
Citation: Li, Y.; Qi, Y.; Wang, C.; Bao,

Y. A Cluster-Based 3D Reconstruction

System for Large-Scale Scenes.

Sensors 2023, 23, 2377. https://

doi.org/10.3390/s23052377

Academic Editor: Gregorij Kurillo

Received: 13 January 2023

Revised: 15 February 2023

Accepted: 19 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Cluster-Based 3D Reconstruction System for
Large-Scale Scenes
Yao Li 1 , Yue Qi 1,2,3,*, Chen Wang 4 and Yongtang Bao 5

1 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
2 Peng Cheng Laboratory, Shenzhen 518055, China
3 Qingdao Research Institute of Beihang University, Qingdao 266104, China
4 School of Computer Science and Engineering, Beijing Technology and Business University,

Beijing 100048, China
5 College of Computer Science and Engineering, Shandong University of Science and Technology,

Qingdao 266590, China
* Correspondence: qy@buaa.edu.cn

Abstract: The reconstruction of realistic large-scale 3D scene models using aerial images or videos has
significant applications in smart cities, surveying and mapping, the military and other fields. In the
current state-of-the-art 3D-reconstruction pipeline, the massive scale of the scene and the enormous
amount of input data are still considerable obstacles to the rapid reconstruction of large-scale 3D
scene models. In this paper, we develop a professional system for large-scale 3D reconstruction. First,
in the sparse point-cloud reconstruction stage, the computed matching relationships are used as
the initial camera graph and divided into multiple subgraphs by a clustering algorithm. Multiple
computational nodes execute the local structure-from-motion (SFM) technique, and local cameras
are registered. Global camera alignment is achieved by integrating and optimizing all local camera
poses. Second, in the dense point-cloud reconstruction stage, the adjacency information is decoupled
from the pixel level by red-and-black checkerboard grid sampling. The optimal depth value is
obtained using normalized cross-correlation (NCC). Additionally, during the mesh-reconstruction
stage, feature-preserving mesh simplification, Laplace mesh-smoothing and mesh-detail-recovery
methods are used to improve the quality of the mesh model. Finally, the above algorithms are
integrated into our large-scale 3D-reconstruction system. Experiments show that the system can
effectively improve the reconstruction speed of large-scale 3D scenes.

Keywords: large-scale scene; structure from motion; multi-view stereo; mesh optimization; cluster
system; large-scale 3D-reconstruction system

1. Introduction

As large-scale 3D models are the basis for smart cities, there has always been an urgent
need for digitizing large-scale scenes. There are a number of applications and research
fields that can benefit from 3D models of large-scale scenes, including digital cities, virtual
reality, augmented reality and digital twins. However, rapidly reconstructing high-quality,
large-scale 3D scene data remains a difficult task in computer vision and graphics research.
First, as the scale of the scene increases, the number of input images increases significantly.

When using a single computational node, 3D reconstruction will exceed its own com-
putational and storage capacity, leading to the failure of large-scale-scene 3D-reconstruction
tasks. Additionally, in large-scale 3D reconstruction, it is assumed that even if a single
computing unit could complete the reconstruction task, the vast amount of data would
often lead to a longer computing time.

Finally, the scale of the 3D data of the reconstructed large-scale scene needs to be
increased, thereby, resulting in a high degree of data redundancy and a significant number
of noise problems, which is not conducive to the expression and rendering of 3D data. To

Sensors 2023, 23, 2377. https://doi.org/10.3390/s23052377 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23052377
https://doi.org/10.3390/s23052377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9035-988X
https://doi.org/10.3390/s23052377
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23052377?type=check_update&version=1

Sensors 2023, 23, 2377 2 of 30

address the problem of large-scale 3D-scene reconstruction that a single computing node
cannot handle, we propose a cluster-based camera-graph-structure clustering algorithm
and a cluster-based global camera pose-registration algorithm. All camera positions are
converted into graph-structured nodes, and several strongly correlated camera subsets are
constructed using graph-structured partitioning.

A reasonable subset of the parallel computational data is assigned to each computa-
tional node in the cluster. The overlapping camera information among the subgraphs is
used to optimize and complete the task of registering global camera positions. In conclu-
sion, our proposed algorithm relies on a divide-and-conquer framework to break through
the limitations of a single computational node and uses a cluster approach to handle the
3D-reconstruction task of large-scale scenes. To maximize the utilization of computational
resources on a single computational node, we propose a GPU parallel depth-estimation
algorithm based on patch matching in the dense point-cloud reconstruction phase to assess
the candidate solutions’ merit using an improved normalized correlation score.

During the iterative process, the search neighborhood size is continuously adjusted
according to the distribution location of the solutions to accelerate the convergence speed
further. This reduces the time needed to solve the dense reconstruction problem on a single
computational node and alleviates the time-consuming problem of depth-map estimation
when reconstructing dense point clouds of large-scale 3D scenes. The 3D reconstructed
mesh has disadvantages, including data redundancy, a non-uniform structure, spatial noise
and non-fine detail features. We propose a 3D mesh-optimization method based on cluster
geometric detail recovery.

First, we simplify the mesh to maintain the detailed features of the model while
reducing the redundancy of the mesh model as much as possible. Secondly, in the process
of mesh smoothing, we propose a mesh-smoothing homogenization algorithm based on
the second-order umbrella operator, which makes the triangular surface slices regular and
uniform, thus, reducing the noise and anomalies of the mesh. Finally, we construct an
energy function using the image color-consistency term and the Laplacian smoothness
term, which not only removes noise and outliers but also restores the detailed features of
the mesh.

Based on the above method, our developed large-scale 3D modeling system, BHRecon-
struction, realizes the need for cluster-based, high-efficiency reconstruction of large-scale
3D scenes. BHReconstruction supports exporting mainstream 3D model formats and the
real-time rendering of 3D models, thereby, meeting the needs of further applications, such
as surveying and mapping, 3D maps, digital cities, digital cultural relics, virtual reality
and augmented reality. BHReconstruction consists of three modules: the reconstruction
configuration module, 3D-reconstruction module and rendering module.

Our system provides two modes for different users: (1) simple mode, which only needs
to configure the basic options to achieve one-click reconstruction of large-scale 3D scenes
and (2) expert mode, which provides detailed parameter settings to meet the specialized
3D-reconstruction needs of professionals who have mastered 3D-reconstruction theory.

In summary, this study makes the following contributions to the existing literature:

• We propose a cluster-based method for clustering the camera graph algorithm. A divide-
and-conquer framework is used to precisely partition the camera graph into several
subsets. The algorithm ensures weak correlations between subsets and strong corre-
lations within subsets, which allows the subsets to perform in parallel local camera
pose-estimation tasks on cluster nodes.

• We propose a cluster-based global camera pose-alignment algorithm. Using the
overlapping camera positions between each subgraph for global camera pose fusion,
we mainly solve the nonlinear optimization problem of rotation and translation in the
camera pose to obtain a more accurate global camera pose.

• We propose a GPU parallel fast depth-estimation method based on patch matching.
The candidate solutions are measured by an improved normalized correlation score,
which makes the parallel estimation of image depth values more efficient.

Sensors 2023, 23, 2377 3 of 30

• We propose a cluster-based mesh optimization for the geometric detail-recovery
method, which uses the proposed second-order umbrella operator to enhance the
mesh’s uniformity and increase the mesh model’s fidelity.

• Compared with similar open-source libraries and commercial reconstruction soft-
ware, our system can reconstruct large-scale city-level 3D scenes in a cluster envi-
ronment with one click and has a faster 3D-reconstruction speed within a certain
reconstruction quality.

2. Related Work
2.1. 3D Reconstruction Methods
2.1.1. Structure from Motion

In the sparse point-cloud reconstruction stage, Structure from Motion (SFM) is the
core algorithm with the primary goal of recovering the internal and external parameters of
the camera. SFM is mainly classified into incremental SFM, global SFM and hybrid SFM
methods [1–3]. Incremental SFM [4–7] constantly uses bundle adjustment [8–10] to correct
camera pose and sparse point clouds. Kneip et al. [11] proposed total SFM reconstruction
using the P3P algorithm and RANSAC to reject outliers and reduce drift errors. Since bundle
adjustment is the most time-consuming part of incremental SFM, Wu et al. [12] proposed a
GPU-based bundle adjustment that reduces the bundle adjustment time. Eriksson et al. [13]
used a distributed approach to chunk the camera pose, and both methods were able to
perform the bundle adjustment task in a highly parallel manner.

Compared to incremental SFM, which performs bundle adjustment multiple times,
global SFM [14–24] performs only one bundle adjustment after computing all camera poses.
In order to calculate the global rotation matrix of all cameras, the global SFM algorithm
first calculates the global rotation matrix. Afterward, it calculates the global translation
vector for all cameras, and finally it determines the global position of the camera center
based on global rotation and translation. Crandall et al. [25] developed a method to reject
mismatches using Markov random fields.

Cui et al. [26] introduced auxiliary information to speed up the sparse point-cloud
reconstruction process. Sweeney et al. [27] proposed using an optimized camera map to
accelerate the global SFM process. The key to global SFM is the computational work per-
formed to determine the global camera poses. Sweeney et al. [24] proposed an optimization
method based on the Hessian matrix, with the time and space complexity of cubic and
square levels determined for the number of input images.

Hybrid SFM [28] combines the advantages of incremental SFM and global SFM.
Zhu et al. [29] proposed a camera map node-clustering algorithm to generate overlap-
ping camera clusters. This algorithm performs local incremental SFM reconstruction of
relative camera poses applied to the global pose-averaging framework [30]. However,
this method can lose camera and feature-point correspondences. Zhu et al. [31] divided
all images into multiple partitions, which allow for parallel local camera pose computa-
tion because these partitions retain strong data associations. This distributed framework
significantly improves the efficiency and robustness of extensive scene reconstruction.

2.1.2. Multi-View Stereo

Multi-view stereo (MVS) algorithms [32–35] can be classified into four categories at the
dense point-cloud reconstruction stage: feature-point-based MVS, voxel-based MVS, depth-
map merging-based MVS and deep-learning-based MVS. Feature-point-based MVS [36–38]
uses different point-cloud evolution strategies for dense reconstruction and is limited by its
incremental, iterative nature and the difficulty of parallelizing it. Habbecke et al. [39] recon-
structed sparse point clouds and then extracted dense points from the quasi-dense parallax
maps they constructed, using this method to overcome the feature-point sparsity problem.

Goesele [40] proposed an MVS method that utilizes local and global image infor-
mation. Furukawa [41] built on these previous methods by proposing a faceted slice-
based MVS method that starts from the feature points of a sparse point cloud and itera-

Sensors 2023, 23, 2377 4 of 30

tively extends iterations to remove false matches according to photometric and geometric
visibility constraints.

Voxel-based MVS [42–44] discretizes the 3D space into a regular cubic grid and de-
termines whether each voxel lies on the surface of a 3D object to represent the 3D object.
Seitz [42] proposed a voxel coloring-based method to estimate the surface, searching the
entire 3D space through the depth traversal to identify blocks of voxels with specific col-
ors. Vogiatzis [43] used the graph cut optimal algorithm to estimate the minor surface
containing the maximum volume, which is limited by the voxel discretization resolution.

The depth-map merging-based MVS [45–49] uses depth images to represent 3D scenes,
allowing the processing to be parallelized and concentrated on one reference image and
a few neighboring images in one operation. By relieving the computational load on a
single computational node, large-scale reconstruction of 3D scenes can be performed.
Schonberger [50] applied a patch-window-matching algorithm based on normalized cross-
correlation (NCC) scores to generate depth maps. Merrell [51] used a computationally
less expensive algorithm to quickly generate depth maps with considerable noise and
overlapping regions and to obtain an overall 3D point cloud with visibility constraints.

Researchers have recently started experimenting with deep-learning methods to solve
the MVS depth-estimation problem. MVSNet [52] first used an end-to-end neural network
to impute the depth map, which somewhat solved the scene size limitation. The network
transformed the neighborhood image under a single-strain transformation to the reference
view, constructed the cost cube and later applied a 3D UNet to impute the depth values.
Yu [53] proposed Fast-MVSNet, which relies on sparse cost cubes and Gaussian Newton
layers to improve the speed of MVSNet.

All the above networks used the DTU [54] dataset for training. However, in order to be
able to apply the network to practical applications, some other researchers have attempted
to construct loss functions using projection consistency errors to train the network in an
unsupervised way, such as Unsupervised MVSNet [55] and MVS2 [56]. Some networks
add semantic information and data augmentation processes to enhance the accuracy, such
as M3VSNet [57] and JDACS-MS [58].

2.1.3. Mesh Optimization

Researchers have studied ways to simplify 3D mesh models for large-scale scenes,
such as overcoming problems associated with data-volume redundancy. Garland et al. [59]
proposed a mesh-simplification method based on a quadratic error metric to obtain a
simplified 3D mesh model. This method was based on constructing a quadratic error
matrix to represent the errors of vertices and surfaces. Hoppe et al. [60] improved the above
method by optimizing the storage, computational efficiency and model quality.

Williams et al. [61] developed a perceptual model for edge-folding operations con-
sidering texture-coordinate deviation, illumination contrast and dynamic illumination.
Lindstrom et al. [62] proposed an image-driven 3D mesh-simplification method that uses
texture images to calculate the cost of edge folding.

Wang et al. [63] proposed a 3D mesh-simplification method based on curvature vari-
ation by introducing the average curvature of vertices and the curvature variation of the
triangular surface piece where the vertex is located as the folding edge cost. An et al. [64]
presented a 3D mesh-simplification method based on multi-view image saliency, which
considers the vertices’ color information and detail features to ensure the minimum loss of
vertex saliency after each simplification operation. Jiang et al. [65] introduced the distance
error as an additional metric, examining the effects of both curvature and distance error on
the detail retention of simplified models.

In the 3D-reconstruction process, there are inevitably various noises and perturbations
in the mesh model, and many narrow triangular facets may exist. Therefore, it is necessary
to smooth the mesh to eliminate mesh surface noise and improve the quality of the trian-
gular facets while maintaining the triangular mesh characteristics. Taubin [66] proposed
a weighted Laplacian smoothing method by adding a weighting factor to the Laplacian

Sensors 2023, 23, 2377 5 of 30

operator, which controls the deformation of the model to an extent. Desbrun [67] proposed
the mean curvature method by adding a weighting factor along the vertices of the surface.

Fleishman [68] extended bilateral filtering from 2D images to triangular meshes with
positive results. Bajbaj [69] improved the smoothness using the bilateral filtering technique.
Hildebrandt [70] not only preserved the detailed feature edges of the model but also
preserved and recovered the nonlinear surface features of the model by specifying the
mean curvature. Kai [71] applied bilateral filtering to the surface normals and achieved
smoothness while maintaining the detailed features of the model. However, dual filtration
still caused the model to experience shrinkage effects.

2.2. 3D Reconstruction Libraries and Software

Currently, several open-source libraries and systems are capable of completing 3D
reconstructions of parts of pipelines or entire pipelines. VisualSFM [72] is a GUI appli-
cation that implements the SFM algorithm for sparse point-cloud reconstruction. Using
the output data of this program with libraries, such as MVE and openMVS, subsequent
3D-reconstruction tasks can be completed. Furukama proposed the patch-based MVS
(PMVS) [41] algorithm and created the open-source PMVS library, which uses the sparse
reconstruction results to diffuse them around the space and produce a directed point cloud
through three steps: matching, expansion and filtering.

Clustering views for MVS (CMVS) [73] is an improved version of PMVS that clusters
images to reduce the amount of data. MVE [74] is an open-source library for the end-to-
end pipeline implementation of image-based geometric reconstruction. It has SFM, MVS
and surface reconstruction capabilities. Since MVE lacks texture-reconstruction capabilities,
it can be used in conjunction with MVS-Texturing [75], the first comprehensive texture
framework for large-scale, real-world 3D reconstruction as proposed by Waechter.

OpenMVG [76] is able to conduct the entire sparse point-cloud reconstruction phase,
from feature detection and matching to recovering structures from motion. OpenMVS [77]
is another well-known open-source library for 3D reconstruction that works perfectly with
OpenMVG. Its main features are dense point-cloud reconstruction, surface reconstruction,
surface refinement and texture mapping. OpenMVS inputs are sparse point clouds and
camera positions, and its outputs are 3D meshes with textures. Colmap [78] is a general-
purpose SFM with graphical and command-line interfaces and an MVS pipeline, whose
MVS part needs to be implemented based on CUDA.

In addition to 3D-reconstruction capabilities, many commercial 3D-reconstruction
software packages include photogrammetry capabilities for professional use. Photo-
scan [79] is software that automatically generates high-quality 3D models based on images.
Pix4Dmapper is standard 3D-reconstruction and aerial-photogrammetry software that
includes point-cloud reconstruction, 3D-mesh reconstruction, elevation-map generation
and other functions. In addition, Pix4Dmapper developed mobile applications that allow
the use of drones as mapping tools.

These applications allow control over of the drone’s flight path to ensure sufficient
overlap between images for photogrammetric processing. ContextCapture is powerful,
professional 3D realistic modeling software with clustering capabilities that enables mul-
tiple machines to collaborate and process data in parallel. The above software systems
have robust 3D reconstruction, tilt photography, measurement, and mapping functions.
However, the software’s operation is relatively complex and more suitable for professional
use, and the software is expensive.

3. System Design
3.1. Overall Structure

To solve the problems in large-scale scene 3D reconstruction, we propose four methods
to improve the speed and quality of large-scale 3D reconstruction and integrate these
algorithms into our system. Figure 1 shows the 3D-reconstruction pipeline of our system.

Sensors 2023, 23, 2377 6 of 30

Figure 1. Pipeline of the proposed system.

The data on the input side of the system are images taken by unmanned aerial vehicles
(UAVs) from large-scale scenes. In the large-scale-scene sparse point-cloud reconstruction
module, the time complexity of image matching is optimized to be approximately linear
through the global navigation satellite system (GNSS) neighborhood computing step,
which initially filters each image’s neighbors based on spatial location gathered from GPS
information. Cluster-based camera graph structure clustering (Section 3.2) and cluster-
based global camera pose registration (Section 3.3) are utilized to obtain the global camera
pose and perform triangulation and optional bundle adjustment to obtain a sparse point
cloud for large-scale scenes.

In the dense point-cloud reconstruction module for large-scale scenes, the two-stage
neighborhood image selection method is adopted to ensure that the subsets of neighbor-
hood images are uniformly distributed and that the image content is representative. In
addition, GPU parallel depth estimation based on patch matching (Section 3.4) is used to
estimate the depth of all views quickly. Finally, the depth map fusion method generates
dense point clouds of large-scale scenes.

Our large-scale mesh reconstruction and optimization module obtains the mesh model
by using point cloud tetrahedron and surface reconstruction methods, followed by a
cluster-based mesh-optimization method for geometric detail recovery (Section 3.5), which
produces a mesh model with low redundancy and recovers details from a large-scale
scene. We go through several steps in the large-scale-scene texture reconstruction module,
including view selection optimization, global color adjustment, global seam processing, and
texture atlas generation. As a final step, the system produces a mesh model with texture.

3.2. Cluster-Based Camera Graph Structure Clustering

The required number of camera poses grows proportionally with the amount of
photos used as input. If all camera poses are directly calculated, a single computing
node’s resource limit will be exceeded, and the execution will fail. Additionally, due to
the constraints of collecting large-scale-scene data, some cameras have inadequate image-
matching relationships, leading to the elimination of these cameras as external points and
to a subsequent drop in the quality of the 3D reconstructed models, or to the emergence
of holes and other issues. We present a camera graph clustering method based on graph
partitioning that clusters all input cameras into multiple camera subsets based on their
matching relationship.

Each subset consists of cameras from the same category, ensuring a low correlation
across subsets and a high correlation within subsets. Separate camera categories conduct
local camera pose estimations in parallel on different cluster computing nodes, ensuring
the quality and efficiency of the reconstruction.

3.2.1. Normalized Cut Algorithm

The fundamental rule of camera graph partitioning for large-scale-scene 3D recon-
struction is that the number of cameras in each cluster is comparable and controllable. We
present a normalized partitioning to handle the problem of clustering camera graph nodes

Sensors 2023, 23, 2377 7 of 30

in large-scale scenes. The approach takes into account the partition value and the node’s
degree of connectedness, and a normalized cut [80] function is built:

Ncut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(B, A)

assoc(B, V)
, (1)

where cut(A, B) = Σu∈A,v∈Bw(u, v) is the partition value defined by the minimum cut
algorithm and assoc(A, V) = Σut∈A,tev w(u, t) is the sum of the connecting edge weights
of node A and every other node in the camera network structure. Using the ratio of
cut(A, B) to the degree of connection before cut assoc(A, V) as the standard of normalized
segmentation can prevent a small number of points from being cut during the minimum
partitioning. If a single node is cut to create a subgraph, the ratio equals 1, but it is not the
minimum value of the normalized cut value. Consequently, a normalized cut can alleviate
the issue that the minimal partitioning is not consistent within subgraphs and is sensitive
to external points.

3.2.2. Camera Graph Division

After extracting and matching the image feature points of a large-scale-scene image set,
the matching relationship between each image may be determined, allowing the camera
graph structure G = (V, E) to be formed, where each vertex in the set V represents an image
or camera position. The edge connecting two vertices in set E demonstrates a matching
relationship between two photos. In this study, the number of matching feature points
between two pictures is represented by the edge weight w(i, j) = |Mij|, where i and j
represent two nodes.

Using all the nodes, edges and edge weights in the camera graph G as input, the
normalized cut algorithm may break the camera graph into two subgraphs. Consequently,
the original camera graph can be subdivided into k subgraphs by conducting normalized
segmentation iteratively on the subgraphs. If there are an excessive number of subgraph
nodes, the task of computing the camera’s position will surpass the resource limit of
a single computing node. Conversely, if there are insufficient subgraph nodes, more
image-matching associations will be severed, and more compute nodes would lose data
transmission. In light of the use of computational resources and the integrity of the image-
matching connection, the segmented subgraph must satisfy the following conditions:

∀Gi ∈ Gc, |Vi| ≤ Nlimit, (2)

where Gc represents the set of all subgraphs after partitioning, Gi and Gj stand for the
subgraph, |Vi|, |Vj| represents the number of vertices in the subgraph, and Nlimit represents
the threshold value of the number of cameras in the subgraph.

Our strategy can fully exploit the benefits of clusters. If the cluster contains n compute
nodes, the original camera graph should be partitioned into at least n subgraphs, and then
the normalized cut process should be repeated until the partition requirement is satisfied.
The partitioning procedure resembles a tree structure. The normalized cut algorithm
guarantees that the number of nodes in each layer is comparable. Each partition selects the
subgraph with the greatest number of nodes from the root node.

The original camera graph G = (V, E) can be partitioned into numerous subgraphs
G based on the cluster resources and the number of input images Gi using camera graph
partition. All subparagraphs comprise subparagraph set Gc. Consequently, the existing
relationship is ∀Gi, Gj ∈ Gc, Gi ∩ Gj = ∅.

3.2.3. Camera Graph Expansion

The original camera graph is separated into many camera subgraphs once the camera
graph is divided and no coincidence is found between them. However, overlapping
cameras between subgraphs are required to perform the future 3D-reconstruction task, and
the subgraphs after the camera graph partition should be enlarged accordingly. Specifically,

Sensors 2023, 23, 2377 8 of 30

each subgraph does not have to share points with all other subgraphs. It is worth noting
that the coincidence ratio between subgraphs is guaranteed to allow each subgraph to
be fused.

We define the camera block graph structure Gseg = (Vc, Ec), where each node repre-
sents a subgraph and the edges between nodes indicate the cut edge set between subgraphs.
The weight of an edge is the sum of the weights cut between subgraphs divided by the total
number of nodes in the two subgraphs. In a block graph, the weight of the edge connecting
subgraphs A and B can be written as:

w(A, B) =
cut(A, B)
|VA|+ |VB|

, (3)

where cut(A, B) denotes the division between subgraphs A and B. |VA| and |VB|indicate
the number of nodes in subgraphs A and B, respectively.

In the camera graph expansion, excessive redundancy will develop if each subgraph
restores the cut edges between all its surrounding subgraphs. In addition, low-weighted
matching relationships are susceptible to wrong camera postures, resulting in faulty camera
posture registration. Consequently, based on the concept of a maximum spanning tree, we
build the maximum spanning tree of the camera block diagram and extend the camera
diagram based on the obtained edges.

First, a weighted undirected graph adjacency matrix that includes all vertices and
edges from the original camera graph, i.e., all image-matching associations, is maintained.
The elements in the adjacency matrix’s row i and column j denote the number of image-
matching feature points for images i and j, where there is a value of 0 if no matching
relationship occurs. To satisfy the query requirements with constant time complexity, save
the adjacency matrix in a hash table.

Secondly, based on the information of the adjacency matrix and the vertex labels in the
subgraph, it is simple to obtain all the edges that have been cut as a result of the normalized
splitting and apply the inverted approach to rank all the cut edges from a heavy to light
weight. By querying the adjacency matrix in pairs using the sequence numbers of all
nodes between subgraphs A and B, it is possible to determine the cut(A, B) values between
subgraphs.

Finally, the ratio of cut(A, B) of subgraphs A and B to the total number of nodes in
both subgraphs and |VA|+ |VB| is utilized as the edge weight of the camera block diagram,
that is, w(A, B) = cut(A,B)

|vA |+|vB |
, ensuring that edges with higher weights have a higher quality

image-matching relationship.
Camera graph expansion does not require the restoration of all severed edges. In

addition, there may be numerous subgraph extensions whose stop condition is that all the
severed edges are restored, resulting in a reduced overall expansion ratio and insufficient
matching relationships. Therefore, we define the extension condition as follows:

Σ
∣∣Vexpansion

∣∣
Σ|Vi|

≥ δratio, (4)

where
∣∣Vexpansion

∣∣ represents the number of new vertices that contribute to the expansion,
and |Vi| represents the number of images present before the expansion of the subgraph.
δratio represents the expansion scale, with values typically ranging from 0.5 to 0.7. Expansion
stops when the scale of expansion vertices is equal to or greater than that scale, or when all
severed edges between subgraphs have been restored.

3.3. Cluster-Based Global Camera Pose Registration

The registration of camera posture is a vital stage in motion recovery structure tech-
nology. The precision of the camera pose has a direct effect on the precision of the recon-
struction of 3D sparse point clouds. Since the registration of camera poses necessitates
simultaneous computation of all camera rotation matrices and translation vectors, it is

Sensors 2023, 23, 2377 9 of 30

time-consuming and frequently exceeds the memory limit of computing nodes. This sec-
tion proposes a quick and precise camera pose averaging approach for combining and
optimizing the camera pose of each subgraph.

Similar to [81], a camera pose fusion method based on similarity transformation is
employed to unify the local camera poses of the preceding subgraphs in order to generate a
global camera pose coexisting in the same world coordinate system. The following function
converts between the two camera poses:[

Rj Tj
0T 1

]
=

[
rij tij
0T 1

][
Ri Ti
0T 1

]
, (5)

where Ri and Ti represent the rotation and translation of camera i. Rj and Tj represent the
rotation and translation of camera j. The relative rotation and translation between cameras
i and j are denoted by rij and tij, respectively. Rj and Tj can be inferred to be:

Rj = rijRi, (6)

Tj = rijTi + tij. (7)

These calculations demonstrate the conversion between two camera poses. The relative
rotation and translation of two cameras can be determined based on their camera poses in
their respective world coordinate systems. Using the similarity transformation method,
global rotation and global shift fusion are performed, and the combined camera poses are
optimized using nonlinear optimization to obtain correct global camera poses.

3.3.1. Global Rotation Registration

After camera graph expansion, the overlapping camera set created by two camera sets
Ci and Cj is denoted as {Crpt|Crpt = Ci ∩ Cj}. Initially, using the similarity transformation
approach, the relative rotation of each camera in the camera set is computed. The global
rotation of the coincidence camera in Crpt is therefore fixed, and the relative rotation of the
camera in camera set cj, with respect to all other cameras, is utilized. The final formula
for calculating the global rotation of all cameras in Cj in the coordinate system of Ci is as
follows:

∀cj ∈ Cj, R′j = rrel R′rpt, (8)

where R′j represents the camera rotation of the cameras in camera sets Cj and Ci following
the fusing of their coordinate systems. rrel represents the rotational relationship between
the coincident camera Crpt and the other cameras in the set Cj. Likewise, R′rpt represents
the camera rotation of the corresponding camera Crpt in set Cj.

In our method, the rotation fusion of two camera sets, Ci and Cj, is accomplished
by securing a coincident camera, Crpt. Consequently, it is necessary to select the most
precise coincident camera as the reference camera for the camera rotation fusion of the two
camera collections. Since we compute all camera rotations belonging to the camera set,
with the exception being the reference camera, some coincident cameras may be calculated
several times. These constantly calculated camera rotations serve as the evaluation criteria
for inaccuracies. We set R′j as the outcome of the calculation for the rotation of coincident
cameras, excluding the reference camera.

The rotation of that coinciding camera in camera set Ci is set to Ri, and the error is
determined as the Euclidean distance between R′j and the Ri matrix. Through iterative
calculation, a specific reference camera is chosen to minimize the sum of errors between
the rotations of all coincident cameras and the initial rotation. Theoretically, we believe
the fixed camera to be the most accurate reference camera, and this camera serves as the
reference for global rotation and the fusion of the two camera sets.

Sensors 2023, 23, 2377 10 of 30

3.3.2. Global Rotation Registration

Each camera subgraph performs a local estimation of the camera’s position, resulting
in translations with varying translation scales. The translation scale has no effect on the
global rotational fusion problem described in Section 3.3.1. Nonetheless, the fusion of
global translations necessitates the computation of the scale value of the local translation
vector in each subgraph. Using the similarity transformation approach, the relationship
between the translation vectors of two cameras belonging to a collection of coincident
cameras in the same coordinate system can be determined.

T2 = r12T1 + t12, (9)

T′2 = r12T′1 + t′12, (10)

where T1 and T2 are the camera 1 and 2 translation amounts from subgraph 1, and T′2 and
T′1 are the camera 1 and 2 translation amounts from subgraph 2. t12 and t′12 represent the
relative translation between camera 1 and camera 2 in subgraph 1 and 2, respectively. The
preceding Equations (9) and (10) describe the translation of two identical cameras in two
distinct coordinate systems, and their relative rotation is denoted by r12.

All coincident cameras are grouped into n(n−1)
2 camera pairs in Crpt, where n = |Crpt|.

Each camera pair’s scale is computed as

∣∣∣t′ij∣∣∣
|tij| . Then, based on the following formula,

the precise scale of the two cameras’ coordinates is obtained:

λt =
∑i,j∈Crpt

∣∣∣t′ij∣∣∣
|tij|

|Crpt|
. (11)

We directly utilize the reference camera from the global rotation fusion task for the
global translation fusion. The reference camera is Ta in the current coordinate system and
T′a in the target coordinate system. Tb and T′b in the current and target coordinate systems,
respectively, represent the camera to be fused. rab indicates the rotational relationship
between the reference camera and the other cameras. The pertinent formula for the camera
translation fusion method is as follows:

tab = Tb − rabTa, (12)

T′b = rabT′a + λttab. (13)

First, using Equation (12), we determine the relative shift tab between the Tb of the
camera to be processed and the Ta of the reference camera. Then, the base camera trans-
lation Ta is transformed to the target coordinate system translation T′a. Finally, the global
translation vector T′b in the target coordinate system is computed using Equation (13) and
the obtained translation scale λt.

This section discussed the method of fusing two camera subgraphs. Our method does
not necessitate overlapping subgraphs but rather ensures that, for each merging, each new
subgraph has a coincidence relationship with the merged camera cluster.

3.3.3. Optimization of Camera Poses

If the coarse precision global camera pose information is directly entered into the sub-
sequent reconstruction module following the global camera pose fusion, the reconstruction
details will be significantly flawed. Therefore, we optimize all camera poses in the same
global coordinate system in order to obtain more precise and reliable global camera poses.

The relative rotation and relative shift obtained by performing local camera pose
estimation on each subgraph are saved and recorded as {Rrel} and {Trel}, respectively.

Sensors 2023, 23, 2377 11 of 30

The global rotation and global shift set of all cameras after global camera pose fusion are
recorded as γ = {Ri}, τ = {Ti}. The following optimization formulas are defined:

arg min
γ

∑
rij∈Rrel

dR
(

rij, RjRT
i

)p
, (14)

arg min
τ

∑
tij∈Trel

dT(tij, Tj − RjRT
i Ti
)p, (15)

where dR denotes the angular distance, dT denotes the Euclidean distance, and P takes a
value of 2 to denote the l2 paradigm.

Due to the estimation of the relative rotation and translation based on the local camera
location of each subgraph, the relationship between subgraphs can be ensured to have the
benefit of normalized segmentation. In other words, the blocks are highly interconnected.
Taking these close correlations {Rrel} and {Trel} as inputs not only eliminates the need
to calculate the relationships between all camera poses but also optimizes the overall
global camera pose. The global solid camera pose is derived by optimizing the above
formula iteratively. The subsequent reconstruction pipeline generates sparse point clouds
by triangulation and obtains more accurate camera pose and sparse point cloud results
through bundle adjustment.

3.4. GPU Parallel Depth Estimation Based on Patch Matching

During the dense reconstruction phase of the point cloud, we may still utilize the
method outlined previously to compute the smaller dense reconstruction tasks in parallel
on each cluster node. The dense point-cloud reconstruction method using depth map
fusion is ideally suited for GPU-based parallel computation. Therefore, in this part we
propose a GPU parallel fast depth-estimation method for a single computing node, which
completely uses the computing resources of a single node and reduces the reconstruction
time of dense point clouds on a single computing node.

3.4.1. Random Initialization of the Depth Normal Vector

Our first step is to randomly establish the normal depth vector, whose primary activity
is to randomly initialize a collection of possible values for each pixel point in the input
reference picture IR. Due to the localization of the continuous variation of the image’s
photometric information, the problem of estimating the depth value Z is transformed into
the problem of estimating the support plane f , which is described as follows:

Z = − d
nTK−1

i pi
, (16)

where n is the normal vector supporting the plane and d is the distance between the center
of the plane O and the center of the reference camera CR. It is possible to translate the pixel
coordinates pi = [u, v, 1]T in the ith image to the 3D point Xi in the ith camera coordinate
system, and its relationship to the depth value Z is given by Xi = ZK−1

i pi.
Typically, the depth of a camera-captured image varies nonlinearly. In particular,

the depth distribution is dense around the light’s center and sparse the more distant it is
from the camera. The depth value conforms to the features of a dense distribution when
close and a sparse distribution when far away. The values for parallax and depth satisfy
the following formulas:

Z =
B · F
disp

. (17)

B is the camera baseline distance, and F is the focal length. disp is the parallax value,
which satisfies the uniform distribution of U(dispmin, dispmax). dispmin and dispmax use
sparse point clustering S estimates while expanding the value space to increase the range

Sensors 2023, 23, 2377 12 of 30

of random initialization values for d and to ensure coverage of the entire scene depth range
where α is double:

d ispmin = max
(

B · F
maxX∈S Z

− α

(
B · F

minX∈S Z
− B · F

maxX∈S Z

)
, 0
)

, (18)

d ispmax =
B · F

minX∈S Z
+ α

(
B · F

minX∈S Z
− B · F

maxX∈S Z

)
). (19)

This changes the problem of depth estimation into one of planar parameter estimation.
The random initialization method is used as described above to provide a fair distribution
of normal vector n, which is the distance d between the center of the camera and the center
of the supporting plane.

3.4.2. Cost Assessment Based on Patch Matching

Next, we analyze possible solutions using an enhanced patch-matching method. A
square neighborhood pixel set is defined with the pixel p as the center and the radius r as
the patch W. Assuming that all of the pixels in a patch block are on the same support plane
f , the homography rule is satisfied between the patch blocks of two adjacent images.

Homography is used to map each pixel pR,j in the patch block of the reference image
to the matching point qij = Hi(pRj) in the neighborhood image. This part does not
directly calculate the feature difference between two adjacent pixels in order to improve the
robustness of the similarity calculation. Instead, to calculate the similarity of patch blocks,
the NCC approach is used [50]. Pixels pR,j and qij should correspond to the same position
X in the 3D scene if the proposed solution is true. Due to the local nature of the image,
the similarity between patches should be strong.

The similarity score computed by NCC is essentially the deformed correlation coeffi-
cient. Here, we specify [0, 1] as the value range. To reduce the influence of extreme values,
separate weights are provided for each pixel of patch block W based on its physical distance
from the central pixel and the difference in texture information. This section measures the
correlation between pixel b and the central pixel p in patch block W using bilateral weights:

wb = exp

(
−||I(b)− I(p)||

2σ2
c

− ||b− p||
2σ2

g

)
. (20)

As the NCC approach solely evaluates photometric data, it is significantly affected by
variations in local illumination. To tackle the problem of similarity measurement failure
caused by the change in brightness information resulting from visual angle translation, the
picture gradient information item is added to the similarity measurement algorithm.

m f (pi) = m f (pi, IR, Ii) + m f (pi, ∆IR, ∆Ii). (21)

In this section, we estimated the confidence of candidate solutions using the modified
NCC technique, which is simple for quick parallel calculations and is stable for measuring
the benefits and drawbacks of candidate solutions.

3.4.3. GPU Parallel Depth Map Generation and Optimization

The GPU architecture is an infrastructure that is more suited for multi-core parallel
computing, since it has a large number of cores and can handle the simultaneous process-
ing of a huge amount of data as compared to the CPU architecture’s strong scheduling
management and coordination capability. Numerous techniques [82–84] have adopted
the propagation mode of a red-and-black checkerboard grid by partitioning the image
pixels into groups via a red-and-black checkerboard, and sampling the adjacent pixels
through diffusion.

To limit the influence of extreme values and increase the method’s robustness, the
current pixel solution is built using k-candidate solutions with the smallest cost loss. In

Sensors 2023, 23, 2377 13 of 30

the adaptive neighborhood, k candidate solutions with the lowest cost loss are chosen for
each pixel point p. Using the cost evaluation method in Section 3.4.2, the cost loss of the
k candidate solutions in the n neighboring view angles is recalculated to yield the loss
matrix M.

It can be assumed that a particular view angle of pixel p does not satisfy the photo-
metric consistency assumption due the presence of object occlusion and similar conditions.
In such a scenario, the cost losses of k potential options become considerable. In contrast,
there will be at least one candidate solution with a minor cost loss from an excellent neigh-
borhood perspective, and the cost loss from a good neighborhood perspective will decrease
gradually as the number of iterations increases. The permissible cost’s upper bound for
iteration t is defined as follows:

TG(t) = TG0 · e−
t2
ψ , (22)

where TG0 is the upper bound of the initial cost and ψ is a constant. The threshold TB
is defined as the greatest cost loss and the cost loss mij is the i-th potential solution from
the j-th perspective. If mij < TG(t) is matched, the i-th candidate solution is a superior
solution from the j-th perspective, and it is added to the set SG(j). If mij > TB is matched,
the i-th candidate solution is added to the set SB(j) as an incorrect solution at the j-th view.
If the number of better solutions of the j-th view is greater than n1 and fewer than n2, we
consider the j-th view to be the better neighborhood image of the pixel in the t-th iteration
and add it to the neighborhood image set St of the pixel.

Despite the fact that photos with uneven brightness are eliminated by setting the
threshold TB, each neighborhood image will contribute varied weights to the results due to
noise, scale and other variables. The following weights are applied to each neighborhood
image, given that β is a constant.

w(Ij) =
1

|SG(j)| ∑
mij∈SG(j)

e
−

m2
ij

2β2 , Ij ∈ St. (23)

Due to issues, such as occlusion, weak texture and lighting conditions, it is impossible
to ensure the correctness of the depth map estimate in natural scenes when solely using
the photometric consistency assumption. In light of this, we introduce the geometric
consistency assumption while maintaining the photometric consistency assumption. It
is believed that the 3D point recovered using the depth information of the pixel p in the
reference image is identical to the 3D point restored using the depth information of the
corresponding point p′ in the neighboring image.

We employ the reprojection error metric to satisfy the degree of geometric consistency
constraint, assuming the depth of the pixel p equals DR(p). The formula for the point qj
corresponding to the j-th neighborhood image is as follows:

qj = PjRT
R(DR(p) · p − tR). (24)

To obtain a pixel p′j, the pixel qj projection that refers the image back in the same
manner based on its depth value Di(qj) is:

p′j = PRRT
j (Di(qj) · qj − tj). (25)

The definition of the reprojection error eij of the i-th candidate solution at the j-th
viewing angle is:

eij = min (
∥∥∥p′j − p

∥∥∥, δ). (26)

In order to improve the robustness of the reprojection error and tackle the excessive
error generated by masking and other factors, it is necessary to increase the error resis-

Sensors 2023, 23, 2377 14 of 30

tance. We select the ideal solution from the candidate solutions based on the photometric
geometric consistency cost ci, where µ is a constant.

ci =
∑N

j=1 w̃(Ij) · (mij + µ · eij)

∑N
j=1 w̃(Ij)

. (27)

From the k candidate solutions, the average value of the n candidate solutions with
the lowest cost of photometric geometric consistency is chosen as the new solution. During
the entire photometric geometric consistency-solving procedure, only the current pixel and
the candidate solution pixel are utilized. The parallel calculation at the pixel level can be
performed by combining the red-and-black checkerboard sampling method described in
Section 3.4.1.

Using the random initialization method described in Section 3.4.1, we reintroduce a set
of random solutions srnd = (nrnd, drnd) for each pixel. The random solution is independent
of any prior knowledge. It is chosen with equal probability over the whole solution space,
essentially preventing the approach from settling on the optimal local answer. Using the
perturbation method, we construct another set of perturbed solutions sprb = (nprb, dprb).
The disturbance solution is dependent on the now-achieved ideal solution, and the result is
refined by searching in close proximity to the optimal solution.

Then, we utilize the Eulerian angle to represent the rotation disturbance of the nor-
mal vector and uniformly sample the Eulerian angle within [−0.5ϕ, 0.5ϕ] to produce the
disturbed normal vector nprb = Rprb · n. Finally, using the random solution, the perturbed
solution and the current solution, we recombine them into nine new solutions as follows:

(n, d), (n, dprb), (n, drnd), (nprb, d), (nprb, dprb), (nprb, drnd), (nrnd, d), (nrnd, dprb), (nrnd, drnd). (28)

The preceding nine solutions are candidate solutions chosen in Section 3.4.2, and
the k value is set to nine. The multi-candidate solution joint depth-estimation method is
re-executed, and the final solution provided is considered the method’s optimal solution.

3.5. Cluster-Based Mesh Optimization for Geometric Detail Recovery

We rebuilt large-scale 3D mesh models using a mesh generation method [85] based
on Delaunay point cloud tetrahedralization. Due to redundant data, an uneven structure,
a high level of spatial noise and imprecise mesh details, this section provides a mesh-
optimization strategy for large-scale mesh scenarios based on cluster geometry detail
recovery. The method consists of three main steps: the first step is mesh simplification,
which focuses on maintaining the model’s detailed features while minimizing the mesh
model’s redundancy.

The second step is mesh smoothing. To effectively eliminate the noise and outliers of
the mesh, we propose a mesh-smoothing homogenization method based on the second-
order umbrella operator, which makes the mesh regular and homogeneous. The last step is
mesh-detail recovery. As a result of combining the image color-consistency term and the
Laplace smoothing term, we construct an energy function that further removes noise and
outliers while recovering more detailed features of the mesh.

3.5.1. Mesh Simplification

To ensure that the generated mesh model meets the accuracy requirements, the re-
construction process as a whole uses a very high resolution to retain as much of the input
information as possible. This causes the data amount of the generated mesh model to
increase rapidly as the reconstruction range expands. Nonetheless, a significant number of
redundant meshes will cause the subsequent texture reconstruction to take an excessive
amount of time and memory. On the basis of maintaining the accuracy and realism of the
grid model, the complex mesh model will be replaced with a reduced mesh model, thereby
enhancing the model’s operational efficiency.

Sensors 2023, 23, 2377 15 of 30

The majority of mesh simplification algorithms [59–62] not only lower the amount of
model data, but also fail to preserve the model’s detailed features, resulting in a reduction
in the mesh model’s realism. Consequently, the complexity of different sections of the mesh
model must be taken into account, and varying degrees of simplification are applied based
on the region’s characteristics in order to preserve the model’s details.

Inspired by Jiang et al. [65], we employ a feature-preserving-based mesh-simplification
method, which differs from the QEM mesh-simplification method in that the semantic
information of the mesh vertices, the vertex first-order neighborhood triangular patch area,
the approximate vertex curvature, the average shape of the vertex first-order neighborhood
triangular patch, and the position of the vertex pair in the model are introduced to enhance
the new vertex replacement cost calculation method. Simultaneously, the replacement cost
of new vertex pairs located on the local detail-rich surface of the model and the vertex pairs
located on unrelated objects is increased, thereby preventing these vertex pairs from being
selected as simplified objects and preserving the local characteristics and authenticity of
the mesh model.

3.5.2. Mesh Smoothing

Although the mesh-smoothing method based on Laplace’s theorem can reduce the
roughness of the model surface, make the mesh model surface smooth and effectively
reduce the impact of noise points on the model quality of dense point-cloud data, there is a
more effective way to reduce the impact of noise points on the model quality. However,
after multiple iterations of this procedure, the model will become more visibly deformed,
and the mesh model will decrease, diminishing the realism of the object.

We present an approach for smoothing homogenization based on a second-order
umbrella operator. The fundamental idea is to modify the coordinates of the vertices by
referencing the position adjustment of vertices in the first-order neighborhood to minimize
the model distortion that results from the adjustment of vertex coordinates. The movement
direction of the vertex is closer to the projected gradient along the vertex’s corresponding
tangent plane, resulting in a more regular and uniform triangular patch.

In the mesh-smoothing approach, the Laplacian smoothing algorithm has a high
operation efficiency, and the smoothing process applies the umbrella operator to the
mesh iterative vertex movement. The computation procedure can be expressed by the
following equation:

∂S
∂t

= ∇2S, (29)

where ∂S is the input initial mesh model to be processed and ∇2 is the iteratively moving
vertex constraint term. The iterative process, i.e., the Laplace operator, can be stated using
the following equation:

St+1 = St + λ∇2St, (30)

where t indicates the number of smoothing rounds, St represents the mesh model after t
rounds of smoothing, and λ represents the radical smoothing degree. A large value suggests
a more extreme mesh-smoothing degree. As demonstrated in the following equation, the
3D Cartesian coordinates of each mesh vertex are converted into the appropriate Laplace
coordinates U(v).

U(v) =
1

∑ wk
∑ wkvk − v kεNV1(v), (31)

where v represents the 3D Cartesian coordinates of the mesh model’s vertices and U(v)
indicates their corresponding Laplace coordinates. Vk indicates a vertex in the vertex’s first-
order neighborhood. NV1(v) is the set of all vertices in vertex v’s first-order neighborhood.
Wk represents the weight of vertex Vk in the calculation of the Laplace coordinates of vertex
v. 1

Σwk
is used to normalize the weighted combination of the vertices’ 3D coordinates in the

first-order neighborhood.

Sensors 2023, 23, 2377 16 of 30

Since several iterations of the Laplacian mesh-smoothing approach are employed, the
model will undergo evident deformation, and the mesh model will contract as a whole.
We describe a method for mesh smoothing and homogenization based on a second-order
umbrella operator that can solve mesh deformation and contraction issues and make the
mesh transition between different regions smoother. Our proposed second-order umbrella
operator is depicted in Equation (32).

U2(v) =
1

∑ wk
∑ wkU(vk)−U(v) kεNV1(v), (32)

where U2(v) is the second-order umbrella operator and the weight Wk of the vertex Vk
in the first-order neighborhood is set with the cotangent weight and normalized by 1

Σwk
.

Equation (33) illustrates the improved iterative computation approach for vertex coordinates.

vt+1 = vt + λ
(
ρU(vt) + (1− ρ)U2(vt)

)
. (33)

When the parameter ρ is less than 1, it is considered a balance parameter. A greater
value of ρ implies that each iterative calculation tends to lessen the interference of noise
points, resulting in a smoother surface on the mesh model. A decreasing value suggests
that each repeated calculation tends to produce a mesh model of triangular patches that is
more uniform and regular.

3.5.3. Mesh-Detail Recovery

The mesh-simplification approach and the mesh-smoothing method can improve the
mesh quality of the model by eliminating mesh redundancy; however, they only process
the details of the mesh’s features, which may result in a mesh that lacks visual realism. In
this phase, we optimize the mesh vertex position adjustment and restore the model with
more details, which is one of the most crucial steps and improves the quality of the final
created model.

To eliminate the noise of the initial mesh and restore the mesh’s detail features, we
utilize the photo color consistency and Laplacian smoothing approach to develop an energy
formula that comprises the following data items and smoothing terms:

E(S) =
k

∑
k=1

Ek
photo + λEsmoothness, (34)

where Ek
photo is the k-th image dataset’s data item and λ(λ ≥ 0) is the smoothing term’s

weight. To minimize the energy equation, we generate a gradient vector corresponding
to the mesh’s vertices and shift the vertices to the gradient vector until convergence. The
image data item is constructed according to the image’s color consistency and is meant
to restore the mesh’s intricate details. The smoothing term is derived from the Laplacian
operator in order to reduce the image’s noise and improve the quality of the mesh.

The picture data item is produced based on the image’s color consistency. Our goal is
to minimize the image reprojection error between image pairings by projecting the pixel
points from image Ii onto image Ij and then calculating the total color consistency of the
pixel point and its nearby pixel points. Consequently, this data item is formatted as follows:

Ephoto(S) =
K

∑
k=1

∑
i,j

∫
Ds

ij

h
(

Ii, IS
ij
)
(xi)dxi i, j ∈ Dlock[k], (35)

where IS
ij = Ij ◦ Pj ◦ P−1

i is the reprojection of image Ii onto image Ij through the mesh

and Pj and P−1
i are the processes of projecting and back-projecting image I onto the mesh,

respectively. h(Ii, IS
ij) is a decreasing function of the color consistency at pixel xi of images

Ii and Ij. DS
ij is the region where the image Ij is reprojected to the image Ii. Equation (35)

Sensors 2023, 23, 2377 17 of 30

describes the degree of correspondence between the two images and the triangular mesh.
The greater the mesh inaccuracy, the greater the Ephoto(S) value.

Equation (35) must be discretized because it is continuous while the mesh is discrete.
Assuming the two pictures are I, J : D → Rn and H(I, J) =

∫
D h(I, J)(x)dx and Φij(s) =

H(Ii, Is
ij), the following equation may be derived:

Ephoto(S) =
K

∑
k=1

∑
i,j

Φij i, j ∈ block[k], (36)

∇Ephoto(S) ≡
K

∑
k=1

∑
i,j
∇Φij i, j ∈ Dlock[k]. (37)

Any vertex x ∈ S can be viewed simultaneously by the images I and J. Images I and J
are matched pairs that satisfy the equation below:

dPi(x)
dx

= −NTcidx
z3

i
, (38)

where N is the normal vector of the point x perpendicular to the outward direction of the
curved surface, ci is the vector of the camera’s center facing point x, and zi is the depth of x
in the camera i’s coordinate system. According to Equation (38), the following formula can
be derived:

∇Φij(x) = −
∂H(Pi(x))JaIj

(
Pj(x)

)
JaPj(x)ci N

z3
i

, (39)

where H is the abbreviation for the H(Ii, IS
ij) function, Ja is the function of the Jacoby matrix,

and H(I, J) is the partial derivative of function ∂H(I, J) with respect to image J. According
to the aforementioned Formula (39), for every vertex vi ∈ S, the barycenter coordinate of
the triangle is x = ∑viφi(x).

dEphoto(S)
dvi

=
∫

S
φ(x)

K

∑
k=1

∑
i,j
∇Φij(x)dx , i, j ∈ block[k]. (40)

Equation (40) computes the gradient of each vertex corresponding to the discrete
triangular mesh in order to change the vertex location along the gradient direction. The
appeal process reduces the inaccuracy of the picture color consistency, increases the degree
of matching between the image and the mesh and then restores the detail features of
the mesh.

Since errors remain in the obtained picture data, we add a smoothing component
based on the image color consistency to reduce the influence of image noise on the mesh
and boost the mesh’s smoothness. The calculation is as follows:

Esmoothness(S) =
∫

S
(k2

1 + k2
2)dS, (41)

where k1 and k2 are the major curvatures of the mesh surface at the same vertex and the
smoothing term measures the entire mesh’s curvature to make it smooth. We construct
the smoothing term using the Laplacian smoothing approach. Since the mesh was already
smoothed as described in Section 3.5.2, we merely employ the more efficient first-order
umbrella operator. The final gradient vector and iterative formulas are as follows:

∇vi =
dEphoto(S)

dvi
+ λU(vi), (42)

vt+1
i = vt

i + ξ∇vi. (43)

Sensors 2023, 23, 2377 18 of 30

In Equation (43), ξ represents the increment size. We can move the vertices iteratively

in accordance with the equation until the requirement Σm
i |∇vi |

m < η is satisfied. The iteration
is convergent and restores every detail feature in its entirety.

4. System Evaluation and Analysis
4.1. System Configuration

This research proposes a cluster-based method for the reconstruction of large-scale
3D scenes. In the process of software verification, we assembled a cluster of nine servers.
As the cluster’s master node, the server with the highest performance is responsible for
the assignment of reconstruction tasks, the distribution of input data and the recovery
of intermediate or final output data. As slave nodes, the remaining eight servers are
responsible for performing the computing duties assigned by the master node.

To demonstrate the universality of the hardware, we selected two distinct server kinds
as child nodes. Table 1 depicts the hardware environment of each cluster node in our
experiment. Theoretically, our system has a high degree of flexibility, as it can use a single
server or a cluster of multiple servers (where the number of servers is greater than or equal
to two) to run the reconstruction system. Table 2 describes the unified program running
environment configured on each computing node throughout the cluster.

Table 1. Cluster environment for computing the unit hardware configuration.

Calculation Node Name CPU Graphics Card Memory

Master Intel(R) Xeon(R) Gold 3160 CPU
@2.10 GHz Titan RTX 256 GB

Slave1~Slave5 Intel(R) Core(TM) i7-8700K
CPU@3.70 GHz GeForce GTX1080Ti 32 GB

Slave6~Slave8 Intel(R) Xeon(R) Sliver 4110 CPU
@2.10 GHz Quadro P6000 64 GB

Table 2. Software configuration of a cluster-based large-scale 3D reconstruction system.

System Dependency Library Version Information

Ubuntu 16.04
Eigen 3.2.10

Ceres solver 1.10
C++ 14

OpenCV 3.4.11
CGAL 5.0.1

VCGLib 1.0.1
Boost 1.76

According to the network configuration depicted in Figure 2, we utilized one router,
one switch and nine servers. During this time, the SSH key of the mast node was stored in
a list of authorized trustworthy servers of each slave node, and communication and data
transmissions were achieved using an SSH secret-free login between each server.

Sensors 2023, 23, 2377 19 of 30

Figure 2. Cluster network topology.

4.2. System Reconstruction Results

The experimental dataset used was the TJUT dataset [86], which was collected from
the university city of Xiqing District, Tianjin (as shown in Figure 3), which contains three
campuses with continuous scenes and multiple categories: Tianjin Polytechnic University,
Tianjin Normal University and Tianjin University of Technology. A number of DJI Inspire
2 commercial UAVs were used to conduct cooperative photography for this dataset. All
UAVs used the same flight and camera parameters. The TJUT dataset contains 38,775 aerial
images, each with a resolution of 4000× 3000, which covers an area of 6.2 square kilometers
and includes buildings, roads, playgrounds, vegetation, rivers and other objects.

Figure 3. The TJUT dataset [86] aerial photography area marked on Google Maps.

We set the input path of the dataset and the output path of the model in sequence
using the system one-key mode. Set the rebuild quality to standard mode, the number
of clusters to 9 and the task weight of all calculation nodes to 1. As soon as the system
settings are completed, click Start Reconstruction to reconstruct the textured mesh model
of the large-scale scene in its entirety without any artificial intervention. As shown in
Figure 4, the system reconstructs the 3D model of the corresponding university town.
Figures 5–7 demonstrate the 3D models of the three campuses of Tianjin Polytechnic Uni-
versity, Tianjin Normal University and Tianjin University of Technology with a complete
vertical perspective alongside details of the 3D models from a close-up perspective.

Sensors 2023, 23, 2377 20 of 30

We tested our system on the publicly available WUH dataset [87], which consists of
1776 aerial images with a resolution of about 5376 × 5376 pixels and covers about 14 square
kilometers. We used the system’s one-click mode to reconstruct a complete model of the
whole scene. As shown in Figure 8, the top half of the figure displays the complete scene
model. The bottom half shows the details of the 3D model in three close-up views.

Figure 4. Our system reconstructs a 3D model of the university city of Xiqing District in Tianjin.
The green box on the left is Tianjin Polytechnic University with an area of about 1.8 square kilome-
ters. The middle red box represents Tianjin Normal University with an area of about 2.3 square
kilometers. The blue box to the right is Tianjin University of Technology with an area of about 2.1
square kilometers.

Figure 5. The left side is the global forward view of the 3D model of Tianjin Polytechnic University.
The right side shows the details of the model at the location of the green box in the 3D model of
Tianjin Polytechnic University.

Sensors 2023, 23, 2377 21 of 30

Figure 6. The left side is the global forward view of the 3D model of Tianjin Normal University.
The right side shows the details of the model in the close-up view from the red box’s position of the
3D model of Tianjin Normal University.

Figure 7. The left side is the global forward view of the 3D model of Tianjin University of Technology.
The right side shows the details of the model in the close-up view from the blue box’s position of the
3D model of Tianjin University of Technology.

Sensors 2023, 23, 2377 22 of 30

Figure 8. The upper side shows the complete global model reconstructed from the entire WUH
dataset [87]. The lower side shows the model details of the close-up view selected from the
global scene.

4.3. System Comparison

One essential requirement for large-scale 3D scene reconstruction is that the recon-
struction speed is as fast as possible to ensure a certain quality so that the reconstructed
model can be quickly deployed in many application scenarios, such as disaster rescue and
geological surveying. Thus, we compared our system with the mainstream open-source
libraries OpenMVG [76] combined with OpenMVS [77], Colmap [78] combined with Open-
MVS, and with the mainstream commercial software Pix4Dmapper and ContextCapture.
This comparison was made with the same dataset and the same hardware environment.

We split the TJUT dataset into three sub-datasets, TPU (11,245 photos), TNU
(14,347 photos) and TJUT (13,183 photos), by region to reduce the amount of input data
and make comparisons easier. Since the open-source library OpenMVG + OpenMVS and
the commercial software Pix4Dmapper cannot use clusters, the open-source library Colmap
+ OpenMVS and the commercial software ContextCapture were used because they can
use clusters.

To ensure as much fairness as possible, we used the hardware configuration presented
in Table 1 with the open-source library OpenMVG + OpenMVS and the commercial software
Pix4Dmapper running on the master computing node alone. The open-source library
Colmap+OpenMVS and the commercial software ContextCapture used a cluster consisting
of three units: master, slave1 and slave6 for reconstruction operations. All open-source
libraries and commercial reconstruction software programs were used with the default
or medium-quality reconstruction settings. Additionally, we used our system’s fast and
standard modes to reconstruct each dataset separately.

The details are shown in Table 3. All libraries and software systems that support
clustering outperformed the libraries and software systems that could only execute on a
single machine in terms of reconstruction speed. Theoretically, if more compute nodes are
added to the cluster, the reconstruction speed will be improved even more. Our system
outperformed the same type of open-source libraries and software systems in regard to the
reconstruction speed in both standard and fast modes. Note that the fast mode significantly

Sensors 2023, 23, 2377 23 of 30

improves the reconstruction speed at the expense of reconstruction quality. In practical
applications, it meets the needs of users with urgent time requirements, helping them to
quickly obtain preliminary models and grasp the actual data and situation of large-scale
scenarios as early as possible.

We conducted a 3D-reconstruction speed-performance evaluation on the WUH dataset.
In the same hardware-configuration environment as before, only open-source libraries
and commercial software supporting standalone machines used master computing nodes.
The open-source libraries and commercial software that support a cluster environment used
a cluster of master, slave1 and slave6 for 3D-reconstruction operations. Table 4 shows that
our system outperformed the same type of open-source library and commercial software
systems regarding the reconstruction speed in both standard and fast modes.

Table 3. Comparison of our system with mainstream open-source libraries and commercial software
in terms of the 3D-reconstruction speed for the same scene dataset.

3D Reconstruction Time Consumed (h)

Library/Software Version Cluster Dataset 1: TPU Dataset 2: TNU Dataset 3: TJUT

OpenMVG[76] + OpenMVS[77] V2.0, V2.0 8 93.33 123.50 110.75
Colmap[78] + OpenMVS V3.7, V2.0 4 68.25 82.58 78.83

Pix4Dmapper V4.3.9 8 90.50 110.50 101.67
ContextCapture V4.6.10 4 52.17 64.33 59.75

Ours (standard mode) V1.0.2 4 48.50 55.75 52.83
Ours (fast mode) V1.0.2 4 23.45 27.42 25.92

Table 4. The 3D-reconstruction speed performance of our system as compared with other open-
source libraries and commercial software, which was conducted using the publicly available WUH
dataset [87].

3D Reconstruction Time Consumed (h)

Library/Software Version Cluster Dataset: WHU

OpenMVG + OpenMVS V2.0, V2.0 8 69.5
Colmap + OpenMVS V3.7, V2.0 4 34.67

Pix4Dmapper V4.3.9 8 64.25
ContextCapture V4.6.10 4 26.75

Ours (standard mode) V1.0.2 4 24.33
Ours (fast mode) V1.0.2 4 10.83

5. System Usage Information

This section demonstrates the use cases of the simple and expert modes in our recon-
struction system from the user’s perspective. Simple mode means that the user does not
need any expertise and only needs to set the input and output paths, work paths, cluster
task-assignment parameters and quality parameters. This enables the user to complete
partial and overall reconstruction tasks. Expert mode is meant for users that have some ex-
pertise in reconstruction algorithms and can set detailed parameters for each reconstruction
job to complete a professional custom reconstruction project.

5.1. Simple Mode

Our system can complete sparse point-cloud reconstruction, dense point-cloud recon-
struction, mesh reconstruction, mesh optimization, texture reconstruction and the entire
3D-reconstruction process. It can also complete the subprocesses of the reconstruction
process individually. In simple mode, let us take sparse point-cloud reconstruction as
an example. First, open the “Sparse Reconstruction—Automatic Sparse Reconstruction
Parameter Settings” dialog box and enter the input, output and project work file paths in
order as required.

Sensors 2023, 23, 2377 24 of 30

Next, set the number of cluster chunks and the task allocation ratio of each computing
node in the cluster. Finally, set the reconstruction quality and the resolution parameters
of the image during the reconstruction process. Then, click Rebuild to fully and automat-
ically reconstruct the point-cloud model without any human intervention. The specific
operations are shown in Table 5, and Figure 9 shows the demonstration results of the
associated operations.

Table 5. Example of fully automated 3D sparse point-cloud reconstruction by a user using sim-
ple mode.

Operation No. Operating Steps

1
On the system home page, click on “Sparse Reconstruction—Sparse Reconstruction Parameter Setting”,
as shown in Figure 9a.

2
As shown in Figure 9b, click the folder selection button on the right side of “Enter image path” to select
the path of the input image folder.

3
Select a storage folder path for the output sparse point-cloud model by clicking the folder selection
button on the right side of “Output Path”.

4
To select the storage path for the intermediate files, click the folder selection button on the right side
of the “Work Path”.

5
Set the number of chunks in the reconstruction area—that is, set the number of compute nodes in the
requested cluster.

6
Figure 9c shows how to set the task allocation ratio of each calculation node or select the check box to
allocate tasks evenly by default.

7 Click the quality selection combo box and select the desired quality of the 3D reconstruction.
8 Set the image resolution used in the sparse point-cloud reconstruction.

9
As shown in Figure 9d, click the Start Reconstruction button to begin the fully automated,
hands-free process of 3D sparse point-cloud reconstruction.

Figure 9. A demonstration of the fully automated 3D sparse point-cloud reconstruction using
simple mode (one-click reconstruction). (a) sparse reconstruction parameter setting, (b) select input
folder, (c) cluster parameter setting and (d) quality parameter setting.

Sensors 2023, 23, 2377 25 of 30

5.2. Expert Mode

The system can provide a one-click 3D-reconstruction mode for beginner users in
simple mode, whereas expert mode is for professional users who have mastered 3D-
reconstruction algorithms. Expert mode provides detailed parameter settings for sparse
point-cloud reconstruction, dense point-cloud reconstruction, mesh reconstruction, mesh
optimization, and texture reconstruction subprojects throughout the 3D-reconstruction pro-
cess. Professional users can manually adjust the parameters of each reconstruction subpro-
ject to meet their needs, including scene timeliness and scene 3D-reconstruction fineness.

Let us take sparse point-cloud reconstruction as an example. First, click “Sparse
Reconstruction—Feature Point Extraction” in the menu bar to automatically bring up
the “Feature Point Extraction” dialog box and enter the relevant parameters to control
the feature-point extraction quality in the sparse point-cloud reconstruction process. Sec-
ondly, select “Sparse Reconstruction—Feature Point Matching” in the menu bar, and fill in
the relevant parameters to effectively control the matching quality between image pairs.
Again, select “Sparse Reconstruction—BA” in the menu bar and fill in the appropriate BA
parameters in the “BA” dialog box to adjust the nonlinear model optimization.

The final step is to choose “Sparse Reconstruction—Model Conversion” from the
menu bar. In the model conversion dialog box, the user can choose the output sparse point-
cloud model format for reconstruction (the input is not chosen). Alternatively, the user can
convert the sparse point-cloud format by selecting the input sparse point-cloud format and
converting it to the output sparse point-cloud format. The detailed operating instructions
for expert mode are presented in Table 6, and Figure 10 illustrates the most significant
operating steps.

Table 6. Example of setting sparse point cloud reconstruction parameters in expert mode.

Operation No. Operating Steps

1
On the system home page, the user selects “Sparse Reconstruction-Feature Extraction” in the menu
bar, and the “Feature Extraction” dialog box appears.

2
As shown in Figure 10a, set the downsampling multiplier, the maximum resolution, and the maximum
number of retained image features based on the requirements of the user.

3
The user selects “Sparse Reconstruction-Feature Matching” in the menu bar of the system home page,
and the “Feature Matching” dialog box pops up.

4

Depending upon the user requirements and the actual situation in the scene, determine the farthest
distance of image-matching pairs, the maximum number of neighbors for each image (the number of
pairs to match), and the maximum number of matches between image-matching pairs, as shown in
Figure 10b.

5
Upon selecting “Sparse Reconstruction-BA” from the menu bar of the system home page, the “BA”
dialog box appears.

6
In Figure 10c, the user specifies the number of BA rounds when adding pictures according to the
actual requirements, checks the option to perform a global BA, and enters the number of BA rounds.

7
As shown in Figure 10d, the “Format Conversion” dialog box appears when the user selects “Sparse
Reconstruction-Format Conversion” in the menu bar of the system home page.

8

Case 1: Output model format. The user may only select the output sparse point cloud model format.
That is, the default is the model format following the 3D reconstruction of the sparse point cloud. Case
2: Convert model format. The user can convert the existing point cloud model to another point cloud
format supported by the system.

Sensors 2023, 23, 2377 26 of 30

Figure 10. In expert mode (professional parameter setting), the sparse point-cloud 3D-reconstruction
example is completed by setting parameters in four steps: (a) feature-point extraction, (b) feature-
point matching, (c) bundle adjustment and (d) model format conversion.

6. Conclusions

We developed a cluster-based system for large-scale 3D reconstruction. We proposed
cluster-based camera-graph-structure clustering and cluster-based global camera pose-
registration methods with a partitioning strategy, which helps to avoid the limitations of a
single computing node and can handle 3D-reconstruction tasks of large-scale scenes within
the framework of clusters.

In order to fully utilize the computational resources on a single computational node,
we developed a GPU parallel depth estimation based on a patch-matching method that uses
GPU computational units to achieve the pixel-level parallel computation of depth values,
which significantly reduces the time needed to solve the dense point-cloud reconstruction
problem on a single computational node. We propose a 3D mesh-optimization method
based on cluster geometric detail recovery, which not only effectively reduces the size of
the data but also maintains the local characteristics and realism of the model.

Our system can efficiently and rapidly generate large-scale-scene 3D models in both
standard and fast modes and outperformed state-of-the-art 3D-reconstruction libraries
and commercial systems in terms of the reconstruction speed. In the future, we plan to
continue to enhance our system by adding functions to generate digital orthophoto maps
(DOM), digital surface models (DSMs) and track-planning and model-accuracy reports.
We will continue to improve the reconstruction algorithm of the system to achieve higher
reconstruction accuracy and faster reconstruction speed.

Author Contributions: Conceptualization, Y.L. and Y.Q.; methodology, Y.Q.; software, Y.L. and
C.W.; validation, Y.L., C.W. and Y.B.; formal analysis, Y.L.; writing—original draft preparation, Y.L.;
writing—review and editing, Y.L., Y.Q. and C.W.; visualization, Y.L., C.W. and Y.B.; supervision, Y.Q.;

Sensors 2023, 23, 2377 27 of 30

project administration, Y.Q. and Y.B.; funding acquisition, Y.Q. and Y.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was supported by the National Natural Science Foundation of China (No.
62072020), the Leading Talents in Innovation and Entrepreneurship of Qingdao (19-3-2-21-zhc), the
Independent scientific research project of Beihang Qingdao Research Institute (BQY2022VRC002)
and the Shandong Provincial Natural Science Foundation (ZR2020MF132).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the anonymous reviewers for their valuable suggestions and Xun Luo
for the aerial datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
2. Özyeşil, O.; Voroninski, V.; Basri, R.; Singer, A. A survey of structure from motion. Acta Numer. 2017, 26, 305–364. [CrossRef]
3. Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A

review. Curr. For. Rep. 2019, 5, 155–168. [CrossRef]
4. Agarwal, S.; Furukawa, Y.; Snavely, N.; Simon, I.; Curless, B.; Seitz, S.M.; Szeliski, R. Building rome in a day. Commun. ACM 2011,

54, 105–112. [CrossRef]
5. Frahm, J.M.; Fite-Georgel, P.; Gallup, D.; Johnson, T.; Raguram, R.; Wu, C.; Jen, Y.H.; Dunn, E.; Clipp, B.; Lazebnik, S.; et al.

Building rome on a cloudless day. In Proceedings of the European Conference on Computer Vision, Hersonissos, Crete, Greece,
5–11 September 2010; pp. 368–381.

6. Jiang, N.; Tan, P.; Cheong, L.F. Seeing double without confusion: Structure-from-motion in highly ambiguous scenes. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Rhode Island, 16–21 June
2012; pp. 1458–1465.

7. Wu, C. Towards linear-time incremental structure from motion. In Proceedings of the 2013 International Conference on 3D
Vision-3DV 2013, Seattle, WA, USA, 29–30 June 2013; pp. 127–134.

8. Ni, K.; Steedly, D.; Dellaert, F. Out-of-core bundle adjustment for large-scale 3d reconstruction. In Proceedings of the 2007 IEEE
11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8.

9. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In Proceedings of the
International Workshop on Vision Algorithms. Springer, Corfu, Greece, 21–22 September 1999; pp. 298–372.

10. Agarwal, S.; Snavely, N.; Seitz, S.M.; Szeliski, R. Bundle adjustment in the large. In Proceedings of the European Conference on
Computer Vision, Hersonissos, Crete, Greece, 5–11 September 2010; pp. 29–42.

11. Kneip, L.; Scaramuzza, D.; Siegwart, R. A novel parametrization of the perspective-three-point problem for a direct computation
of absolute camera position and orientation. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011;
pp. 2969–2976.

12. Wu, C.; Agarwal, S.; Curless, B.; Seitz, S.M. Multicore bundle adjustment. In Proceedings of the CVPR 2011, Colorado Springs,
CO, USA, 20–25 June 2011; pp. 3057–3064.

13. Eriksson, A.; Bastian, J.; Chin, T.J.; Isaksson, M. A consensus-based framework for distributed bundle adjustment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1754–1762.

14. Arie-Nachimson, M.; Kovalsky, S.Z.; Kemelmacher-Shlizerman, I.; Singer, A.; Basri, R. Global motion estimation from point
matches. In Proceedings of the 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization &
Transmission, Zurich, Switzerland, 13–15 October 2012; pp. 81–88.

15. Brand, M.; Antone, M.; Teller, S. Spectral solution of large-scale extrinsic camera calibration as a graph embedding problem. In
Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 262–273.

16. Carlone, L.; Tron, R.; Daniilidis, K.; Dellaert, F. Initialization techniques for 3D SLAM: A survey on rotation estimation and its use
in pose graph optimization. In Proceedings of the 2015 IEEE iNternational Conference on Robotics and Automation, Seattle, WA,
USA, 26–30 May 2015; pp. 4597–4604.

17. Chatterjee, A.; Govindu, V.M. Efficient and robust large-scale rotation averaging. In Proceedings of the IEEE International
Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 521–528.

18. Cui, Z.; Tan, P. Global structure-from-motion by similarity averaging. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 864–872.

19. Cui, Z.; Jiang, N.; Tang, C.; Tan, P. Linear global translation estimation with feature tracks. arXiv 2015, arXiv:1503.01832.

http://doi.org/10.1017/S096249291700006X
http://dx.doi.org/10.1007/s40725-019-00094-3
http://dx.doi.org/10.1145/2001269.2001293

Sensors 2023, 23, 2377 28 of 30

20. Govindu, V.M. Combining two-view constraints for motion estimation. In Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume 2, p. II.

21. Govindu, V.M. Lie-algebraic averaging for globally consistent motion estimation. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), Washington, DC, USA, 27 June–2 July 2004;
Volume 1, p. I.

22. Ozyesil, O.; Singer, A. Robust camera location estimation by convex programming. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2674–2683.

23. Hartley, R.; Trumpf, J.; Dai, Y.; Li, H. Rotation averaging. Int. J. Comput. Vis. 2013, 103, 267–305. [CrossRef]
24. Sweeney, C.; Fragoso, V.; Höllerer, T.; Turk, M. Large scale sfm with the distributed camera model. In Proceedings of the 2016

Fourth International Conference on 3D Vision, Stanford, CA, USA, 25–28 October 2016; pp. 230–238.
25. Crandall, D.; Owens, A.; Snavely, N.; Huttenlocher, D. Discrete-continuous optimization for large-scale structure from motion. In

Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 3001–3008.
26. Cui, H.; Shen, S.; Gao, W.; Hu, Z. Efficient large-scale structure from motion by fusing auxiliary imaging information. IEEE Trans.

Image Process. 2015, 24, 3561–3573.
27. Sweeney, C.; Sattler, T.; Hollerer, T.; Turk, M.; Pollefeys, M. Optimizing the viewing graph for structure-from-motion. In

Proceedings of the IEEE international Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 801–809.
28. Cui, H.; Gao, X.; Shen, S.; Hu, Z. HSfM: Hybrid structure-from-motion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1212–1221.
29. Zhu, S.; Shen, T.; Zhou, L.; Zhang, R.; Wang, J.; Fang, T.; Quan, L. Parallel structure from motion from local increment to global

averaging. arXiv 2017, arXiv:1702.08601.
30. Seo, Y.; Hartley, R. A fast method to minimize error norm for geometric vision problems. In Proceedings of the 2007 IEEE 11th

International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8.
31. Zhu, S.; Zhang, R.; Zhou, L.; Shen, T.; Fang, T.; Tan, P.; Quan, L. Very large-scale global sfm by distributed motion averaging. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4568–4577.

32. Furukawa, Y.; Hernández, C. Multi-view stereo: A tutorial. Found. Trends Comput. Graph. Vis. 2015, 9, 1–148. [CrossRef]
33. Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A comparison and evaluation of multi-view stereo reconstruction

algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2006), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528.

34. Goesele, M.; Curless, B.; Seitz, S.M. Multi-view stereo revisited. In Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2402–2409.

35. Kar, A.; Häne, C.; Malik, J. Learning a multi-view stereo machine. Adv. Neural Inf. Process. Syst. 2017, 30, 1–12.
36. Vogiatzis, G.; Hernández, C. Video-based, real-time multi-view stereo. Image Vis. Comput. 2011, 29, 434–441. [CrossRef]
37. Bailer, C.; Finckh, M.; Lensch, H. Scale robust multi view stereo. In Proceedings of the European Conference on Computer Vision,

Florence, Italy, 7–13 October 2012; pp. 398–411.
38. Hiep, V.H.; Keriven, R.; Labatut, P.; Pons, J.P. Towards high-resolution large-scale multi-view stereo. In Proceedings of the 2009

IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1430–1437.
39. Habbecke, M.; Kobbelt, L. A surface-growing approach to multi-view stereo reconstruction. In Proceedings of the 2007 IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 18–24 June 2007; pp. 1–8.
40. Goesele, M.; Snavely, N.; Curless, B.; Hoppe, H.; Seitz, S.M. Multi-view stereo for community photo collections. In Proceedings

of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8.
41. Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2009,

32, 1362–1376. [CrossRef] [PubMed]
42. Seitz, S.M.; Dyer, C.R. Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 1999, 35, 151–173. [CrossRef]
43. Vogiatzis, G.; Torr, P.H.; Cipolla, R. Multi-view stereo via volumetric graph-cuts. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 20–26 June 2005; Volume 2,
pp. 391–398.

44. Sinha, S.N.; Mordohai, P.; Pollefeys, M. Multi-view stereo via graph cuts on the dual of an adaptive tetrahedral mesh. In
Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil, 14–21 October 2007;
pp. 1–8.

45. Li, J.; Li, E.; Chen, Y.; Xu, L.; Zhang, Y. Bundled depth-map merging for multi-view stereo. In Proceedings of the 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2769–2776.

46. Shen, S. Depth-map merging for multi-view stereo with high resolution images. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 11–15 November 2012; pp. 788–791.

47. Shen, S.; Hu, Z. How to select good neighboring images in depth-map merging based 3D modeling. IEEE Trans. Image Process.
2013, 23, 308–318. [CrossRef] [PubMed]

48. Liu, H.; Tang, X.; Shen, S. Depth-map completion for large indoor scene reconstruction. Pattern Recognit. 2020, 99, 107–112.
[CrossRef]

http://dx.doi.org/10.1007/s11263-012-0601-0
http://dx.doi.org/10.1561/0600000052
http://dx.doi.org/10.1016/j.imavis.2011.01.006
http://dx.doi.org/10.1109/TPAMI.2009.161
http://www.ncbi.nlm.nih.gov/pubmed/20558871
http://dx.doi.org/10.1023/A:1008176507526
http://dx.doi.org/10.1109/TIP.2013.2290597
http://www.ncbi.nlm.nih.gov/pubmed/24240002
http://dx.doi.org/10.1016/j.patcog.2019.107112

Sensors 2023, 23, 2377 29 of 30

49. Wei, W.; Wei, G.; ZhanYi, H. Dense 3D scene reconstruction based on semantic constraint and graph cuts. Sci. Sin. Inf. 2014,
44, 774–792.

50. Schönberger, J.L.; Zheng, E.; Frahm, J.M.; Pollefeys, M. Pixelwise view selection for unstructured multi-view stereo. In
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 501–518.

51. Merrell, P.; Akbarzadeh, A.; Wang, L.; Mordohai, P.; Frahm, J.M.; Yang, R.; Nistér, D.; Pollefeys, M. Real-time visibility-based
fusion of depth maps. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio De Janeiro, Brazil,
14–21 October 2007; pp. 1–8.

52. Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 767–783.

53. Yu, Z.; Gao, S. Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020;
pp. 1949–1958.

54. Aanæs, H.; Jensen, R.R.; Vogiatzis, G.; Tola, E.; Dahl, A.B. Large-scale data for multiple-view stereopsis. Int. J. Comput. Vis. 2016,
120, 153–168. [CrossRef]

55. Khot, T.; Agrawal, S.; Tulsiani, S.; Mertz, C.; Lucey, S.; Hebert, M. Learning unsupervised multi-view stereopsis via robust
photometric consistency. arXiv 2019, arXiv:1905.02706.

56. Dai, Y.; Zhu, Z.; Rao, Z.; Li, B. Mvs2: Deep unsupervised multi-view stereo with multi-view symmetry. In Proceedings of the
2019 International Conference on 3D Vision, Quebec City, Quebec, Canada, 16–19 September 2019; pp. 1–8.

57. Huang, B.; Yi, H.; Huang, C.; He, Y.; Liu, J.; Liu, X. M3VSNet: Unsupervised multi-metric multi-view stereo network. In
Proceedings of the 2021 IEEE International Conference on Image Processing, Anchorage, AK, USA, 19–22 September 2021;
pp. 3163–3167.

58. Xu, H.; Zhou, Z.; Qiao, Y.; Kang, W.; Wu, Q. Self-supervised multi-view stereo via effective co-segmentation and data-
augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2021;
Volume 35, pp. 3030–3038.

59. Garland, M.; Heckbert, P.S. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings of the
Proceedings Visualization’98 (Cat. No. 98CB36276), Triangle Park, NC, USA, 18–23 October 1998; pp. 263–269.

60. Hoppe, H. New quadric metric for simplifying meshes with appearance attributes. In Proceedings of the Proceedings
Visualization’99 (Cat. No. 99CB37067), Vienna, Austria, 26–28 May 1999; pp. 59–510.

61. Williams, N.; Luebke, D.; Cohen, J.D.; Kelley, M.; Schubert, B. Perceptually guided simplification of lit, textured meshes. In
Proceedings of the 2003 Symposium on Interactive 3D Graphics, Monterey, CA, USA, 27–30 April 2003; pp. 113–121.

62. Lindstrom, P.; Turk, G. Image-driven simplification. ACM Trans. Graph. 2000, 19, 204–241. [CrossRef]
63. Li, W.; Chen, Y.; Wang, Z.; Zhao, W.; Chen, L. An improved decimation of triangle meshes based on curvature. In Proceedings of

the International Conference on Rough Sets and Knowledge Technology, Shanghai, China, 24–26 October 2014; pp. 260–271.
64. An, G.; Watanabe, T.; Kakimoto, M. Mesh simplification using hybrid saliency. In Proceedings of the 2016 International

Conference on Cyberworlds, Chongqing, China, 28–30 September 2016; pp. 231–234.
65. Jiang, Y.; Nie, W.; Tang, L.; Liu, Y.; Liang, R.; Hao, X. Vertex Mesh Simplification Algorithm Based on Curvature and Distance

Metric. In Transactions on Edutainment XII; Springer: Berlin/Heidelberg, Germany, 2016; pp. 152–160.
66. TaubinÝ, G. Geometric signal processing on polygonal meshes. In Proceedings of the Proceedings of Eurographics,

Berlin/Heidelberg, Germnay, 26–28 June 2000; pp. 1–13.
67. Desbrun, M. Processing irregular meshes. In Proceedings of the Proceedings SMI, Shape Modeling International 2002, Banff, AB,

Canada, 17–22 May 2002; pp. 157–158.
68. Fleishman, S.; Cohen-Or, D.; Silva, C.T. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 2005,

24, 544–552. [CrossRef]
69. Bajaj, C.L.; Xu, G. Adaptive fairing of surface meshes by geometric diffusion. In Proceedings of the Proceedings Fifth International

Conference on Information Visualisation, London, UK, 25–27 July 2001; pp. 731–737.
70. Hildebrandt, K.; Polthier, K. Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 2004, 23, 391–400.

[CrossRef]
71. Lee, K.W.; Wang, W.P. Feature-preserving mesh denoising via bilateral normal filtering. In Proceedings of the Ninth International

Conference on Computer Aided Design and Computer Graphics (CAD-CG’05), Hong Kong, China, 7–10 December 2005; p. 6.
72. Wu, C. VisualSFM: A Visual Structure from Motion System. 2011. Available online: http://ccwu.me/vsfm/index.html (accessed

on 10 January 2023).
73. Furukawa, Y. Clustering Views for Multi-View Stereo. 2010. Available online: https://www.di.ens.fr/cmvs/ (accessed on 10

January 2023).
74. Fuhrmann, S.; Langguth, F.; Goesele, M. Mve-a multi-view reconstruction environment. In Proceedings of the GCH, Darmstadt,

Germany, 6–8 October 2014; pp. 11–18.
75. Waechter, M.; Moehrle, N.; Goesele, M. Let there be color! Large-scale texturing of 3D reconstructions. In Proceedings of the

European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 836–850.
76. Moulon, P.; Monasse, P.; Perrot, R.; Marlet, R. Openmvg: Open multiple view geometry. In Proceedings of the International

Workshop on Reproducible Research in Pattern Recognition, Cancun, Mexico, 29–31 March 2017; pp. 60–74.

http://dx.doi.org/10.1007/s11263-016-0902-9
http://dx.doi.org/10.1145/353981.353995
http://dx.doi.org/10.1145/1073204.1073227
http://dx.doi.org/10.1111/j.1467-8659.2004.00770.x
http://ccwu.me/vsfm/index.html
https://www.di.ens.fr/cmvs/

Sensors 2023, 23, 2377 30 of 30

77. Cernea, D. OpenMVS: Multi-View Stereo Reconstruction Library. 2020. Available online: https://cdcseacave.github.io/openMVS
(accessed on 10 January 2023).

78. Schönberger, J.L.; Price, T.; Sattler, T.; Frahm, J.M.; Pollefeys, M. A Vote-and-Verify Strategy for Fast Spatial Verification in Image
Retrieval. In Proceedings of the Asian Conference on Computer Vision (ACCV 2016), Taipei, Taiwan, 20–24 November 2016;
pp. 1–16.

79. Verhoeven, G. Taking computer vision aloft–archaeological three-dimensional reconstructions from aerial photographs with
photoscan. Archaeol. Prospect. 2011, 18, 67–73. [CrossRef]

80. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905.
81. Martinec, D.; Pajdla, T. Robust rotation and translation estimation in multiview reconstruction. In Proceedings of the 2007 IEEE

Conference on Computer Vision and Pattern Recognition, Rio De Janeiro, Brazil, 14–21 October 2007; pp. 1–8.
82. Xu, Q.; Tao, W. Multi-scale geometric consistency guided multi-view stereo. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5483–5492.
83. Wang, F.; Galliani, S.; Vogel, C.; Speciale, P.; Pollefeys, M. Patchmatchnet: Learned multi-view patchmatch stereo. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14194–14203.
84. Xu, Q.; Kong, W.; Tao, W.; Pollefeys, M. Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 1–18. [CrossRef] [PubMed]
85. Golias, N.; Dutton, R. Delaunay triangulation and 3D adaptive mesh generation. Finite Elem. Anal. Des. 1997, 25, 331–341.

[CrossRef]
86. Li, Y.; Xie, Y.; Wang, X.; Luo, X.; Qi, Y. A Fast Method for Large-Scale Scene Data Acquisition and 3D Reconstruction. In

Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing,
China, 10–18 October 2019; pp. 321–325.

87. Liu, J.; Ji, S. A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial
dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June
2020; pp. 6050–6059.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cdcseacave.github.io/openMVS
http://dx.doi.org/10.1002/arp.399
http://dx.doi.org/10.1109/TPAMI.2022.3200074
http://www.ncbi.nlm.nih.gov/pubmed/35984800
http://dx.doi.org/10.1016/S0168-874X(96)00054-6

	Introduction
	Related Work
	3D Reconstruction Methods
	Structure from Motion
	Multi-View Stereo
	Mesh Optimization

	3D Reconstruction Libraries and Software

	System Design
	Overall Structure
	Cluster-Based Camera Graph Structure Clustering
	Normalized Cut Algorithm
	Camera Graph Division
	Camera Graph Expansion

	Cluster-Based Global Camera Pose Registration
	Global Rotation Registration
	Global Rotation Registration
	Optimization of Camera Poses

	GPU Parallel Depth Estimation Based on Patch Matching
	Random Initialization of the Depth Normal Vector
	Cost Assessment Based on Patch Matching
	GPU Parallel Depth Map Generation and Optimization

	Cluster-Based Mesh Optimization for Geometric Detail Recovery
	Mesh Simplification
	Mesh Smoothing
	Mesh-Detail Recovery

	System Evaluation and Analysis
	System Configuration
	System Reconstruction Results
	System Comparison

	System Usage Information
	Simple Mode
	Expert Mode

	Conclusions
	References

