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Abstract: In applications of the Internet of Things (IoT), where many devices are connected for a
specific purpose, data is continuously collected, communicated, processed, and stored between the
nodes. However, all connected nodes have strict constraints, such as battery usage, communication
throughput, processing power, processing business, and storage limitations. The high number of
constraints and nodes makes the standard methods to regulate them useless. Hence, using machine
learning approaches to manage them better is attractive. In this study, a new framework for data
management of IoT applications is designed and implemented. The framework is called MLADCF
(Machine Learning Analytics-based Data Classification Framework). It is a two-stage framework that
combines a regression model and a Hybrid Resource Constrained KNN (HRCKNN). It learns from
the analytics of real scenarios of the IoT application. The description of the Framework parameters,
the training procedure, and the application in real scenarios are detailed. MLADCF has shown
proven efficiency by testing on four different datasets compared to existing approaches. Moreover, it
reduced the global energy consumption of the network, leading to an extended battery life of the
connected nodes.

Keywords: data management framework; IoT; edge-cloud; resource-constrained

1. Introduction

The Internet of things (IoT) connects a huge number of things to the internet. It com-
prises complex environments having heterogeneous components. This IoT environment
generates enormous data and therefore imposes a demand for storage, processing, and
transmission. Since IoT provides many applications using other technologies such as Fog,
Edge, and Cloud to help us in our day-to-day life applications, which are not limited to
our daily lives, however, they include other more important sectors such as remote patient
monitoring, precision agriculture, environmental monitoring, disaster mitigation, and other
smart city applications. We expect these applications will increase day by day without
any limit. The only limitation we found is in the resources of IoT. The constraints in IoT
resources pose many challenges at the network, hardware, and software levels. Since the
applications are increasing, resource management at the different levels of IoT systems
becomes necessary. These resources include battery life, size, processing power, storage,
and bandwidth. Lightweight algorithms and protocols are implemented to acquire, process,
and store the data due to the pervasive nature of some IoT applications. An optimized
resource management framework is required to utilize such applications’ resources effi-
ciently. Due to the increased data generation by IoT devices, the demand for processing and
storage also increases, necessitating including some advanced nodes in the IoT network in
the form of edge devices, fog nodes, or smart gateways.
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The resources in IoT are of two types, i.e., physical and virtual. The physical resources
in IoT systems include processing, storage, energy, and bandwidth at the IoT device level
and edge level. The virtual resources include algorithms and protocols used for data
aggregation and processing at the IoT device level. Encryption and virtualization are
added to the algorithms and protocols at the edge level. The development of more specific
and lightweight protocols and algorithms is a key challenge in the resource-constraint
applications of IoT. Data aggregation and resource management approaches must be refined
to optimize such applications. Data management is a key factor that directly impacts an IoT
system’s resource management. Since the data size, structure, and process to communicate
the data is a key resource, and all other resources depend on it. Virtualization can help to
optimize the limited available resources to some extent. However, combining this with the
classification of the data at the device level and proper resource allocation within the IoT
network will help improve resource management.

The solution to today’s resource-constrained IoT environment is not to upgrade re-
sources. Therefore, data management is the key to optimizing these resources. Sensor
data is unstructured and difficult to analyze and classify. Analyzing all scenarios for these
sensors is another critical step. As part of this paper, we examined three scenarios for
IoT data sensors. The IoT nodes/sensors in the device layer of the IoT environment are
resource-constrained and hence data management at this level is a key attribute of our
research work. The second key attribute is the selection of the right Machine Learning
(ML) algorithm. There have been numerous solutions to manage data proposed by various
researchers. However, none have explained the limitations of implementation at the device
level. Nor have they analyzed different scenarios of the explosion of data at the device
level.

The main contributions of the paper are:

• Analyze and classify IoT data at device and edge levels;
• Create data management framework for IoT edge-cloud architecture for resource-

constrained IoT applications;
• Design and implement machine learning approach for resource optimization;
• Compare the proposed work with the existing approaches.

In order to achieve our objectives, we first created an IoT environment with the help
of six IoT devices. This is explained in Section 3.12. The classification of the IoT data on
the basis of device configuration was the biggest challenge in this work. To achieve this,
we categorize the dataset into two subsets. The first category of the dataset comes from
the IoT sensors, and the second category is the primary data about the configuration of the
IoT devices. This primary data helps us to create a regression model that sets the basis for
data classification at the device level. With the help of this regression model, we designed a
data management framework that works with the help of two algorithms at the device and
edge level of the IoT environment. We have proposed a model capable of deciding whether
to push the data to the above level (edge) or to process the data at the device level. As a
result, the overall energy of the (the number of alive nodes) of the IoT network increased
by 11.9 percent. This paper presents the two staged data management frameworks for the
internet of things with main emphases on machine learning-based modeling and IoT data
classification. The rest of the paper is organized as follows: Section 2 gives the background
and literature survey of machine learning algorithms in IoT environment, Section 3 presents
the proposed methodology (MLADCF), Section 4 gives the results for the proposed system,
and finally, Section 5 concludes the paper.

2. Background and Related Work

The arrival of the Internet and technological advances in recent years have allowed
us to be more and more connected with the environment surrounding us. The use of
mobile phones and other smart devices has become part of our daily lives, giving rise to a
connection between people and an interconnection that encompasses any element present
in our environment. The Internet of Things [1], also known by its acronym IoT, arose from
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this real possibility of interconnecting everyday objects (appliances, light bulbs, traffic lights,
vehicles, etc.) [2]. It was estimated that in 2023 there will be more than 50,000 million objects
connected to the network, which poses a challenge for today’s centralized infrastructures. It
must be considered that the massive deployment of sensors as part of the IoT, the increase in
4K video transmissions, augmented reality, and advances in other technologies are causing
an increase in traffic from the internet that reaches data centers. The cloud provides easy,
cost-effective access to computing, storage, and connectivity; increased network traffic can
cause these centralized resources to create delays and performance problems when the
source that generates the data is far from the infrastructure. The data collected by sensors
and IoT devices is sent to data centers in the cloud, where it is stored and processed to
obtain useful information for intelligent decision-making. High latencies in responses from
the cloud can be unacceptable in environments requiring real-time decisions.

Edge Computing [2,3] is a paradigm that tries to solve latency, avoiding massive
sending of data to the network. Its objective is to prepare the data as close as possible to
the source that generates it; then, erroneous data is eliminated and formatted. The idea is
to move part of the intelligence offered by cloud data centers to devices close to the user,
thus reducing the amount of information that must be sent to cloud infrastructures for
storage and processing. Companies such as Google, Amazon, and Microsoft have seen
the potential of this paradigm shift in IoT environments. They have begun to adapt their
application ecosystems to bring compute and storage capacity to devices close to the user.

The term Internet of Things was proposed in 1999 by Kevin Ashton [4] at the Mas-
sachusetts Institute of Technology (MIT), where research was conducted in the field of
Radio Frequency Identification networks (RFID) and sensor technologies. If all the objects
in our environment were equipped with this technology, computers could observe, identify,
and understand the world [5]. An IoT device is characterized by a small electronic system
equipped with a processor, sensors to measure the environment, actuators that allow it
to perform specific actions in response to the data received, and communication modules
that use network protocols. Today, IoT encompasses these technologies that will enable
everyday objects to communicate through the network to collect information that allows
us to monitor the status and behavior of these objects. An example is in smart homes,
in which sensors are installed in different areas of the house and connected to a central
system, optimizing the use of electricity, water, and energy consumption. The central axis
of IoT is the data collected by sensors and devices; this data is sent to remote servers or the
cloud for processing; once the information that is considered important has been extracted
from them, the IoT devices can receive it from the server or cloud a series of instructions to
perform a certain action. In business terms, the value for organizations is in the information
extracted from said data because it allows for automating processes, optimizing resources,
and making better decisions, leading to greater operational efficiency [4,6]. Figure 1 shows
application scenarios for IoT. IoT has notable effects in many areas of daily life (home au-
tomation, health and wellness, connected vehicles, etc.) and business and industrial sectors
(logistics, automation, and control of production processes & security). The size and variety
of data circulating on today’s networks are increasing exponentially, and IoT contributes
significantly to this increase in volume. Cisco estimated that more than 30 billion devices
would be connected to the network, implying an increase in the substantial amount of
traffic circulating through the networks and reaching data centers in the cloud treatment [7].

Machine Learning techniques have shown us how lives can also be saved by using
algorithms efficiently. In paper [8], L. Bononi, F. Montori, and L. Bedogni have used Natural
Language Processing (NLP) and other techniques for environmental monitoring. They have
proposed a smart city model and discussed the need for machine learning techniques for a
better tomorrow. In paper [9], Z. Fu, K. Shu, and H. Zhang have worked on improving ac-
curacy and have used techniques like Linear Regression (LR), Naïve Bayes (NB), K-Nearest
Neighbors (K-NN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest
(RF). They have used the data sets of smartwatches used by athletes. The data collection
was real-time with the help of 12 players playing ping pong. Similarly, in paper [10],
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P. Larrañaga, C. Bielza, and J. Diaz-Rozo have also improved accuracy using clustering
techniques. This experiment focused on enhancing the industrial environment and created
datasets by simulating random values from a gaussian distributor mixture. The clustering
technique is the most popular technique for creating clusters from random data sets, as seen
in papers [10–12]. These researchers have used clustering techniques to improve innovative
industries, IoT infrastructure, and Wireless Sensor Networks (WSN). When a researcher
wants to visualize the data in more dimensions, the Support Vector Machine (SVM) proved
to be the most efficient choice among all the techniques. In papers [13–17], the researchers
have combined the SVM with other techniques, e.g., KNN, NB, Artificial Neural Network
(ANN), etc., for better results. Disaster management is another critical aspect of smart
cities. S. El-Tawil, Y. Na, A. Eltawil, and A. Ibrahim have worked on noise reduction in the
data sets and have used SVM and KNN techniques. They have proposed the technique
for disaster management and have shown the results in their research paper [13]. Ahamed
et al. have used ANN, KNN, and SVM techniques for smart city disaster management [15].
The researchers are using combinations of different Machine Learning (ML) techniques to
improve day-to-day life, which is technically called smart cities. In [18], Alfian et al. have
proposed a methodology for food quality checking using Radio Frequency Identification
(RFID). In this experiment, they used KNN, DT, NB, LR, and RF and showed the results of
the proposed technique in their research paper. Following their experiment, the paper [19]
also used these ML techniques to improve Smart Farming.
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Deep Learning (DL) is called a subset of machine learning by many researchers. It
plays a crucial role in today’s world of data science. The use of this technique has proven
to perform better for parameters like accuracy, F1 score, precision, etc. [20–25]. The DL
technique is currently being used in many fields of data science. It has proven its worth by
improving waste management, natural power resources, water quality, feature extraction,
smart farming, smart energy, etc. In an IoT environment, resource optimization is very
crucial. IoT resources are limited in terms of memory, energy, power/battery, processing
power, and bandwidth. In [26], Lee et al. have proposed a technique for IoT infrastructure.
They worked on clustering techniques for the problem of data classification. Han et al. have
worked on data classification models and have proposed a model for the smart city [27]. A
similar model was also proposed by Huang et al., where they used the Bayesian elimination
method for data classification [28]. These machine learning algorithms are not limited
to a particular domain; instead, they are also used for storage problems, data filtration,
data recovery, compression, data accuracy, etc. These problems are also seen in an IoT
environment due to the flow of endless and huge amounts of data. Zhang and Wang have
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proposed a technique for the storage problem in an IoT network. They have completed
their experiment in Optimized Network Engineering Tools (OPNET) modeler, and the
focus of their experiment was to optimize the IoT network [29].

In [30], Alimjan et al. proposed a hybrid classification technique for remote sensing
data. In this paper, they have combined KNN and SVM techniques and given their
technique the name ‘Hybrid Classification approach’ (SV-NN). They have also compared
the results with other existing methods and got an accuracy of 91.18% and 94.62% for
datasets 1 and 2, respectively. In [31], Muhammad Salad-ud-din et al. have worked on
resource-constrained IoT devices for wireless multimedia of things. In this paper, they have
shown an improvement in the number of alive nodes with the help of mitigating redundant
transmission across the network. The summary of their article is the improvement in
the overall energy of the IoT network. Table 1 presents a summary of the work done by
other researchers.

Table 1. Recent Advances in Machine Learning Techniques/Internet of Things.

Ref. No. Technique Focused Area Application Evaluation Parameters Data Set/Exp. Setup

[32] Deep Learning,
Tensorflow Waste Management Smart City

Precision, Inference Time,
Validation Error, and Total

Error.

Waste images
dataset/Real-Time Serial

Capture Program.

[33] Deep Learning Data Classification, Data
Quality IoT False alarm rate/2.2%.

Perceptual datasets/Inter.
i5-2600 CPU@ 3.40 GHz, 8.00

GB memory
and 64-bit Windows 8.1

[21]

Deep Learning, Convolution
Neural Networks-Long

Short-Term Memory
(CNN-LSTM)

Resource Optimization,
Cellular Networks

Wireless
Communication

Accuracy, Epoch,
Throughput gain, access

rate.

Training dataset
obtained using the

conventional Hungarian
algorithm/MATLAB

simulation.

[34] Deep Learning Fault Diagnosis Renewable Energy Power coefficient Cp, Tip
speed ratio k -

[35] Long short-term
recurrent neural network. Waste Management Smart City

Error Rate Vs. Smart Bins,
Processing Time.
Precision, Recall,

Accuracy.

Images in TrashNet waste
dataset.

[36] Decision Tree, Random
Forest, Naive Bayes.

Cost Saving,
Communication Quality IoT Ecosystem Precision, Accuracy, Error

Rate.
“Communication Quality”

dataset, 41,098 data records.

[37] Deep Neural Network Offloading in Mobile Edge
Computing Resource Optimization

Bandwidth, System Cost,
MAC Capability, Weight

Factor.
-

[38] Artificial Neural Network Feature Extraction IoT Time Cost, Performance,
Stability Test.

CPU 6200M main frequency
3.4 Hz, memory DDR3. 1600
4G, system windows 7 64-bit

flagship version.

[39] Artificial Neural Network Public Transport Smart City Precision, Recall, F1-Score. 2400 test samples/BadApp4.

[40] Artificial Neural Network Smart Farming Disaster Management
Standard Error, t-Value,

Mean Square, F Value, and
precision.

Temperature Dataset.

[41] Reinforcement Learning Energy Optimization Wireless Networks
No. of Alive Nodes vs.
Time, Delay, Residual

Energy.

Simulation of more than 200
nodes.

[19] Random Forest, LR, KNN,
ANN, NB. Decision Support System Smart Farming Precision, Recall, F1-Score,

and Accuracy.

5 Agriculture Data Sets
downloaded from Govt.

Website.

[9] KNN, SVM, NB, LR, DT, RF
and CNN

Ping Pong Motion
Recognition Sports Accuracy, Precision,

Recall, and F1 Score.
Data of Smart watches used

by ping pong Players

[42] Decision Trees Anomaly Detection IoT FPR, Recall, Precision,
AUCPR, and F-Score.

LWSNDR Data Set, Landsat
Satellite Dataset.

[43] Big Data, Lk-SVM Classifier. Classification Social Internet of Things

Accuracy, Sensitivity,
Throughput, Data size,

Energy Consumption, and
Specificity.

UCI machine Learning
Repository Dataset.

[48] OTA Algorithm, HDFS Big Data Storage Technology Transport Node, Analysis. -

[44] Clustering Supervised Techniques IoT F1-Score Dataset of 9700 unique user’s
behavior.
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Table 1. Cont.

Ref. No. Technique Focused Area Application Evaluation Parameters Data Set/Exp. Setup

[45] Binary Neural Networks Classification of voice
command Voice Recognition

Success Rate, Amplitude,
Accuracy, Average hit

rates.

Voice Commands of 150
people.

[46] SVM, DT, LSTM, KNN Classification of web
documents

Genuine News
Information

True Positive Rate, False
Positive Rate, Tree
Confusion Matrix,

Dataset provided by “Center
for Machine Learning and

Intelligent Systems.

[47] SVM, NB, Gaussian NB Traffic Data Classification Smart City Precision, Recall, F1-Score,
Accuracy. Simulator Mininet.

[49] Deep Learning
Deep Boltzmann
machine-based
classification

IoT Delay, throughput, storage
space, and accuracy.

OpenDaylight (ODL),
POX controller, Raspberry Pi.

[50] DT, SVM, LR Social Media Messages Social Network Data Size, Time Cost,
AUC.

Six sets of food safety-related
OGD and news data from

Taiwan.

[51] KNN Classifier Localization Wireless Networks Mean Error, Received
Power vs. Distance.

Dataset created by
positioning WSTA manually

in the RP.

[52] Decision Tree, Neural
Network, Smart Microgrid Renewable energy

systems
Normalized PI, Battery
Size, Diesel Generation, -

[53] Edge computing EUA problem Gaming System Cost vs. no. of app
Users, decision iterations.

Intel Core i5 processor (4
CPUs, 2.4GHz) and 8GB

RAM.

[54] Edge Computing Quality of Services Resource Optimization
Social welfare

maximization, profit
maximization.

-

[55] Edge Computing Data Distribution Resource Optimization
Edge Density, Cost, No. of

edge Servers,
Computational Overhead.

EUA dataset/Core i7 8665U
processor (4 CPUs, 1.90 GHz)

and 8 GB RAM.

[56] Edge Computing Task Offloading Wireless Networks Low fail ratio -

[57] RFID, Edge Computing, Big
Data, Augmented Reality. Functional Frameworks Healthcare IoThNet framework A Review.

[58] Multi-charger cooperative
charging task scheduling Device Charging IoT

Charging Time, Charging
Requests, Average waiting
Time, Charging Efficiency,

Throughput.

MATLAB

[59] LEO satellites, Lagrangian
dual decomposition method Terrestrial- Satellite IoT

Energy, Consumption,
latency of space segment,

first-order optimality.
-

[60] Cell-free IoT Resource Optimization IoT
Energy Efficiency, Circuit

Power, Noise Power,
Throughput.

-

[61] Deep Learning Resource Management IoT

Loss, Reward, Slotted
Aloha, Random

Allocation, AoR, DQN,
MDQN, Success Ratio.
Channel Utilization.

-

[62] Deep Learning Resource Management IoT
Arrival Rate, Reward,
Delay, Task drop rate,

Processing Speed.
-

[63] Mathematical
Model Data Classification IoT

Delay, Processing Power,
Memory, Bandwidth,

Storage.
A Review

[64] Big Data 6G Wireless Network Data Security Watt, CC, EC, BD. MapReduce n simulations.

[65] Neural Network, Data
Fusion Sleep Event Detection Healthcare

Battery Percentage, Power
Consuming Speed, RSSI

curves.

798 audio files with 200 batch
size.

[66] Long Short-Term Memory
(LSTM) Offloading Energy Optimization

Error Range, Energy
Consumption, Average

Latency, Resource
Utilization.

Lust DataSet/MobFogSim
Simulator.

[67] Artificial Neural Network Pervasive Computing Resource/Energy
Optimization

Time complexity, Latency,
Energy Consumption,

Mean Square Error.
-

In this paper, our focus is on resource optimization for a resource-constrained IoT
environment. As we have seen, various hybrid techniques have been used by researchers
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to improve the system’s overall energy in terms of accuracy, F1 score, precision, recall, etc.
In this paper, we have proposed our framework for optimizing the IoT framework and
have compared our technique with the existing techniques.

3. Materials and Methods

The proposed framework, “Machine Learning Analytics-based Data Classification
Framework” (MLADCF), distributes the processing load to the last nodes of a digital
network (sensors in the case of IoT). The use of computing type poses very attractive
advantages for IoT solution providers. For example, they allow minimizing latency and
preserving network bandwidth, operate reliably, speed up decision-making, capture and
protect a large number and types of data, and transfer the data to the most appropriate
place for processing, with better analysis of local data. Edge computing technologies
have been on the rise for several years, but the reach of IoT technology is accelerating its
take-off process. As for the factors driving this change, two stand out: Falling prices for
peripheral devices with increasing processing power. Centralized infrastructures support
the increasing workload. Our proposed framework MLADCF is a two-staged framework
that combines the regression model and hybrid resource-constrained KNN (HRCKNN),
giving the system a complete learning approach for future IoT environments. Table 2
presents the list of notations that are used in our proposed framework MLADCF.

Table 2. List of Notation.

Symbol Description

VoE Value of effectiveness
Sα Vector from the matrix A
Dj Any element of vector Sα

Dβ Data Chunks
Pγ Data Packets
di Any element of Vector Dj
Pp Capability of an IoT device in terms of Processing Power

Sk/θ Value of effectiveness
θp Value of effectiveness in terms of Processing Power
θe Value of effectiveness in terms of energy/battery
Ee Energy/Battery of the IoT device
θs Value of effectiveness in terms of storage
Ss Storage capacity of an IoT device
θ f The final Value of effectiveness

Z/Y/t1/to/µ Constant values in the equations
θsp VoE in terms of Processing Power and Storage
θep VoE in terms of Processing Power and Energy
Φ Euclidean distance
λ Size of the neighborhood
v Query Vector
F Training Vector
X Set of labels

Φ(Hλ
j (v), v) Local hyperplane distance

3.1. Machine Learning Analytics-Based Data Classification Framework for IoT (MLADCF): Stage 1

To implement our framework, let us first consider n number of IoT devices in an IoT
environment. Let the matrix Am∗n denotes the IoT devices and its Corresponding sensors,
as shown below.

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (1)
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where ‘m’ is the number of IoT devices and ‘n’ is the number of sensors included. Let Ik be
the element aij of matrix A.

If aij =

{
1 Then go to vector Sα

0 Sensor not Present
(2)

The Sα below denotes the vector from the matrix A

Sα =



D1
D2
D3
.
.
.

Dβ


β∗ (3)

where β is the number of data Chunks/clusters generated by ‘n’ sensors. Let dj be the jth
element of vector Sα and each dj will be a column vector as

Dj =



P1
P2
P3
.
.
.

Pγ


γ∗ (4)

where γ is the number of packets in the jth data cluster and dj ≤ Sα {where dj is a subset of Sα}.
The equation will allow us to optimize the resources and classify the data packet for the
edge node. From the above Equation (4), If Determinant of ∑γ

i=1 di ≤ Sk then the data will
be processed at the device. This can be written as:

Det
γ

∑
i=1

di ≤ Sk (5)

If Det ∑ γ
i=1 di > Sk, which means the device is not capable of processing the data.

Therefore, data will be offloaded and will be pushed to a higher level. Similarly, Equation (5)
can also be written as

Det
γ

∑
i=1

di ≤ Sk+1 (6)

If Det ∑γ
i=1 di ≤ Sk+1, that means the device is fully capable of processing the data at

the kth sensor and will not be forwarded for processing.
And if Det ∑γ

i=1 di > Sk+1, that means the device is not capable of processing the data
and data will be forwarded to the edge level.

3.2. Proposed Device Level Data Mangement

Thefirst step of our framework is defined in Algorithm 1, where the value of di will
be calculated and compared with the threshold value. The final architecture designed,
implemented, and tested is outlined and described in Section 3.9 below. In the first place,
the components involved will be specified, and then the three-layer functionality, in gen-
eral, will be presented. IoT results from the convergence and evolution of ubiquitous or
pervasive computing, internet protocols, sensing technologies, and embedded systems.
These technologies form an ecosystem where the real and digital worlds are in continuous
symbolic interaction.
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Algorithm 1: Device Level Algorithm

Input: Data Packets Pγ sensed by the IoT sensors
Output: Value of determinant of ∑γ

i=1 di

1. Start;

2. Calculate the value for di;

3. If Det ∑γ
i=1 di > Sk, then push the data to Fog 1 Else;

4. Go to Algorithm 2;

5. Stop.

3.3. Scenarios I, II & III

During our implementation, we come across three different scenarios. The first sce-
nario, as shown in Figure 2a, is the scenario I, where data is less in the sense that the node is
capable of processing and able to communicate the data without any resource constraints.
As shown in Figure 2a, node5 and node8 have sensed the data and can process the data,
hence forwarding the data to node7 and node9, respectively. Fog 1, the edge node, receives
the sensed data from its nearest nodes, i.e., node2 and node10.
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Fog 2, the edge node, receives the data from its nearby slave nodes. Figure 2b is an
example of scenario II, where data is more than the scenario I, and the nodes are not capable
of processing the data; therefore, the nodes will break the data into data chunks and push
the data for processing the data at nearby nodes and from those nodes the data will be
pushed to the fog from the slave nodes. As shown in Figure 2c, node 4 and node 8 are
sensing the data but are not capable of processing the data, dividing the data into data
chunks, and sending the data chunks to nearby nodes node1, node7 node5, node6 and
node 9, node 3 respectively.

Scenario II leads us toward scenario III, which has two different nodes, i.e., homo-
geneous and heterogeneous nodes. Homogeneous nodes have the same capability in
processing power, battery, memory, etc. In heterogeneous nodes, a cluster head has higher
capability than sensing nodes. Therefore, we considered heterogeneous nodes to give
practicality to our experiment. This scenario III leads us toward data classification, and our
proposed framework and adaptive machine learning algorithm come into play. Classifica-
tion of data is the base for our adaptive ML algorithm, where the IoT nodes will lead us to
the IoT network, how to process, state, and communicate the data so that it can reach the
fog level.
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3.4. Building a Regression Model

Assume that Pp is the processing power of an IoT device. As the processing power is
directly proportional to the value of effectiveness, this can be written as

θp ∝ Pp (7)

θp = ZPp (8)

where Z is the constant value and θx is the value of effectiveness (VoE).
Let Ee be the Energy/Power of an IoT device. And energy is directly proportional to

the value of effectiveness. Then the VoE (θe) in terms of power/energy can be written as

θe = YEe (9)

where Y is the constant value.
The combination of Equations (8) and (9) can be written as

θep = t1 Pe Ee (10)

where t1 is the constant.
Let Ss be the storage capacity of the Sth IoT device. As the storage is directly propor-

tional to the VoE, then its equation can be written as

θs = X Ss (11)

where X is the constant value derived from the dataset. The combination of Equations (8) and (11)
can be written as

θsp = toPp Ss (12)

where, to is the constant value.
The final value of Effectiveness θ f can be written by combining Equation (8), (9) and (11).

θ f = µ∗PiEiSi (13)

where, µ is the constant value. More the value of θ f better will be the option of choosing it
for the data processing.

Let us assume that the variable dI has the following relationship between Processing
Power (Pp), Energy/Battery (Ee) and Storage (Ss).

DI = T0 + T1Pp + T2Ee + T3Ss + r (14)

where di is the random variable and is the deciding factor in our model for device level.
T0, T1, T2, T3 is the random error coefficient and ‘r’ being the random error generated.
It is understood that the error caused by other random factors cannot be interpreted by
processing power (Pp), Energy/Battery (Ee) and Storage (Ss) in di. Hence, we are adopting
T0 + T1Pp + T2Ee + T3Ss to calculate the mean value of E (di).

E(di) = T0 + T1Pp + T2Ee + T3Ss (15)

3.5. Training Data for the Model

Datasets are normally divided into two subsets, training data and testing data. Typ-
ically, training and test datasets are divided into 80:20, 70:30, or 90:10 ratios respectively.
The foundation of machine learning is solid training data. The training data is the data that
we use to train a model. Knowing the importance of suitable training data for machine
learning is vital since it ensures that we have the right kind and amount of data to build a
model. To test our model, we need unseen data. We can use this data, which is referred
to as testing data, to assess the effectiveness and development of the training of our al-
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gorithms/models. We can also modify or improve the model for better outcomes. The
quality of our machine learning model will be directly proportional to the quality of the
data. For this reason, cleaning, debugging, or “data wrangling” tasks consume a significant
percentage of data scientists’ time. In artificial intelligence or machine learning, training
data is inevitable. This process makes machine learning modules accurate, efficient, and
fully functional. In this paper, we have included AI training data in terms of training
data quality, data collection and licensing, and more. The training data is an important
part of the machine learning algorithm. We have trained our algorithm with the help of
training data set. We have divided our data set from scenario I, scenario II and scenario
III into an 80:20 ratio for training and testing our model. A division of the dataset was
made according to time. Training data is required for model development because without
training data; the machines would not even know what to understand in the first place.
Like an individual trained for his job, a machine needs a body of information to fulfill a
specific purpose and deliver corresponding results.

3.6. Hybrid Resource Constrained K-Nearest Neighbour Classifier (HRCKNN): Stage 2

The K-Nearest Neighbors (K-NN) algorithm is a classification algorithm that labels
each data item based on the label of the data closest to it [68]. For this, the variable k
is defined, corresponding to the number of closest neighbors chosen to carry out the
classification. Unlike other supervised learning algorithms, K-NN does not learn with
the training data, but rather the learning occurs with the test data once the training data
has been memorized. These algorithms are known as lazy algorithms, and they allow
several problems to be solved simultaneously since the objective function is approximated
locally for each element. The algorithm does not learn from a model but instead uses the
data to generate an answer only when a prediction is requested. As a disadvantage, the
computational cost is very high due to all the training data storage. Therefore, we have
proposed a hybrid technique that uses our mathematical model and combines it with the
traditional K-NN technique. This hybrid technique is the input for the second algorithm in
our proposed framework MLADCF.

In this paper, we have proposed a hybrid K-NN classification approach, namely
HRCKNN and MLADCF, which work simultaneously in an IoT environment. This double
approach is a solution to the resource-constrained IoT environment. HRCKNN works with
our proposed mathematical model MLADCF to tackle the problem of resource-constrained
IoT networks. The HRCKNN is the beginning of our proposed model, as we have further
classified the data at the edge/fog level. The overview of the HRCKNN is shown in
Figure 3.

HRCKNN works in two phases. HRCKNN first trains with the training data and helps
the network tackle the problem of resource constraints. The first phase identifies the IoT
devices at the device level, which can process the data. This helps the HRCKNN inform
the groups of the IoT nodes.

To understand HRCKNN, let us consider the following assumptions. Let ‘v’ is the
query vector. F is the training feature vector where F = ( f , f2, f3, f4. . . . . . . . . . . .. fn), X is the
set of labels with respect to F. Cj is the class where j ∈ {1,2,3 . . . . . . . K}. The size of the
neighborhood is denoted by λ. Φ denotes the Euclidean distance (ED). Moreover, is the
Euclidean distance between the query vector and nearest neighbor. In the first step, a local
environment is created by HRCKNN.

F′= Uj Fj(λ, v) (16)

Fj(λ, v) = { fi ∈ Cj

∣∣∣ Φ ( fi, v) ≤ Φλ
j } (17)

In Equation (17), the inclusion of the training set can be written as

F′′ = F′ ∪ {v} (18)
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The HRCKNN can calculate the distance between f and F′′ .

{Φ ( f1, f ) . . . . Φ ( fn−1, f ), Φ (v, f )} (19)

where n′ = λk + 1 is the new training set F”. The second step of HRCKNN calculates the
distances for all the classes, i.e., k local hyperplane. The relative transformation is also
adopted to construct the relative space in Equation (19). In the final step, the HRCKNN
calculated the distance of k local hyperplane. A local hyperplane is constructed as follows

Φλ
j (v)= {h|h = f ′ + ∑F

i=1 αt ( ft − f ′), αt ∈ ξ} (20)

where Φ(Hλ
j (v), v) is the local hyperplane distance, and the solution of the below Equation (21)

will give the value of αt.
U. U′. A = U′.(v− f ′) (21)

The above equation can also be written as follows

Φ(Hλ
j (v), v)= min

αt
{||v− f ′ − ∑λ

t=1 αt − ( ft f ′)||+ β∑λ

t=1 λ
2
t } (22)

where A = (α1, α2, α3 . . . . . . . . . αλ) and the composed matrix of vector ft – f ′ is U, which
is an n × λ matrix. The HRCKNN adopts the mathematical model to summarize the
local hyperplane distances. Hence creating the groups of the nodes that equally fall in the
category of resources constrained and vice versa.

3.7. Proposed Cluster Head Data Management

The proposed cluster head algorithm’s working is defined in Algorithm 2. This
algorithm helped to process the device-level data by considering the edge and source nodes.
The algorithm first fetches the timely data from the nodes (line no. 1). After that, The
effectiveness of the IoT device (line no. 2) and the size of packets (line no. 3) has been
calculated. Once the data packet reached its higher limit then the source node is selected
(lines no. 4–5). Furthermore, the source node sends the data to edge nodes by diving it
into equal size chunks via slave nodes (lines no. 6–15). After that, data is deleted from
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source and slave nodes and processing of a collection of data has performed at edge (lines
no. 16–17). At last, the source node data is maintained at the edge node by accumulating
the chunks of data (lines no. 18–19).

Algorithm 2: Cluster Head Algorithm
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3.8. Feature Extraction 

3.8. Feature Extraction

Before applying any machine learning technique, a fundamental step is selecting the
characteristics or attributes that will be used for the training and subsequent application
of the intelligence system. The dimension of the data and the importance of its reduction
is an important factor to consider today for the storage and processing of the same since
it makes training slow. However, many attributes can lead the algorithm to find the best
solution. Different techniques allow us to extract and project toward a new data set with
fewer attributes and thus obtain metrics very similar to the original set but with a lower
cost in terms of computation and storage. It is important to remember that we will lose
data quality, although the training is faster in some cases. It is possible that we will not
obtain the same precision.

For this reason, it is necessary to study how these techniques affect the different al-
gorithms and see whether it is worth applying a reduction in the number of attributes. In
addition, these techniques increase speed, reduce storage space, and allow better visual-
ization of the data. For example, if we reduce to two or three characteristics, we could
visualize them in a graph, which would help us better understand how they are distributed.
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One of these techniques is feature extraction, which seeks to reduce this data but maintain
attributes containing the most relevant information. PCA (Principal Component Analysis)
is a well-known used and implemented in the sci-kit-learn package. This linear data trans-
formation technique helps identify patterns based on the correlation between attributes.
PCA is responsible for finding the hyperplane closest to the data and projecting them into a
new space smaller than the original. The orthogonal axes, which are the main components
where these new data are projected, of the new subspace can be interpreted as the direc-
tions of the maximum variance, knowing that the new set of features is orthogonal to each
other. Vector PCA wants to project a vector with one dimension onto another with a lower
dimension. Thus, in the new vector of the searched subspace, the first component will be
that attribute with the greatest possible variance, considering that there is no correlation
between them; that is, those components that remain in the new are orthogonal to each
other. It is appropriate to indicate that PCA is sensitive to the distribution of the data and
the scale at which they are found. We will consider this when we analyze how it is possible
to reduce the dimension of the data set. We first must have all the data on the same scale to
give all the features the same importance and then apply this reduction technique.

3.9. System Model

The MLADCF has three layers, i.e., Device layer, Edge-Fog layer, and Cloud layer. The
device layer is placed at the bottom of the MLADCF. The Edge-Fog layer is in the middle,
and finally, the Cloud layer is placed at the top of the MLADCF. The IoT environment is
squeezed in the above 3-level framework, as shown in Figure 4. The device layer at the
bottom of the MLADCF is the densest layer among the three layers. Usually, millions of
active nodes present are sensing data from the environment.

The nodes in this layer vary in different aspects. There are different sensors in today’s
world, such as video sensors, motion detectors, smoke detectors, humidity sensors, temper-
ature sensors, proximity sensors, pressure sensors, accelerometers, level sensors, infrared
sensors, gas sensors, optical sensors, etc. All these nodes collect data of different data types.
In order to perform well in an environment, every datatype needs additional data storage,
processing power, bandwidth, power/energy, etc. These device layer nodes have been
categorized into the following three categories.

• Device layer nodes have the capability of processing the data;
• Nodes that cannot process the data;
• Nodes used as routers/repeaters.

The nodes present at the device level collect the data from the environment. These
nodes can be of different types, such as capturing video data, audio data, textual data,
etc. The cluster heads connect the data from these nodes. Traditionally the sensed data is
captured/sensed followed by the filtration or compression process, and then forwarded to
the next level. However, our MLADCF is designed to classify the data at the device level
based on the parameters i.e., storage, processing power, and battery/power.

The MLADCF will classify the data as the device level so that if a particular data
packet can be processed at the device node, it will not be pushed to the Edge/Fog level.
Moreover, if the data packet cannot be processed at the device level, it will be pushed to
the Edge/Fog level. The middle layer is known as the Fog/Edge layer. This layer contains
the Fog nodes. These nodes are lesser in number in comparison to the device level. This
layer has better resources in comparison to the device level. These nodes have sufficient
battery/power, storage capacity, and processing power for processing the data coming
from the device level. However, these nodes also vary in terms of storage, processing
power, battery, etc. Likewise, device level here, some nodes can process the data, and some
are not capable of processing a huge amount of data coming from the millions of sensors at
the device level. Finally, there is the cloud level; this layer has all the required resources for
data processing, data analytics, big data, decision-making, etc. Cloud provides services to
various levels of the IoT environment.
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Our MLADCF is designed so that the data will be classified and the nodes capable
of processing the data will process the data packets, and the rest of the data will be
pushed to the upper layer. This method will be incorporated into the device level and the
edge/fog layer. This data management method will minimize the delay and utilize the
resources efficiently. Furthermore, it will optimize the resource utilization for the coming
IoT infrastructure in the future. This can be achieved when we will fix a threshold of the
data, also known as the value of effectiveness. The final value of effectiveness θ f is given
by Equation (23).

θ f = µ∗PiEiSi (23)

where, µ is the constant value. More the value of θ f better will be the option of choosing
it for the data processing. This paradigm provides the means by allowing data to be
obtained from billions of devices that can sense, send, and make decisions for the problems
identified in the IoT environment. From the state of variables, the structured, unstructured,
or semi-structured records can be generated, which have the potential to generate changes
from the information and knowledge that can be obtained when the processing mention
the challenge to achieving the above due to the heterogeneity and discovery of the sensors,



Sensors 2023, 23, 2427 16 of 29

for which they propose solutions such as the creation of a middleware, that allows the
connection between the sensors and the cloud to be made transparently.

3.10. Proposed Edge Level Storage

Edge computing technology also arrives at artificial intelligence on devices much
more feasible. It allows companies to leverage their data series in real-time rather than
working with terabytes of data in central repositories in the world real-time cloud. In the
next few years or decades, the technology may evolve to find a balance point between the
cloud and more powerful distributed edge devices. Software vendors develop specific,
more robust, and secure infrastructures and security solutions. Providers will begin to
incorporate security solutions for peripheral components into their current service offering
to prevent data loss, provide network health diagnostics, and protect against threats. The
edge level storage is explained in Algorithm 3.

Algorithm 3: Edge Level Algorithm
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3.11. Stages in MLADCF

Our proposed framework consists of five stages, as shown in Figure 5. The first stage
has n number of sensor nodes present. These nodes senses data from the environment
and stores the raw data in the device storage. The cluster head, namely CH1 as shown
in Figure 5 receives the data from these sensors. The working of HRCKNN starts from
this stage. The HRCKNN is a combination of our proposed mathematical model and the
traditional technique of K-NN. The working of the proposed Algorithm 2 also starts from
this stage 1. The proposed algorithm decides whether to push the data to stage 2 or should
process the data at stage 1, i.e., the device layer.
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As the data is pushed to stage 3, which is the fog/edge layer. The fog/edge layer
consisted of n number of fog nodes. The proposed Algorithm 3 works at the fog server
node and decides whether to push the data to the cloud or to process in this stage.

3.12. Experimantal Setup

The first step involves setting up an IoT environment to collect real-time data in various
scenarios. We created a wireless sensor network of several sensors and a gateway, as shown
in Figure 6a–c. For this IoT environment, we have deployed six sensors in a particular area
of agricultural land. Each node has an Magnetostrictive Linear Position Sensors (MTS 420)
censor board [69]. This WSN comprises a gateway responsible for communication with
the surrounding and distributed sensors using the Zigbee module [70]. The IRIS [71] is
programmed according to the censor board. MIB520 [72] is used for the gateway. The
communication with the computer is done by the IRIS, which is programmed for the
gateway to act as a communicator. We have deployed six sensors, which could cover the
full agricultural field. Mote-config is an application used to program the IRIS and MIB 520.

This mote-config works in the windows operating system and configures the sensors.
It also provides a user-friendly interface and allows the user to configure the node ID, RF
power, RF channel, and group ID. The nodes can further be enabled over the setup feature
on all X mesh-based firmware [73]. High-power and low-power X mesh applications are
available for each sensor board. To upload firmware, a program tab is used by using a
gateway. The setup of the hardware is as per the below protocol.

• An ethernet port or USB should connect the gateway and computer;
• The gateway should be attached to the IoT motes;
• The programming. Next should be done while keeping the motes in power-off mode.

For all other motes, the XMESH file must be uploaded over it. Moreover, for MTS 420
sensor node, the IRS needs to be programmed for the censor board. After programming all
the sensors, the sensors were deployed carefully into the agriculture field and connected to
the gateway successfully. The topology of the sensors is shown in Figure 2a–c in the above
Section 3.3. The advantage of the scenarios is that it covers all the possibilities that could
happen during data collection in the smart agricultural activity. The scenarios would cover
all the possibilities and failures of the motes if any of the IoT motes were disconnected due
to the battery drain. Therefore, the WSN deployed is highly reliable and scalable. The IoT
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environment is shown in Figure 6a–c has the following sensors in each IoT node that is
a temperature sensor, humidity sensor, light sensor, voltage, precipitation, node ID, and
location X, Y. The data rate of an IoT node shown in Figure 6c is 250 KBPS and has a range
of 500 m: the range and data rate were enough for experimenting in this agriculture field.
Postgress database was used for logging data into the sensors’ database. To analyze this
data and find a prediction model, this data was extracted into a CSV file. The next step
involves the cleaning of data in this CSV file. The. CSV file contains anomalous values and
redundant values. Therefore, data pre-processing is needed to clean the data. The CSV file
also contains high-pitch values and extra columns, which can fail to find the patterns and
need to be cleaned.
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Datasets

We have calculated the performance of our model with the help of four data sets that
were captured in real-time by creating an IoT environment. The first data set was captured
during the daytime with the full battery capacity of the IoT devices. The IoT nodes/sensors
were placed in an orchard area for a day. The topology of the sensors is shown in Figure 2a
as scenario I. The results for the first data set are shown in Table 3.



Sensors 2023, 23, 2427 19 of 29

Table 3. Performance Comparison of Machine Learning Algorithms with HRCKNN.

Algorithm Execution
Time (Sec)

Precision
(%) Recall (%) F1 Score (%) Accuracy

(avg) (%)

KNN 0.005 83 83 83 80
SVM 9.9 80 80 80 85
RF 0.72 88 88 88 79
DT 0.067 80 79 79 76
NB 0.003 54 51 48 53
LR 0.68 63 62 62 63

HRCKNN 0.036 87 87 87 85

The second data set was captured by keeping the same IoT sensors. The battery was
unchanged during the process, and the storage was also unchanged. While capturing
the data, some IoT notes ran out of battery and stopped working. Hence this gives us
important information about the practicality of IoT sensors, as these types of situations may
arise in an IoT environment. The second data set comprises the data for a lesser number of
nodes in comparison with dataset 1. As the nodes ran out of power, the rest of the nodes
continued to sense the data from the environment. The results of the second dataset are
shown in Table 4.

Table 4. Performance Comparison of Machine Learning Algorithms with HRCKNN.

Algorithm Execution
Time (Sec)

Precision
(%) Recall (%) F1-Score (%) Accuracy

(avg) (%)

KNN 0.07 98 98 98 98
SVM 2.6 96 98 97 97
RF 1.1 98 98 98 98
DT 0.06 97 97 97 98
NB 0.005 78 78 78 83
LR 0.85 79 85 81 84

HRCKNN 0.004 97 97 97 98

The 3rd dataset falls under the category of scenario II. For this scenario, we replaced
the batteries of the IoT sensors with new batteries. In this scenario, we placed IoT sensors
so that all the sensors were communicating with each other. The results of the third data
set are shown in Table 5.

Table 5. Performance Comparison of Machine Learning Algorithms with HRCKNN.

Algorithm Execution
Time (Sec)

Precision
(%) Recall (%) F1-Score (%) Accuracy

(avg) (%)

KNN 3.24 84 80 82 92
SVM 9.9 30 30 30 48
RF 12.1 85 79 81 92
DT 4.8 83 78 80 91
NB 0.30 31 41 29 60
LR 17.11 23 22 17 51

HRCKNN 0.40 82 84 84 92

The fourth data set was captured by keeping the sensors as in scenario III, as shown in
Figure 2c. In this scenario, all the sensors communicate with a cluster head, giving us the
new data set for the experiment. For this data set, the results are shown in Table 6.
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Table 6. Performance Comparison of Machine Learning Algorithms with HRCKNN.

Algorithm Execution
Time (Sec)

Precision
(%) Recall (%) F1-Score (%) Accuracy

(avg) (%)

KNN 0.009 67 69 68 66
SVM 18.12 63 69 65 67
RF 1.03 70 71 70 72
DT 0.07 70 71 71 70
NB 0.005 21 23 11 14
LR 3.04 25 28 26 40

HRCKNN 1.2 77 76 76 76

4. Results
4.1. Observations

During the data collection in an IoT environment that we have created, it was observed
that almost 80% of the energy was consumed during the communication of the data in
an IoT network. At the same time, only 20% is utilized for all other activities, including
Sensing, processing, storing, etc. Figure 7a shows that the battery took only half an hour,
from 70 percent to almost 0 percent. Figure 7b shows that it took nearly 4 h to get the
battery from 100 percent to almost 0 percent.
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If the distance between the communicating nodes is small, then the energy consumed
in data communication is also less. However, if the distance between the communicating
nodes is large, then the energy consumed by the nodes is also higher. As in the second
scenario, the communication between the nodes was very low compared to the other
scenarios where communication between the nearby nodes was too high. Therefore,
triggering the need for an adaptive network.

4.2. Metrics for Evaluation of Model Performance

After adjusting the learning algorithm to perform the task, we must measure its
efficiency, that is, try to extract some measure that informs us of how well (or poorly) it
is doing. As in the cases of supervised and unsupervised learning, the objectives sought
are very different; the efficiency of some or other algorithms is also usually defined in very
different ways.

The case of supervised learning is the most natural and usual. In this case, we have
a set of initial examples on which we perform the learning and from which we know
the desired result that our algorithm must return. We want to see if the machine is able,
from the trained examples, to generalize the learned behavior so that it is good enough on
data not seen a priori, and if so, we say that the machine (model, algorithm) generalizes
correctly. Since supervised learning algorithms learn from this data to adjust their internal
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parameters and return the correct answer, there is little point in measuring the machine’s
efficiency by bypassing the same data back to it since the information it would give us
would be misleadingly optimistic. In this paper, we have evaluated the first stage of our
framework with the parameters shown in Appendix A.

4.3. Performance Comparison of the Proposed Model

The selection of the algorithms for comparing our proposed algorithm or model is
very important. Therefore, we have selected the algorithms commonly used for Data
classification in an IoT environment. Therefore, we have selected Logistic Regression (LR),
Naive bias (NB), K-Nearest Neighbor (KNN), Decision Trees (DT), Random Forest (RF), and
Support Vector Machines (SVM). We have used spyder IDE, DL Libraries, and leveraged
machines for the model development and packages in Keras, TensorFlow, and scikit-learn.
The experiment was done on a windows-based operating system running python, with an
intel i7 processor, 16 GB of RAM, and 1 TB of secondary storage. We have used four data
sets. The results for all the datasets are shown below from Tables 3–6. Furthermore, the
graphs are plotted for the same as shown in Figure 8a–h.

During the first experiment of DS1 (Data set first), it was observed that NB was the best
in the execution time but lacked accuracy. The HRCKNN was average in execution time,
but the accuracy of HRCKNN was the best among all the machine learning algorithms.
The accuracy was 85 percent, followed by the SVM, which showed the same accuracy.
Nevertheless, the SVM lacks execution time badly, i.e., 9.9 s which was the worst among all
the algorithms.

Table 4 shows the results of the second data set. The execution time was the least in
our proposed model at 0.004 s, and it was seen as worst in the case of SVM. The KNN
was comparatively better in terms of precision, recall, F1 score, and accuracy. However, its
execution time was not good in comparison with HRCKNN. HRCKNN and KNN produced
an accuracy of 98 percent.

Table 5 used data set 3, and Naive Bias was the fastest among all the algorithms but
was worst in accuracy. Similarly, SVM produces an accuracy of 85 percent but was the
slowest and took 9.9 s in execution. However, HRCKNN proved to be the best in terms of
accuracy, i.e., 85 percent, and was near the best execution time, i.e., 0.036 s.

In Table 6, Naive bias has the best execution time but lacks the accuracy of the data,
i.e., only 14 percent. Here HRCKNN has the best accuracy among all the algorithms.

The graphs between the execution time and accuracy are plotted and shown from
Figure 8a–d. Moreover, the graphs between accuracy and sensitivity are plotted and shown
in Figure 8e–h.

In [30], Alimjan et al. proposed a hybrid classification technique by combining SVM
and KNN. In their experiment, they used two data sets and got an accuracy of 91.18% and
94.62%, respectively. In our experiment, we have used four data sets, and the two best
results for our experiments accuracy values were 98% and 92%.
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4.4. Simulation Parameters

We have tested the MLADCF through simulation, deploying IoT sensors, and creating
an IoT environment for live data capturing. The simulation parameters are shown in Table 7.

Table 7. Simulation Parameters.

S. No. Parameters Values

1 No. of Service Nodes 100
2 No. of SRC Nodes 100
3 No. of Edge Nodes 10
4 Initial energy of an IoT Service Node 300 mAh
5 Initial energy of Source IoT Node 300 mAh
6 Transmission Range of Service IoT node 40 mtr
7 Transmission Range of Source IoT Node 40 mtr
8 Block Size 256
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4.5. MLADCF Results for Energy Optimization of the Network

We have included energy, Alive nodes, processing time, and storage to evaluate the
performance of our MLADCF, and we have shown the results in the form of graphs. The
node’s energy during the simulation process is shown in Figure 9. The energy of the node
is calculated by equation A5 and equation A6. The results show that the node’s energy is
better in our MLADCF. In the case of a traditional IoT environment, it was observed that
the energy was getting exhausted during the process in comparison to our MLADCF. The
result shown in Figure 9 shows an improvement in the node’s energy by 11.9%. We have
taken all the scenarios in our IoT environment and compared the scenarios causing the
energy drop in an IoT node. We have observed an 80% energy drop in scenarios where
nodes communicate more than transmitting the data.
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Figure 9. No. of Rounds Vs. Energy.

As every node has a major impact on the overall IoT environment, each node is
responsible for the life of the network. If a node is overloaded with incoming data traffic,
its energy affects the overall network. The observation from Figure 10 leads us toward the
results of our MLADCF. In Figure 10, we can see that the number of alive nodes is more
at all the points than in the traditional framework, hence improving the network’s life.
Moreover, the improvement was calculated to be 24 percent.
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The increased data traffic from the millions of sensors required more storage capacity.
In our proposed frame MLADCF, we have considered the storage problem, and it is
observed from Figure 11 that as the nodes start capturing data, the storage used is further
reduced in our MLADCF. The number of secondary nodes for the data processing is
increased. The results for the processing time are shown in Figure 12. It is observed from
the graph that the processing time decreases if the number of nodes is increased.
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5. Conclusions

The optimization of the resources is important in resource-constrained IoT applications.
Implementation of machine learning approaches to meet the expectations of the application
is required. Offloading data from IoT devices through the IoT network to the nearest fog
node is used in many applications, but the data offloading depends on many factors to
optimize resources. The optimization is possible through mechanisms at different layers
of the IoT environment. This paper discusses the layered approach for data classification,
and we have focused on the overall energy of the IoT network. Based on the device
capability, it is decided where to process, store, and communicate the sensed data within
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the permissible limits of delay in real-time IoT applications. In the proposed framework
for the optimization of the resources, the machine learning algorithm is used to decide at
which layer of the network and device level within the IoT network, i.e., IoT device, node,
cluster node, or fog node, the processing, storage, communication of the data is to be taken.
The data classification helps to optimize resource utilization within the IoT framework. We
have analyzed and classified the IoT data at the device level and the edge level, allowing
us to design our proposed framework (MLADCF).

This work has allowed us to understand the current problems IoT systems face and
how emerging technologies such as Edge and Fog computing try to solve these problems,
reducing the latencies inherent to the network in which these systems operate and the costs
associated with cloud services. On the other hand, we cannot understand that deploying
this type of system is not easy, so it is not easy to determine where to start on many
occasions. We are talking about heterogeneous platforms with a diversity of operating
systems, hardware elements from different manufacturers, different solutions in the cloud,
and different communication protocols, so it is necessary to have solutions that allow
the interoperability of all these elements. We have seen how different scenarios in an
IoT environment contribute to IoT standardization by facilitating the adoption of these
systems. We have compared our results with the existing approaches and the results
of the four data sets captured by these scenarios have shown improvement in terms of
accuracy, execution time, precision, recall, and F1-score. Moreover, the experiment shows
that the overall energy of the system improved as the number of nodes in the IoT network
increased by 11.9 percent. In this regard, it is considered that the objectives initially set
have been achieved by the proposed methodology. Future works will investigate the
case of privacy preserving for IoT based on the blockchain and homomorphic encryption
technologies [74,75] and also the uncertainty modeling for a better decision-making [76,77].
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Appendix A

This section contains the supporting equations related to MLADCF Framework.

Accuracy

It can be defined as the percentage of correct predictions made by the classification
model. It is a good metric to use when classes are balanced; that is, the proportion of
instances of all classes is similar. However, it is not a reliable metric for data sets that have
a class imbalance; that is, the total number of instances of one data class is much less than
the total number of instances of another data class.

Accuracy =
TP + TN

TN + TP + FN + FP
(A1)
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Accuracy measures the percentage of cases that the model has got right. This is one of
the most used and favorite metrics among all the researchers.

Precision

Indicates, of all the positive predictions, how many are positive. It is defined as the
ratio of correct positive predictions to overall positive predictions.

Precision =
TP

TP + FP
(A2)

Precision is the ratio of correctly predicted positive values to total predicted positive
values. This metric highlights the correct positive predictions out of all positive predictions.
High precision indicates a low false positive rate.

Sensitivity/TPR/Recall

Indicates how many are predicted to be positive of all the truly positive values. It is
the ratio of correct positive predictions to the total number of positive cases in the data set.

TPR = Sensitivity =
TP

TP + FN
(A3)

The completeness metric will inform us about the amount that the machine learning
model can identify.

F1 Score

The F1 value combines the precision and recall measurements into a single value.
This is handy because it makes comparing the combined accuracy and recall performance
between various solutions easier. When avoiding both false positives and false negatives is
equally important to the problem, a balance between Precision and Sensitivity is needed.
In this case, the metric F1 can be used, which is defined as the harmonic mean between
these values.

F1 Score = 2 × Precision ∗ Recall
Precision + Recall

(A4)

A machine learning classification model can be used to predict the actual class of the
data directly or, much more interestingly, predict its probability of belonging to different
classes. The latter gives more control over the output, and a custom threshold can be used
to interpret the classifier output, which is often more prudent than building a completely
new model if the last one has failed.

Performance Evaluation

The comparative analysis is carried out through the following parameters:

Round

The completion of a process is called a round. It starts with the sensing of the data
and ends till the data is pushed to the edge level.

Energy

The difference between the total energy of an IoT node and the energy consumed in
one round.

Enr= Ent−Enc (A5)

where Enr is the remaining energy, Ent is the total energy before the round, and Enc is the
energy left after the round. Equation (A5) can also be written as

En= ΣEnr/nr (A6)

This is called the average energy of the IoT system, where nr is the active nodes.

Storage
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Let So is the storage occupied in an IoT node after the round. It can be calculated by
the following equation.

So= St−Sr (A7)
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