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Abstract: As commercial geospatial intelligence data becomes more widely available, algorithms
using artificial intelligence need to be created to analyze it. Maritime traffic is annually increasing in
volume, and with it the number of anomalous events that might be of interest to law enforcement
agencies, governments, and militaries. This work proposes a data fusion pipeline that uses a mixture
of artificial intelligence and traditional algorithms to identify ships at sea and classify their behavior.
A fusion process of visual spectrum satellite imagery and automatic identification system (AIS) data
was used to identify ships. Further, this fused data was further integrated with additional information
about the ship’s environment to help classify each ship’s behavior to a meaningful degree. This type
of contextual information included things such as exclusive economic zone boundaries, locations of
pipelines and undersea cables, and the local weather. Behaviors such as illegal fishing, trans-shipment,
and spoofing are identified by the framework using freely or cheaply accessible data from places
such as Google Earth, the United States Coast Guard, etc. The pipeline is the first of its kind to go
beyond the typical ship identification process to help aid analysts in identifying tangible behaviors
and reducing the human workload.

Keywords: dark ships; ship behavior; data fusion; artificial intelligence; neural networks; satellite
imagery; AIS data; geospatial intelligence

1. Introduction

With the constant increase in global trade and commerce, maritime activity across
the globe is on the rise. Shipping lanes are becoming more crowded, fishing vessels are
traveling farther as fisheries deplete, and yachts are increasingly becoming common prop-
erty among the wealthy [1–3]. These increases in traffic create opportunities for illicit or
dangerous activity to occur, such as illegal fishing, trafficking, piracy, infrastructure tamper-
ing, etc. [4–6]. Organizations such as government enforcement agencies are very interested
in preventing these activities from happening. Luckily, industry has responded to these
desires in the form of commercially available, open-source geospatial intelligence. This
increasing availability of information allows for heightened monitoring of ever-increasing
global maritime activity. Imagery in the visible and infrared bands are available from
vendors such as Planet or Maxar Technologies, or aggregate sources such as Google Earth.
Synthetic aperture radar (SAR) imagery is available from companies such as ICEYE or
Capella Space. Automatic Identification System (AIS) data, which acts as easily accessible
telemetry and descriptive data that ships broadcast worldwide, is available from entities
such as Spire or ORBCOMM. All of these forms of data allow for detection of illicit activity
by tracking where ships are and what they are doing in correspondence to other vessels
around them.

The data modalities provided by these vendors do not simply show illicit activity at
sea. The data is raw and must be analyzed by algorithms or artificial intelligence (AI) to
determine what exactly is occurring within it. Some companies do provide some form
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of analytics with their data when purchased [7,8], but it is often surface-level and is only
meant to provide further context for analysts, algorithms, or AI to further discern what
might be occurring within the data.

Bad actors at sea are obviously aware of these various forms of surveillance and
observation being conducted by government agencies and commercial entities. Many
bad actors will seek to avoid detection by visual or AIS means by concealing themselves.
For example, in visual spectrum image data, the bad actor might choose to conduct their
activity at night or during inclement weather. For AIS data, the bad actor might choose
to spoof their reported location or not broadcast their AIS data at all. Many boats that do
not meet the legal minimum requirements for AIS transmitters do not possess them at all.
These types of actors are colloquially known as dark ships and are seeking simply not to
be detected. That, however, does not mean all dark ships are bad. In some cases, their
reasons for concealment could be accidental or completely benign. A cargo ship might be
concealing its AIS transmissions when traversing a seaway known for high rates of piracy.
A fishing vessel could be conducting fishing at night, since nighttime is when things such
as squid are most easily caught [9]. A lot of things happen at sea, and it should be up to the
analysts and their AI algorithms to determine if they are bad or good behaviors.

Since AIS was internationally adopted as a standard safety measure in 2002 [10], many
publications have investigated using AIS information to detect dark ships [11,12]. The
definition of dark ship that these publications use can vary from paper to paper, but the
term typically describes ships that are failing to transmit AIS messages at a rate that falls
within international maritime law compliance or are blatantly spoofing messages [13–15].
What these studies lack, however, is any form of cross-referenced data that can corroborate
their claimed observations based on the AIS data. AIS data only tells part of the story, so
claims purely based on this single data modality can be considered weak or incomplete.

More recently, some other publications have begun looking into verifying ship posi-
tions and linking AIS data to specific ships found in satellite imagery [16–20]. This process
is known as ship-pairing, and often involves some sort of algorithmic approach to pairing
AIS messages received at discrete points in time with satellite imagery taken at separate
points in time. These studies perform the task of ship-pairing, but often do not dare to go
much further beyond discerning any form of higher level of behavior from the information
extracted. Studies such as [16] do discuss some manually derived speculation about what
certain dark ships found within the ship-pairing process might be doing, but none of it
is obtained using algorithms or AI. Without any AI assistance when analyzing the high
volumes of data in geospatial intelligence, an analyst’s job is still slow, tedious, and cum-
bersome. Having an AI that goes one step further than the ship-pairing process could help
identify tangible behaviors or activity occurring within multi-modal information.

Image and AIS data are both fantastic starting points for fusing multiple forms of
data together to form a more complete picture of what is occurring within maritime space.
However, simple images and entries in an AIS data table do not tell the full picture of
what might be happening in a specific area. External contextual info such as weather,
tidal information, and air pollution can give dynamic information regarding the local
situation about factors that might be influencing ship behavior. Likewise, more general
geographic information such as location of nearby pipelines and undersea cables, exclusive
economic zones and protected ecosystem boundaries, proximity to ports, and the AIS legal
requirements of each nation can provide further context as to activities ships might be
engaged in. Further fusing these forms of contextual info in with the image and AIS data
modalities would help further bolster the behavior claims an AI could make for the ships
it observes.

The work conducted in this paper proposes a framework that uses a combination
of both traditional algorithms and AI to fuse multiple data modalities together, identify
ships within that data, and classify their behavior. This framework, known as a “brain-like
approach for tracking maritime activity and nuance,” or BATMAN, is one that uses a pair
of neural networks to identify ships in imagery and then classify their behavior. In-between
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the networks, a sequence of preprocessing algorithms operates to identify ships before
having the ships’ behavior classified by the second neural network (Figure 1). The entire
system is deployed to an Amazon Web Services (AWS) framework which can adequately
handle the size of data expected in a geospatial intelligence problem space.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 24 
 

 

in. Further fusing these forms of contextual info in with the image and AIS data modalities 
would help further bolster the behavior claims an AI could make for the ships it observes.  

The work conducted in this paper proposes a framework that uses a combination of 
both traditional algorithms and AI to fuse multiple data modalities together, identify 
ships within that data, and classify their behavior. This framework, known as a “brain-
like approach for tracking maritime activity and nuance,” or BATMAN, is one that uses a 
pair of neural networks to identify ships in imagery and then classify their behavior. In-
between the networks, a sequence of preprocessing algorithms operates to identify ships 
before having the ships’ behavior classified by the second neural network (Figure 1). The 
entire system is deployed to an Amazon Web Services (AWS) framework which can ade-
quately handle the size of data expected in a geospatial intelligence problem space.  

 
Figure 1. Data flow of the BATMAN framework. 

The work here will first describe the types of datasets that were utilized to train the 
neural networks used and to verify operation of the preprocessing algorithms. It will then 
discuss how each of the neural networks and algorithms operated at every stage of the 
processing pipeline. How the system was trained and deployed to AWS is then described, 
followed by the results obtained at each stage of the pipeline. A discussion section then 
explores what the results at each stage mean within BATMAN, and how these results 
impact the future design direction for the project. Finally, a conclusion summarizing re-
sults is included at the end of the work.  

2. Materials and Methods 
2.1. Datasets 
2.1.1. Imagery 

With the increase of available high-resolution remote sensing ship datasets [21–24], 
these data can be used in the pipeline to physically identify ships at specific locations 
[24,25]. Due to the zoom restrictions of remote orbital imagery, ship detection is often 
considered a problem of small object detection (SOD) [26,27].  

The ShipRSImageNet [21] dataset combines multiple collections of high-resolution 
optical images to be used for ship detection. The dataset features over 3000 images con-
taining over 17,000 ships in total, in both open water and costal locations. Horizontal and 
vertical bounding boxes are offered, along with four levels of labeling. The simplest label-
ing has two classes (ship or dock), while the most complex labeling scheme has 50 total 
labels, covering various types of commercial ships and warships. This work only 
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The work here will first describe the types of datasets that were utilized to train the
neural networks used and to verify operation of the preprocessing algorithms. It will then
discuss how each of the neural networks and algorithms operated at every stage of the
processing pipeline. How the system was trained and deployed to AWS is then described,
followed by the results obtained at each stage of the pipeline. A discussion section then
explores what the results at each stage mean within BATMAN, and how these results
impact the future design direction for the project. Finally, a conclusion summarizing results
is included at the end of the work.

2. Materials and Methods
2.1. Datasets
2.1.1. Imagery

With the increase of available high-resolution remote sensing ship datasets [21–24],
these data can be used in the pipeline to physically identify ships at specific locations [24,25].
Due to the zoom restrictions of remote orbital imagery, ship detection is often considered a
problem of small object detection (SOD) [26,27].

The ShipRSImageNet [21] dataset combines multiple collections of high-resolution op-
tical images to be used for ship detection. The dataset features over 3000 images containing
over 17,000 ships in total, in both open water and costal locations. Horizontal and vertical
bounding boxes are offered, along with four levels of labeling. The simplest labeling has
two classes (ship or dock), while the most complex labeling scheme has 50 total labels,
covering various types of commercial ships and warships. This work only considered
images from the set with the same ground sample distance (gsd) of 1.07, which were then
rescaled to a common size of 1256 by 728.

One other dataset used for training the ship detector is the Google Earth EO Dataset,
which was created for BATMAN specifically. A total of 600 satellite images were captured
using Google Earth [28], all within the US and Cuban EEZs from 2018–2021. These dates
and regions were chosen so that the images would correspond to Marine Cadastre [29]
AIS data, which will be discussed in Section 2.1.2. At least one ship is present in 300 of the
600 images of this dataset. The remaining 300 images contain no ships.
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The latitude and longitude, meters per pixel, and date information for each image
were collected from Google Earth each time an image was captured. However, the time
of day for each image was not reported by Google Earth and needed to be estimated. A
tool that demonstrates the location of the sun based on date, time of day, and location,
called SunCalc [30] allowed for time-of-day prediction to within an hour. Shadows cast
by ships, trees, buildings, channel markers, and other structures were used as “sundials”
and compared with the location of the sun shown by the SunCalc tool. This “sundial”
calculation is demonstrated in Figure 2.
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Figure 2. A demonstration of the “sundial” calculation in the Google Earth EO dataset, demonstrating
the time of day at which the image was captured: (a) a sample image from the Google Earth EO
dataset, with visible shadows cast by the ship and circular structures; (b) the position of the sun
as viewed using the SunCalc.org tool on the corresponding date and location of the image, which
is provided by Google Earth. The position of the sun is chosen to correspond to the position of
the shadows in the image. For this example, the image was captured near Corpus Christi, TX
on 31 January 2020. Using the “sundial” technique, the image was determined to be captured at
approximately 12:15 p.m. local time.

2.1.2. AIS Data

Data was obtained via compressed zip files for each day of US coastal AIS transmis-
sions from Marine Cadastre [31], which were locally stored for each day. The Marine
Cadastre AIS data was chosen for this work since it is freely available and contains a high
volume of AIS messages. The popular python library “pandas” was used for treating
tables consisting of millions of rows of transmissions, where each row contains information
such as time stamp, ship MMSI, latitude, longitude, ship type, etc. The daily tables of
transmissions were directly read into pandas’ data frames, which were cleaned, and the
data types were optimized, sorted in ascending order for the two columns MMSI and time
stamp and finally stored as .feather files. Although this file format has limitations not
present for other formats, such as “pickle” or HDF5, its speed and small size justified this
choice. Moreover, the complexity of the data frames did not preclude using .feather format.
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The AIS transmission time stamps are completely asynchronous; some ships broadcast
at a high rate (every few seconds) and others broadcast very infrequently (intervals between
transmissions can be several days or more). Data on all ships’ positions at the time of the
image is necessary to merge EO or other synchronous data such as SAR or drone footage
with the AIS data stream. Simple linear interpolation for all numeric features was used,
such as latitude, longitude, speed over ground, etc.; however, for other non-continuous
data such as vessel status or vessel type, the value closest in time to that of the image
was used.

To successfully time-interpolate AIS transmissions, one transmission must exist before
the current transmission, and one must exist after the current transmission. This interpola-
tion can be complicated when the ship’s transmission rate is low, or if the requested time
interpolation is either before (or after) the first (last) transmission of that day since the data
is grouped into 24 h periods. For example, interpolating the positions at the start or end
of the day is not possible unless data from previous or subsequent days is available. This
complication is resolved by utilizing continuous time sequences (e.g., weeks or months),
where for each day and MMSI collected the first and last transmission is placed into a data
frame. When performing time interpolation for any given day, the daily data frame with
the appended data frame of first and last transmissions is used. If the latter spans enough
days, the interpolation requirement can be met, except for very few edge cases. These
edge cases include cases in which the ship (or its AIS transmitter) is new, or the ship is no
longer transmitting.

To significantly increase computation speed, all grouping operations (grouping by
operation in pandas) are eschewed in favor of creating a monotonically increasing index on
the sorted data frame that wraps the MMSI and time stamp together. This joint index is
created by multiplying the MMSI number by the maximum time stamp value and adding
the actual time stamp value. To meet the value limitations imposed by 64-bit integers, key
values of a MMSI column categorization scheme are utilized.

2.1.3. Static Contextual Data

To facilitate the classification of maritime vessel behavior, locations and coordinates
were trial-tested with several different API services before coming to a consensus on the
selected API services. Contextual data was broken down into two categories: a static
contextual database with data that does not change at all, and the dynamic contextual
database which provides more historical context, along with the ability to forecast.

These static contextual files helped to build a larger narrative of each ship’s behav-
ior. Each one can provide insight to a larger picture. EEZ’s helped to define maritime
boundaries and laws within those boundaries. The expectation is that a ship should and
will adhere to the laws of whichever country’s EEZ it is residing in. One can use these
various protected zones to gather whether a ship is engaging in illicit behavior to hide its
location to circumscribe the jurisdiction of international and local laws. A ship can spoof its
transmission to appear somewhere other than where it is. Regarding fishing vessels, this
is not always an illegal act, but rather the business practice of protecting a known “sweet
spot,” known only to that captain, crew or company [32].

The static contextual database consisted of GeoJSON files. (GeoJSON is an open
standard format designed for representing simple geographical features, along with their
non-spatial attributes.) The files that contained underwater sea cables and their anchor
points to the mainland came from TeleGeography [33]; those designating Marine Protected
Areas came from the National Oceanic Atmospheric Administration [34] (NOAA), the
United Nations Educational, Scientific and Cultural Organization (UNESCO) and texts
mapping other areas came from United Nations Environment Program World Conservation
Monitoring Centre (UNEP-WCMC) and the International Union for Conservation of Nature
(IUCN), both through Protected Planet [35]. The static contextual database also contained
GeoJSONs of Exclusive Economic Zones (EEZ) and their intersections and overlapping
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claims, as described on maps from MarineRegions.org [36]. Global Energy Monitor also
provided us with GeoJSON files of undersea oil and gas pipelines [37].

In addition to the collected GeoJSON files, the United Nations charters and conventions
related to maritime law were investigated for their ratification status by country, along with
a governing set of rules applied to all countries [38]. The database features information
based on all the countries that currently fly flags of convenience (FoC) on the ocean and
their ratification status as to all these legal and maritime conventions. While most of the
provisions have been adopted by states of the UN, several countries exclude one or more
of the conventions. This database also contains the Paris and Tokyo Memorandum of
Understanding on Port State Control White/Gray/Blacklist [39,40]. This list classifies
countries on a color status based on the number of infractions cited against ships flying
FoC for that state. A comprehensive list of all database sources can be found in Table 1.

Table 1. Database Charters and References.

Geographical (Static) Atmospheric (Dynamic) Legal (Static)

NOAA [34] World Weather Online [41] UN Rules [38]
Protected Planet [35] OpenWeatherMap [42] Port State Control Lists [39,40]
MarineRegions [36] IMO 2020 [43]

Global Energy Monitor [37]
TeleGeography [33]

2.1.4. Dynamic Contextual Data

The dynamic contextual database is generated from World Weather Online and Open-
WeatherMap [41,42]. The World Weather Online database is gathered from worldwide
historical weather over the course of three years. This API provided not only historical
weather in the middle of the ocean, but also astronomical data with regards to lunar activity,
and tidal information in reference to swells and significant wave height, as well as daily
high and low changes in the tides. OpenWeatherMap provides worldwide air pollution
data. This API returned the concentration of particulate matter of 2.5 and 10 microns, and
gas concentrations of CO, NO, NO2, O3, SO2, and NH3. The contextual data could allow
one to detect how weather impacts the behavior of ships, and using OpenWeatherMap
API, one can then extrapolate the possibility of a ship’s circumventing the rules pertaining
to sulfurbased fuels in accordance with the MARPOL 73/78 regulation amended in IMO
2020 [42]. Pollution data could also be used as a tool for helping the classifier detect general
areas of ship activity or movement.

2.2. BATMAN Pipeline
2.2.1. Objectives and Structure

The overall objective for the BATMAN framework is to intake multiple modalities of
geospatial intelligence data and identify ships within them. Then, those identified ships
will be integrated with additional contextual data to classify their behavior as previously
described in Figure 1. Prior to the image and AIS data being fused in the ship-pairing
process, the AIS data undergoes some preprocessing techniques to extract more pertinent
information from its contents. Additionally, the image data is passed through an object
detection neural network to physically identify ships within the imagery. This fused data is
then passed to the Ship Log where the identified ships and their associated time stamps are
stored. These ships are then routed to the behavioral classifier to determine what they are
precisely doing at each point in time. That information is then rerouted back into the Ship
Log so it can be used in later classifications.

MarineRegions.org
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2.2.2. Data Format

Contextual data was retrieved from various sources, and therefore came in multiple
formats. Legal information was provided in CSV files. Weather and tidal data were acquired
as JSON responses from API calls. Regional information was provided in GeoJSON format.
A list of each dataset along with their data formats can be found in Table 2.

Table 2. Data formats.

Dataset Format

Marine Cadastre AIS Compressed ZIP files containing CSV files
Google Earth EO JPEG files and XML files
Static contextual CSV and GeoJSON files

Dynamic contextual JSON formatted API response

2.2.3. The Ship Log

The Ship Log is the datastore for all available ship information to be ingested by the
behavioral classifiers. AIS information is stored alongside YOLO ship detections that have
been processed by the ship pairing algorithm. All instances of ship detections that were
successfully paired with AIS messages will contain the corresponding AIS information
in their entries within the Ship Log. Ship detections that are not paired with any AIS-
identified ships are left with empty values for any information that would be reported
in AIS messages, such as MMSI, speed over ground, cargo type, and draft. Each entry in
the Ship Log also contains information indicating the ship’s legal requirements to send
AIS messages.

2.2.4. Pipeline Data Flow

The BATMAN pipeline streams data from different sources depending on the type
of data being collected. AIS data, for example, is streamed from the Marine Cadastre API.
The imported data is loaded into the DynamoDB database Ship Log for further processing.
Furthermore, EO images are streamed from the Google Earth EO database and passed
through the YOLO detection algorithm. If ships are detected within the EO image stream,
the resultant output is paired with data from the Ship Log. If a pair does not result from
the ship pairing algorithm, the output then passes through a legality filter lambda function
to determine whether a ship is legally required to transmit AIS data given its geographic
location. If a ship is not legally bound to transmit AIS data, the output from the YOLO
neural network is added to the Ship Log. Once these processes have completed, another
algorithm takes as input the entries from the Ship Log and adds contextual data from
the dynamic context database. The ship info is then fed into the behavioral classifier
neural network, which then determines ship behaviors based on characteristics of the Ship
Log entries.

2.3. Algorithms
2.3.1. YOLO and Other Methods for Ship Detection

Ship detection was the most widely investigated specific area of research of Deep
Learning for Object Detection in Earth Observational (EO) data, according to a recent survey
of the field [44]. Hoeser et al. [44,45] continued into the second part of this survey to discuss
some of the nuances of ship detection, compared to other object detection, and note its
common use in application for novel advancements in Deep Learning literature. They also
note the difficulty of in-shore (or costal) imagery compared to off-shore (open ocean) image
and suggest the use of land-sea masks from elevation models to help determine coastlines,
and eliminate false positives of ship-like objects on land [46]. Segmentation [47–53], and
the use of rotated bounding boxes [54] have also been found to be improvements directed
towards ship detection.
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Modern object detection models can often be split into two architectures, two-stage
detectors, and one-stage detectors. Although two-stage detectors are also popular in
application, this review will focus on one-stage detection, such as the You Only Look Once
(YOLO) [55–57], Single Shot Detection (SSD) [58], and RetinaNet [59] algorithms. These
one-shot detectors offer high accuracy, while being suited for more edge environments that
require low power for inference (e.g., space orbital deployment). YOLO is a widely used
network, created and popularized by Redmon dating back to their initial network [55].
With this increase in popularity of ship detection as the application for object detection
algorithms, many proposed additions to one-stage detectors are showcased around ship
detection datasets, especially YOLO [60–68].

Newer models exist, such as the EfficientDet-D7 [69], which proves to be a promising
new model using single-shot detection [45]; improvements over ship detection results from
older version of EfficientDet-D0 [70] can be expected with these newer architectures. A
recent survey of ship detection algorithms noted the general lack of work analyzing the
spatiotemporal data after detection, and instead focused on the performance of the ship
detection [44].

2.3.2. Ship-Pairing Algorithm

A key goal for BATMAN is matching AIS data to ships found in images, and deter-
mining which ships are not properly broadcasting AIS, (i.e., running dark). For a given
image, the ships’ locations are determined in terms of pixels and latitude/longitude, as
described previously. The positions of all ships are interpolated for the image’s acquisition
time and optimized via distance-based matching. Conceivably, matching could also involve
additional features such as the ship’s heading, size or type recorded in the AIS transmission
and these can be determined from image analysis; however, AIS transmissions of ship
size or type are unreliable due to operator error. In many cases the sizes are not entered
at all or entered improperly (width and length are frequently interchanged, or wrong
units other than meters are used). A general mean interval measurement, Im, is used to
minimize the difference in meters between the image’s ship positions and those from the
time-interpolated AIS data.

The ship-pairing function has two parameters limiting the temporal and spatial range:
the threshold for the distance between messages and imaged ships, Tm, and the threshold
for the time between messages and imaged ships, Tt. Additionally, one internal hyperpa-
rameter defines clustering: ε sets the distance between points of the same cluster. Clustering
reduces the search space of possible matches and significantly improves computation times.
An additional parameter is the maximum number of permutations, Pmax, which limits the
number of ship-pairing assignments considered. Setting Pmax to 1 is greedy in the sense of
purely locally optima.

The principle behind clustering ships in an image is for reasonable clustering such
that AIS candidates for different clusters will be non-overlapping. For example, consider
two ship clusters that are separated by a large distance (e.g., 100 km). The pairing for each
cluster can be treated independently, because the pools of possible AIS ships are distinct,
and thus the number of permutations considered is significantly reduced.

The optimization involves considering pairing permutations between the ships of a
cluster and the AIS candidate ships within a Tm distance and having a transmission within
Tt of the image’s time. The first permutation to be considered is greedy, and subsequent
permutations are variations where the pairing distance increases from the local optimum.

To help determine an ideal setting for these hyperparameter values, a performance
metric, r, is defined, which is a ratio between the number of ships paired and a normalized
mean interval.

r =
sp
Im
Tm

(1)
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In Equation (1), sp represents the number of ships being paired, Im is the mean interval
between identified ships and their associated AIS messages, and Tm is the interval threshold
(in meters). For situations in which runtime is also a performance factor, a second metric,
rt, was also defined that also further divides r by the runtime, t.

rt =
r
t

(2)

2.3.3. AIS Data Feature Engineering

Since the amount of AIS data being processed is quite large, a guiding principle of
the AIS preprocessing is to reduce file space. This process involves eliminating duplicate
dates, judicious use of data typing, and minimizing computational load. For example,
the downloaded data from Marine Cadastre, which is a compressed zip file, does not
get uncompressed as a csv file, and instead is directly read into a pandas data frame
using pandas.read()_csv. After some cleaning (removing duplicate rows or removing rows
missing key features such as MMSI, time stamp, latitude, longitude, etc.), the data type is
optimized to decrease data size. This reduction involves using categorical data types when
appropriate, such as strings (e.g., ship names), converting floats to integers by converting
NaNs to −1 (when possible), and converting string date times to pandas’ date–time objects.
Depending on the precision required, the values are reduced from float64 to float32 or
float16, or int64 is reduced to int32, int16, or even int8. Care is taken for numerical
calculations to increase the data to either float64 or int64 for preventing over-flows.

One challenge using vectorized geometries for geotagging based on latitude/longitude
from AIS transmissions is the computational load, which for millions of rows, can lead to
long computing times. To eliminate these computations, the vectorized data is rasterized
at a sufficient resolution (about 0.001 degrees, which is 1 km or less) using makegeocube
from the geocube API and saved as an array with to_raster. Using the rasterization as a
look-up table reduced the computational burden by orders of magnitude as compared to
determining regions of vectorized geo-data. Moreover, the geometry data was removed
from the geo-file (either shapely or geopandas) and saved as a much smaller file using the
binary file .feather format developed by Apache Arrow. One limitation of this approach is
that it implicitly assumes that all geometries are non-overlapping, a consideration which
needs to be addressed in the future.

2.3.4. Behavioral Classifier Data Ingestion

As data is uploaded to S3, AWS Lambda functions automatically retrieve and save
both dynamic and static contextual data for future ingestion by the behavioral classifier. For
dynamic context, World Weather Online is queried for weather and tidal data for a given
latitude and longitude at the appropriate time. Pollution levels for a number of atmospheric
particulates are retrieved using the OpenWeatherMap.org API. This information is saved
to a new data frame that is loaded during training. For static context, each data point is
compared to lists of exclusive economic zones, submarine cables, UNESCO marine World
Heritage sites, and fisheries to determine important context about each ship’s location. This
information is again stored in a new data frame.

2.3.5. Behavioral Classifier Neural Network Approaches

Two neural network types, dense (~2,000,000 parameters) and convolutional
(~32,000,000 parameters) [71] were used. Both models were relatively small with the dense
model having three dense layers and an output layer, and the convolutional model having
a dense layer, three convolutional layers, a final dense layer, and an output layer. Both
models used the same input data and augmentations, output shape, and loss function to
attempt to identify various ship behaviors. As these behaviors are not mutually exclusive,
each model needs the ability to output multiple predictions. To accomplish this, a custom
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loss function (shown below) was used (where i is an index of the output array and n is the
total number of predicted behaviors).

n

∑
i=0

− (y_truei ∗ log(y_predi) + (1 − y_truei) ∗ log(1 − y_predi)) (3)

This custom loss function takes the standard binary cross-entropy loss and applies it
to each of the output behaviors independently to allow for multi-label classification.

During training many of the samples required a significant amount of cleaning to
allow the network to train effectively. This adjustment was needed due to several factors,
including fake transmissions, corrupt data, and irregular transmissions causing calculated
metrics, such as distance and speed between transmissions, to have large variances. This
mainly involved removing duplicate AIS transmissions and transmissions missing MMSI or
latitude and longitude. To accommodate these value ranges, a large portion of the data was
clipped. To allow the model to still accommodate these extreme values, without causing
the model to diverge in training due to these extreme values, the data was normalized
to a range that was physically realistic (e.g., −1 -> 0 m/s and +1 -> −50 m/s), then the
upper bound of that normalized column was clipped at +2. Additionally, several columns
contained categorical data that was encoded using a base-2 encoding scheme.

For this phase of the research, these networks showed sufficient results, and further
research will look to incorporate more advanced architectures such as Tabnet [72] and
Tabformer [73].

2.3.6. Behavioral Classifier Traditional Approaches

Three traditional machine learning algorithms were developed for the study to com-
pare the neural network approaches against established behavioral classifiers. The algo-
rithms used were ensemble method (Extremely Randomized Trees, or ERT), a classification
and regression tree (CART) method, and a gradient boosted method (Gradient Boosted
Trees). The choice to include algorithms from three different categories was due, in part, to
the decision to baseline several different techniques against the neural network classifier,
as well as to incorporate results from various categories of traditional approaches. Each of
the classifiers utilized the TensorFlow library to incorporate the data processing pipeline,
preprocessing the data and storing the results as TensorFlow-records. The Extremely Ran-
domized Trees algorithm includes a maximum number of 100 trees and a sparse oblique
split axis. The GBT model includes a maximum number of 149 trees, as that was the
optimized number of trees needed to perform with the greatest accuracy. The random seed
for both ERT and GBT models utilized an initial random seed of 1000, as compared to the
default random seed of 1234. All models included the initial input and output shape of the
neural networks to comparatively incorporate dimensionalities.

2.3.7. Generating Behavioral Truth Labels for Training

Behavioral truth labels were generated by labeling the data with ten different behav-
iors, based entirely on Marine Cadastre AIS data. The entire month of January 2022 was
time-resampled with an hourly frequency. The behaviors were: wandering, transshipment,
coastal loitering, offshore loitering, illegal fishing, concealed illegal fishing, competitive
fishing, generic loitering, docked, and tampering (Table 3). Ship Log entries could have
none of these behaviors or one or many of these behaviors.
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Table 3. Labeled Behaviors within Ship Data and Their Conditions.

Behavior Definition Additional Conditions

Wandering Cargo ships in seldom traveled areas More than 10 km from coast, >50% waypoints
untraveled

Transshipment Pairs of ships at sea loitering in close proximity More than 10 km from coast, proximity < 20 m
Coastal Loitering Loitering near the coast and away from ports Less than 10 km from coast

Offshore Loitering Ships loitering out of port away from the coast Loitering > 10 km from coast
Illegal Fishing Fishing vessels loitering in protected zones -

Concealed Illegal
Fishing Dark fishing vessels loitering in protected zones -

Competitive Fishing Dark fishing vessels loitering at sea -
Generic Loitering Ships loitering out of port Located 5 km or further from port

Docked Ships loitering in port Within 5 km of port

Tampering Diving or dredging vessels loitering near
pipelines/undersea cables Within 2 km of pipelines/cables

An underlying feature for many of the behaviors of interest is loitering, which is briefly
described here. For loitering, the key parameter is the distance threshold that distinguishes
small-scale movement, such as an anchored ship drifting with changing currents or small
fluctuations in the GPS transmissions due to the limited precision and lack of directed
movement that would be typical of a traveling ship. For the hourly-resampled data, the
feature “successive loitering” was defined for a threshold distance of 5 km, as follows:
within the hour the ship’s excursions have to be less than 5 km, and for the subsequent
hour the distance between both mean positions has to also be less than 5 km. Thus, any
ship loitering for several successive hours has to be moving extremely slowly or essentially
be stationary. Moreover, vessels engaged in fishing are considered to also be loitering (i.e.,
they are moving very slowly).

Truth labels for each entry in the Ship Log were generated using contextual info and
some of the data features are mentioned in Section 2.3.3. The truth labels were generated by
checking for specific values present within the data. The classification of “Concealed Illegal
Fishing” deserves further explanation, as, in principle, knowing the location of a concealed
(dark) vessel is impossible using AIS alone. However, the trajectories are interpreted
at hourly intervals, which can in fact result in trajectories intersecting protected fishing
grounds. Although the approach for creating labeled data is basic and involves assumptions
regarding interpolated waypoints, it provides a foundation for proving BATMAN as a
concept. The technique paves the way as a baseline comparison for more complex data
generation techniques in the future, such as synthetic data generation or unsupervised
learning schemes. Multi-modal geospatial intelligence datasets do not exist in easily
accessible places, particularly ones that contain labeled data. Creating one in this manner
is a critical first step in demonstrating BATMAN’s capabilities.

2.4. Deployment Platforms
2.4.1. NVIDIA DGX-1 Training

For model training and tuning, a Nvidia DGX-1 that featured 8 Tesla V100 GPUs,
an Intel Xeon CPU model E5-2968 v4 at 2.20 GHz, with 528 GBs of RAM, was used.
The behavioral classification pipeline worked inside of a Docker container: lightweight
standalone software packages containing every file needed to run an application (code,
runtime, system tools, etc.). Shared data (results, logs, datasets, etc.) was then kept in
shared storage, which could then be mounted to a container.

2.4.2. AWS Deployment

The computing architecture of the pipeline was deployed using Amazon Web Services
cloud computing resources. A diagram showing an AWS version of the pipeline shown in
Figure 1 is shown in Figure 3. Retrieval and storage of data follows a traditional extract,
transform, and load (ETL) process [74], for future applications in real-time edge cases. ETL
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pipelines extract data from source, transform the data into a usable structure for algorithms,
and then load the data into the necessary storage mechanism. To simulate part of the use
case of a neuromorphic chip placed on an edge device, the completed YOLO model was
stored in a Docker container, which was subsequently placed within an Ubuntu EC2 T2
instance. As the EO data is extracted from the source, it streams through the YOLO Docker
container and, if a ship is detected, the output is uploaded to an S3 data lake storage bucket.
The uploading of this data then triggers an AWS Lambda function to instantiate a transient
elastic map reduce (EMR) Dask cluster to pair the EO detection with existing AIS data. The
ship-pairing output is stored as a parquet file in another S3 bucket, which itself triggers an
additional legality filter AWS Lambda function upon successful upload to the bucket. Once
the event passes through the Lambda function, it is stored in a master Ship DynamoDB
database. Contextual and Static Data Lambda functions are then triggered for use in the
neural network behavioral classification model.
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3. Results
3.1. Ship Detection and Classification

In place of describing a new novel ship detection algorithm, a brief review of literature
over the problem in question is presented. The review is focused only on applications using
the YOLO architecture, and is not a comprehensive review for all published work using
YOLO for ship detection. Many publications were left out of this review that did not report
either mean average precision (mAP), recall, and/or precision.

As Table 4 shows, many variations of YOLO have been used for ship detection prob-
lems, with high precision and recall. SAR and EO were the dominant dataset types, with
most EO coming directly from partially released satellite datasets. Long et al. [63] and
Zhu et al. [67] presented smaller versions of YOLO, which still offered comparable results
to larger YOLO models. This review has shown that many novel advancements to Deep
Learning in recent years have been applied to the problem of ship detection, and the use of
lightweight models can offer edge-based deployment and desirable detection results.
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Table 4. Review of results from recent publications using YOLO networks for ship detection. All
datasets without a direct citation were published as part of the listed authors’ published work.

Publication Base Network Imagery Dataset Train Size Test Size mAP Recall Precision

Khan and
Yunze,

2018 [75]
YOLOv2 SAR Sentinel-1 6003 74 - 95.95% -

Long et al.,
2020 [63] YOLOv3 SAR SSDD [76] 878 282 89.72% - -

Long et al.,
2020 [63] Tiny-YOLOv3 SAR SSDD [76] 878 282 88.69% - -

Zhang et al.,
2020 [77] YOLOv3 EO + IR DSDR 1146 738 - 84.62% 78.09%

Hu et al.,
2021 [61] YOLOv4 EO MASATI

[78] 1675 711 91.00% - -

Jiang et al.,
2021 [62] YOLOv4 SAR SSDD [76] 812 348 96.32% 95.96% 96.98%

Tang et al.,
2021 [64] YOLOv5 SAR GaoFen-3 ~10,285 ~1714 90.97% 92.65% 70.80%

Zhu et al.,
2021 [67] YOLOv5 SAR SSDD [76] 812 348 64.90% 97.50% 87.80%

Zhu et al., 2021
[67] YOLOv5 SAR HRSID [22] ~3923 ~1681 72.00% 94.90% 72.40%

Wang et al.,
2022 * [65] YOLOv5 EO DIOR [79] - - - 68.20% -

Wang et al.,
2022 * [65] YOLOv5 EO CDIOR - - - 81.90% -

Xu et al.,
2022 ** [66] YOLOv4 EO WFV *** - - 92.32% 90.53% 94.93%

Xu et al.,
2022 ** [66] YOLOv4 EO PMS *** - - 93.07% 90.75% 94.93%

* Incorrect definition of False Positive ** No coastal images used in dataset *** Taken from the GaoFen-1 satellite.

3.2. Ship-Pairing Algorithm

Parametric studies of the ship-pairing process were performed for a range of the
parameters Tm, Tt, and Pmax. The analysis paired the ships found in the Google Earth EO
dataset with ships found in the Marine Cadastre AIS dataset. The purpose of this study
is determining optimal parameters for this type of data in terms of matching the highest
number of ships, sp, with the lowest overall Im and having a reasonable computation time
considering all 600 rows. Two examples of the ship-pairing algorithm in action can be seen
in Figure 4.

Results of the ship-pairing analysis are shown in Table 5. When Tm and Tt are both
set to 1e4, r and rt are at their highest value. However, r is at its maximum value when
using the extensive approach, while rt is highest during the greedy approach. This result
means that an improvement is obtained when using the extensive approach, but when
considering time as a factor, the additional runtime is negligible.
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Figure 4. Examples of the ship−pairing algorithm, working against the Google Earth EO dataset
and the Marine Cadastre AIS data. Each ship within the image is labeled with a letter, while each
AIS message within the confines of the image is labeled by a number. Solid lines represent ship
pairings when Pmax = 1 (Greedy Approach) and dashed lines represent ship pairings when Pmax = 108.
(a) An example in which both the greedy and extensive approaches agree on the ship pairings within
the image. All four ships within the image are paired to the same AIS messages by both techniques.
(b) A more complex example, where discrepancies appear between the two pairing approaches. The
cluster of ships on the right-hand side of the image causes the two approaches to attempt to pair AIS
messages with different ships.

Table 5. Ship Pairing Comparison for ε = 1 km.

Approach Tm (m) Tt (s) t (s) sp Im (m) Im/Tm n rt

Extensive
(Pmax = 106)

104 104 439.81 469 1342.55 0.13 3493.35 7.94
104 103 460.25 452 1368.31 0.14 3303.35 7.18
104 102 458.96 441 1485.64 0.15 2968.42 6.47
103 104 414.34 302 366.59 0.37 823.81 1.99
103 103 426.71 289 373.24 0.37 774.30 1.81
103 102 433.04 273 390.81 0.39 698.55 1.61
102 104 410.65 70 47.31 0.47 147.96 0.36
102 103 423.82 63 49.02 0.49 128.52 0.30
102 102 424.94 55 51.60 0.52 106.59 0.25
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Table 5. Cont.

Approach Tm (m) Tt (s) t (s) sp Im (m) Im/Tm n rt

Greedy
(Pmax = 1)

104 104 405.53 469 1352.15 0.14 3468.55 8.55
104 103 437.46 452 1376.33 0.14 3284.10 7.51
104 102 419.27 441 1494.92 0.15 2949.99 7.04
103 104 405.80 293 342.49 0.34 855.50 2.11
103 103 412.65 280 348.12 0.35 804.32 1.95
103 102 425.27 267 375.44 0.38 711.17 1.67
102 104 442.90 69 46.29 0.46 149.06 0.34
102 103 410.19 62 47.91 0.48 129.41 0.32
102 102 405.61 54 50.37 0.50 107.21 0.26

3.3. Truth Label Generation

The AIS dataframes were augmented with labels to match truth labels with ship-
paired EO images. For example, spoofed transmissions were identified as having a greater
or lesser degree of intended latitude, longitude, and elevation. Furthermore, resampled
AIS data was assembled with a global clock, which in turn, further maintained precise
measurements relative to behavior truth labels. Neighborhood analysis for the global clock
was then conducted to appropriately label the aforementioned ten behavioral classes.

The final labels generated are shown in Figure 5. These labels are to be used as truth
data for the behavioral classifiers to train against for accuracy evaluation. Many behaviors,
such as the various forms of loitering, were quite common. Other behaviors, such as fishing
behaviors, existed across a range of occurrence rates. The data used for training primarily
encompasses the month of January 2022 and was taken from the Marine Cadastre database.
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3.4. Behavioral Classifier

Results for the five algorithms used in the behavioral classifier (three traditional
algorithms and two neural networks) are shown in Figure 6. The data shown is the result of
having trained the behavioral classifier against a Ship Log containing data specifically from
January 2022. Recall, precision, and F1Mean are broken down individually by behavior.
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transshipment and wandering behaviors.

As can be seen in the figure, the classes with the most samples were predicted signif-
icantly more accurately than those with fewer samples. In total there were 441,677 total
samples, of which 23,415 had no corresponding behaviors (normal ship behavior) that
were split 80:20 for training and testing, respectively. Three behaviors were predicted
nearly perfectly by all algorithms, two behaviors were detected with high confidence by
the traditional approaches, three behaviors were detected with moderate success by all
algorithms, and two behaviors were never predicted. Detailed discussion of these results
can be found in Section 4.3.

4. Discussion
4.1. Effects of False Negatives and False Positives

During testing, the question of the importance of false negatives (FN) vs. false positives
(FP) was asked, in addition to the question of whether the network should be biased towards
one or the other. If the case is considered where a FN is transmitting AIS data, the data
would still be parsed to the classifier. Notwithstanding this, a heavy bias is now applied
to the classifier to label the ship, which can only be detected from AIS transmissions, as
possibly spoofing their location. In the case of FP, the classifier would get the inverse of
this bias, now towards the ship’s perhaps being dark (i.e., not transmitting information).
YOLO models have a harder time classifying smaller ships, and since some regulations
allow for smaller vessels not to transmit AIS per SOLAS regulation [26], a FN of a smaller
vessel could bypass the incorrect classification of a dark ship.
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Since natural conditions such as cloud coverage, weather, and darkness could perhaps
shield a ship from being detected by remote electro-optical imagery, FN should be expected
more often in cases of non-malicious behavior. Because of this trend, it is instead better to
tune classifiers to accept more FN than FP, as other data modalities could still help classify
a FN. In the case in which a prediction is very sure (i.e., a high confidence value), but there
is no corresponding paired AIS message, then the classifier should be predisposed to report
back that there is a ship that is spoofing their AIS.

When considering the issue of FN, the topic of small ships should certainly be men-
tioned whenever discussing ship detection. Whether in the image or the AIS domain, small
ships are rather difficult to detect. A small ship in satellite imagery might be only a few
pixels in size, and many small vessels do not possess AIS transmitters, since they are not
legally required to do so. Ensuring that the detection algorithm is tuned to detect small
ships is of the utmost importance, since they are the ones least likely to appear within AIS
data. In future versions of BATMAN, more advanced image analysis could be utilized to
detect small ships within imagery, such as ship wake detection. This type of analysis would
allow for detection of ships that are even barely visible within an image for small boats
in motion.

4.2. Ship-Pairing Dynamics

For all parameter choices, pairing is generally improved by increasing Pmax. These
improvements are either made in terms of an increased number of pairs or a decreased
mean interval distance. Increasing Pmax even up to millions of permutations increases
computation time by no more than 40 s, or 10%. Moreover, for smaller values of Tm (i.e.,
<10 km), the number of successful pairs is increased over greedy pairing. For a given time
threshold, the number of paired ships is saturated beyond a threshold distance of 10 or
more km (469 for 10,000 s, 452 for 1000 s and 441 for 1000 s), which can be achieved by both
greedy and more sophisticated approaches. On the other hand, the mean interval distance
of these pairings is slightly improved when searching over permutations. Below, the
distances required for the number of greedy pairs drops faster than those for permutation
pairs. However, when the number of pairs is increased by the permutational search, the
mean distance increases by a greater amount than the decrease at high threshold distances.
Dynamics of how pairing scales with varying Ts and Tm can be found in Figure 7.

As a final note on ship-pairing, the algorithm currently attempts to optimize the
pairing process via various distance calculations and averages across the identified ships in
the two data modalities. It does not try and optimize to metrics such as ship size or class.
As of now, the Ship Log records the ship class in accordance with the self-reported ship
class within the AIS data. However, the ship image detection algorithm could be trained
to identify all the ship classes found in AIS data and optimize ship-pairing in accordance
with a ship’s class and size in addition to its location.

4.3. Behavioral Classification Dynamics

The two most significant training factors varied during training of the neural networks
were learning rate scheduling and loss function. As noted in Section 2.3.5, the custom loss
function greatly outperformed mean-square error and mean absolute error, especially in
classes with fewer labels. Further improvements to this loss function would include class
weighting to more heavily weight classes with fewer examples. Additionally, a simple
learning rate decay showed significant improvement over a static learning rate.
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Figure 7. Summary of ship-pairing performance: (a) Setting both time and distance thresholds to
1000 s/meters, the dependence of mean pairing distance (left axis) and the mean pairing success
(right axis) on the iteration limit: At Pmax = 104 the mean pairing distance drops, while the number
of pairings stays constant, and at Pmax = 106 two more pairings are created, which causes the mean
pairing distance to increase. (b) Dependence of the mean iteration depth on the iter limit for five
sets of thresholds, where the saturation occurs at increasingly greater iter limits with increasing
thresholds; (c) the pairing success rate increases with thresholds; (d) mean pairing distance also
increases with threshold.

In general, the traditional approaches performed just as well, if not better, than the
neural network approaches tested. In classes where performance was similar, the number
of examples in those classes was high enough to the point where all algorithms were able
to successfully generalize the behavior. In other cases where behaviors were less common,
the neural network approaches failed to perform as well since they did not have as many
samples to train against. However, in the cases of transshipment and wandering, the classes
were so rare that no algorithm was able to successfully detect the behavior. These scenarios
show that techniques such as synthetic data generation or using unsupervised learning
schemes in future work could aid in boosting the performance of standard neural networks,
such as the dense or convolutional networks. The traditional approaches could also benefit
from a higher sample count of the rarer behaviors, which could be made available via
synthetic data generation.

When looking at the results from Figure 6 overall, at points, it is a little difficult to
tell which algorithm is performing best. The recall, precision, and F1Mean values across
all behaviors for each algorithm, were averaged, and the values obtained can be found in
Table 6. The top performer across each metric is in bold print.
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Table 6. Average performance values across each algorithm for behavior classification.

Algorithm Recall Precision F1Mean

CART 55.2% 64.5% 57.6%
ERT 61.5% 76.0% 65.9%
GBT 61.2% 73.1% 65.2%

Dense Network 51.5% 61.9% 55.2%
Convolutional Network 44.6% 62.7% 48.0%

Overall, ERT performed best on average across all three key metrics. However, as
can be seen in Figure 6, there are behaviors where algorithms such as GBT clearly surpass
ERT (e.g., offshore loitering). In future versions of BATMAN, an ensemble approach to
classifying ship behavior could be considered in which each algorithm is queried with their
responses weighted with respect to the reliability of that specific algorithm for the specific
behavior. It should also be noted that the algorithm performance shown here could be
influenced by how the labeled data was generated for training. If training data is generated
differently in future work, the performance of each approach could shift in either a positive
or negative direction. Since the data for this work was generated in a rather structured
manner via tagging entries in the Ship Log, the structure could be influencing the high
performance of the traditional approaches (i.e., CART, ERT, and GBT). If future data is less
separable in nature, the neural network approaches could begin to surpass the performance
of CART, ERT, and GBT.

Further improvements in the design of the neural networks would look towards
architectural improvements and better normalization processes. As noted in Section 2.3.5,
Tabformer and Tabnet are two of the leading architectures for classification of tabular
data; however, other sequence modeling or transformer architectures could also provide
improvements over the current approaches. To improve normalization processes, additional
preprocessing steps could be taken, such as creating more intelligent ways for removing
obviously corrupt data, creating additional features for values outside given ranges (e.g.,
speed > 50 m/s), or incorporating other encoding methods to the preprocessing pipeline.
Results shown in Figure 6 demonstrate that there is room for improvement across both
neural network and traditional approaches, and neural networks such as Tabformer or
Tabnet could be helpful in closing the gap on detect rarer behaviors within the Ship Log.

A key conclusion drawn from the behavioral classification process was that most of
the behaviors studied were fairly simple to detect to at least some degree. However, the
true challenge in a problem space such as classifying ship behavior at a broad scale lies
within properly fusing data together that can be digested by a classifier, and then properly
labeling that data to reflect real world scenarios. In the field, these algorithms could detect
ship behavior using different modalities of data, but if the system remains fixed in the
type of data it intakes and how it learns from it, malicious actors at sea could adjust their
behavior to further avoid detection. For example, if the ship detection algorithms used
against EO imagery have difficulties detecting small ships, and all the criminals using large
ships are caught with BATMAN, a survivorship bias could occur where criminals using
small vessels are the only ones remaining and are left to flourish. Likewise, if the behavioral
classifier is fixed on attempting to classify specific behaviors by specific routes ships run
when at sea, but then dynamics of the routes change, those behaviors would either be
misidentified or not identified at all. For the long term, it would be critical for a framework
such as BATMAN to adopt a form of lifelong learning scheme [80] to its weights where
they are constantly considering new data.

Lastly, during behavioral classification, the contextual data most likely plays a minor
supplementary role in helping to identify specific ship behavior. Information such as
weather data might help the algorithms isolate activity, such as the various forms of
loitering or being docked, which could possibly increase in occurrence during times of
inclement weather, when seas are rougher. Although this work did not specifically analyze
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how significant a role contextual data played in behavior classification success, future work
aims to do so.

5. Conclusions

This work has shown and demonstrated a multi-modal data fusion pipeline that is
able to identify ships and classify their behavior. This system, named BATMAN, can fuse
satellite image data and AIS data together to identify ships through a ship-pairing process.
The ship-pairing process was able to identify 78% of ships present within the images and
AIS data (the other 22% could be considered “dark”). These ships can then be classified
by ten different behaviors that provide clarity as to their actions. In the cases in which
sufficient examples were present within the data for each behavior, the classifier was able
to recognize them with high recall and precision. All of this analysis was conducted using
an interconnected setup on Amazon Web Services. To the authors’ knowledge, this is the
first time a framework to classify maritime activity in such a comprehensive manner has
ever been publicly documented. BATMAN and its future iterations could serve as excellent
aides for maritime analysts in the public, private, and academic sectors.

Although not comprehensive in its behavioral classification capability, BATMAN
serves as a solid foundation with which to begin classifying ship behavior at a more holistic
level. In the data modality domain, BATMAN can already cross-validate the existence
of ships across the image and AIS domain. Other modalities such as acoustics or radio
communications data could greatly enhance BATMAN in the future to allow it to detect
ships that might be difficult to detect in the image and AIS domains. In the behavioral
classification domain, generating data that is more dynamic and possesses a wider range
of behaviors is critical to ensuring that BATMAN can fully understand the maritime
environment and all possible scenarios. Both corporations and government organizations
that have vested interests in the maritime domain should begin thinking about ship activity
at the comprehensive level that BATMAN does. By providing more context to ships’
activities, BATMAN could make the world’s oceans safer places for all seafarers.
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