paper need to
be further reduced, and the complexity of the model needs to be optimized to meet the
commercialization requirements.

Table 4. Comparison of model complexity.

Model Backbone Parameters (M) Time (min)

YOLOv4 CSPDarknet53 42.3 977
YOLOv5 CSPDarknet53 38.4 854

SSD VGG16 139.7 3063
Faster R-CNN VGG16 148.4 3368

RetinaNet Resnet50 27.5 617
Ours Resnet50 41.1 918

3.4. Ablation Study
3.4.1. Effect of SR

The comparative experiments revealed that the quality of the image generated by the
SR algorithm was high and that the contours of the commodities and other information were
significantly restored. To explore whether SR commodity detection was efficient, ablation
experiments were performed under two conditions: (1) lack of SR commodity detection
and (2) commodity detection under SR. The experimental results are listed in Table 5.

Table 5. Detection accuracy of original image and super-resolution.

Method The Lack of SR
Commodity Detection

Commodity Detection
under SR

Mai Xiang Chicken
Flavor Block 0.7927 0.8938

Small bottle of C’estbon 0.8083 0.9673
Wang Zai Milk 0.8692 0.9651

Rainbow Popcorn 0.7743 0.9081
Small bottle of Coca Cola 0.7357 0.8635 1

1 All results are the AP.

The image detection effect after SR processing was significantly higher than that of the
original image. In terms of detection accuracy, the performance with SR processing was
better than that without SR processing, with an increase of more than 9%. The SR-processed
image contour feature information was more abundant, the network could further extract
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the semantic details of small commodities, and the small commodity detection accuracy
was significantly improved, further verifying the effectiveness of the SR algorithm.

3.4.2. Effect of Attention Mechanism Module

Insufficient information extraction from small commodities can easily occur in the
feature extraction process. This study focuses on commodity feature information using an
attention mechanism. To verify the effectiveness of the method, experiments on feature
extraction with an attention mechanism were conducted. The results of the commodity
detection are shown in Figure 12.
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Figure 12. Detection results with and without the attention mechanism.

According to the above experimental results, the detection accuracy of the right
figure was significantly improved compared to that of the left figure, which indicates that
the small commodity detection effect was significantly improved under the effect of the
attention mechanism.

To understand which parts of the network were focused on based on the attention
mechanism, the feature map of the feature extraction part could be visualized through
heatmaps. The size of the output feature maps was set to 600 × 600 in this experiment, as
shown in Figure 13.
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Figure 13. Heatmaps with and without the attentional mechanism.

The left and right panels, respectively, show heatmaps without and with the attention
mechanism. Evidently, under the effect of the attention mechanism, the network focus
area is significantly reduced, and the network extracts more refined commodity regional
features from the channel and spatial dimensions, improving the efficiency of commodity
feature extraction to a certain extent. In addition, it further verifies the feasibility and
scientificity of using the attention mechanism in the network.
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3.4.3. Effect of Feature Enhancement

To evaluate the effect of the feature enhancement module on the detection of occluded
small commodities, experiments were conducted using both an ordinary FPN and an FPN
with a feature enhancement module (FPN + FEM). The experimental results are shown
in Figure 14.
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Figure 14. Ablation experiment of detection results with and without the feature enhancement.

The commodity detection accuracy after adding the feature enhancement could reach
approximately 96%, and the highest accuracy reached was 98%. Compared with direct
prediction, it had a higher accuracy. Simultaneously, for the small bottles of Sprite with
fewer effective features, the accuracy was increased by 32.4% relative to the original, and
the detection effect was more significant.

Figure 15 shows the results for the commodity feature region after feature enhance-
ment. According to the figure, the important features of the commodity were enhanced,
and the detection performance of the network was further improved, thus verifying the
effectiveness of the feature enhancement module proposed in this study.
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3.5. Experiment Analysis
3.5.1. Qualitative Analysis

In this study, different types of small commodities with different degrees of occlusion
were selected to analyze the proposed algorithm, and the results are shown in Figure 16.
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Figure 16. Detection results for different types of small commodities.

The results revealed excellent performance in the detection of small commodities of
different types and occlusion levels. As shown in Figure 17, the detection performance
of the network was stable under different occlusion levels, and the detection accuracy of
the commodities still reached as high as 80% in the case of severe occlusion. This method
increased the high-frequency information of the image through SR; simultaneously, the
feature enhancement module in the FPN could effectively improve the feature expression
of small commodities, and therefore, the detection effect was significantly improved. The
detection results qualitatively illustrate the feasibility and efficiency of the algorithm used
in this study.
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3.5.2. Quantitative Analysis

To illustrate the commodity detection performance of the proposed algorithm, a
quantitative comparison was performed with five mainstream networks, and Table 6 lists
the commodity detection results of the different algorithms.

Table 6. Comparison of the accuracy of commodity detection with different algorithms.

Method Backbone F1-Score mAP

YOLOv4 CSPDarknet53 0.932 0.9544
YOLOv5 CSPDarknet53 0.972 0.9740

SSD VGG 0.979 0.9784
Faster R-CNN VGG 0.952 0.9768

RetinaNet Resnet50 0.957 0.9602
YOLOX [41] CSPDarknet53 0.974 0.9831
DETR [42] Resnet50 0.980 0.9753

Ours Resnet50 0.983 0.9847
Note: Bold is the best result.

According to the above table, the different algorithms achieved good detection perfor-
mance. The algorithm in this study achieved excellent performance in terms of the F1-score
and mAP indicators, with an F1-score of 0.983 and an mAP of 0.9847, which are superior to
the results for other algorithms. The algorithm network in this study comprised Resent50
+ CBAM + FPN (FAM). Compared to RetinaNet, the F1-score improved by 2.6 % and the
mAP improved by 2.45%.

To illustrate the detection accuracy of the algorithm, different lightly occluded com-
modity data were selected for comparative experiments. The results are presented in Table 7.

Table 7. The detection results of different commodity types.

Category SSD Faster R-CNN RetinaNet YOLOv5 Ours

Coca Cola 0.4409 0.5573 0.5531 0.8865 0.8537
Wang Zai milk 0.6807 0.9156 0.9015 0.9332 0.9671

Small bottle of Sprite 0.8784 0.9487 0.9495 0.8856 0.9635
Small bottle of C’estbon 0..6983 0.9435 0.9647 0.9560 0.9676

Red Bull 0.9534 0.9643 0.9779 0.9783 0.9883
Canned Mirinda 0.7606 0.9311 0.9353 0.9240 0.9512 1

Note: Bold is the best result. 1 All results are the AP.

The detection accuracies for different commodity categories varied considerably. Be-
cause the features of Red Bull were more significant, each network had high detection
accuracy. Compared with YOLOv5, the overall accuracy of this method was higher.
The proposed method had a detection effect on different small commodities. The de-
tection performance of the model was more stable than that of the other methods while
maintaining accuracy.

4. Conclusions

In this article, a local adaptive feature enhancement detection algorithm for occluded
small commodities under super-resolution is proposed. Based on the low image clarity,
a new SR algorithm is designed that effectively improves the image clarity by adding
contour features to the feature texture transmission module, fusing them with texture
and content features, obtaining rich fine features, and obtaining high-frequency image
information through reconstruction. To effectively express small commodities occluded
in complex environments, a self-attention gate function is used to generate commodity
space channels, enhance commodity texture features, and other characteristics, and further
improve the detection accuracy of small commodities. Experimental results show that
the proposed algorithm has good detection accuracy and can effectively reduce the false
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or missed detections caused by complex occlusion. However, the method in this article
pursues commodity detection accuracy and ignores the light weight of the model, which
considerably limits the detection speed of the model. In the future, the network model will
be further explored and optimized to reduce the number of model parameters and achieve
real-time detection of small commodities.
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