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Abstract: Soils are a complex ecosystem that provides critical services, such as growing food, sup-
plying antibiotics, filtering wastes, and maintaining biodiversity; hence monitoring soil health and
domestication is required for sustainable human development. Low-cost and high-resolution soil
monitoring systems are challenging to design and build. Compounded by the sheer size of the moni-
toring area of interest and the variety of biological, chemical, and physical parameters to monitor,
naive approaches to adding or scheduling more sensors will suffer from cost and scalability problems.
We investigate a multi-robot sensing system integrated with an active learning-based predictive
modeling technique. Taking advantage of advances in machine learning, the predictive model allows
us to interpolate and predict soil attributes of interest from the data collected by sensors and soil
surveys. The system provides high-resolution prediction when the modeling output is calibrated
with static land-based sensors. The active learning modeling technique allows our system to be
adaptive in data collection strategy for time-varying data fields, utilizing aerial and land robots
for new sensor data. We evaluated our approach using numerical experiments with a soil dataset
focusing on heavy metal concentration in a flooded area. The experimental results demonstrate that
our algorithms can reduce sensor deployment costs via optimized sensing locations and paths while
providing high-fidelity data prediction and interpolation. More importantly, the results verify the
adapting behavior of the system to the spatial and temporal variations of soil conditions.

Keywords: soil; sensor networks; mobile sensing; active learning; machine learning; path planning

1. Introduction

This paper addresses the challenge of continuously monitoring soil conditions, such
as chemical, physical, and biological properties. Soil is a thin layer of biogeochemically
altered rock or sediment on the planet’s surface [1]. It supports ecosystem services critical
for life, ranging from provisioning services, regulating services, to culture services [1–3].
Human activities, particularly agriculture, dramatically altered soil qualities, resulting
in domesticated soils. Domesticated soils, with the removal of natural fauna, reduced
biodiversity, and physical disruptions, are often unable to maintain the qualities of their
original conditions that are essential to allow them to provide critical ecosystem services [1].
As a result, food security, climate change, and human health are among the global problems
that demand us to monitor soil health.

Complementing traditional soil survey methods, sensor networks become a promising
approach to observing soil in the field [4–7]. There are a wealth of published works focusing
on sensor deployment to provide guaranteed coverage [8,9]. These works address the
problem from the perspective of planning and are to determine the locations of the sensors
in the field. Some researchers assume that sensors can sense an extended disk-shaped
area to simplify the deployment problem [4,8–10]. There are several drawbacks of the
coverage-oriented sensor location planning. First, many sensors are required to achieve
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full coverage in a practical use case, and consequently a high cost to acquire, maintain and
operate these sensors. Second, the planned sensor networks are often “rigid” regarding
the sensing service provided. End users, such as environmental protection agencies and
climate scientists, may be interested in different properties of the soils. It is unrealistic to
measure soil density, heavy metal concentration, and biological properties, such as bio-
abundance and diversity from a single fixed installation. Third, soil properties are evolving
phenomena and require continuous monitoring, which often requires a redeployment or a
new deployment of sensors at different locations. Many planning-based sensor deployment
methods also need user requirements such as coverage and spatial/temporal resolution
of the sensed data. This is a “know-it-all” approach that is often not tenable for practical
applications. For example, to maximize the yield of a new crop, agricultural specialists
often gradually understand what soil condition to monitor and the proper temporal and
spatial granularity. These challenges are compounded to form a significant obstacle to
building low-cost and scalable soil monitoring systems that can adapt to changing soil
conditions and to meet evolving user requirements.

Aiming to address these challenges and continuing on our prior work [6], we propose
a soil monitoring framework that integrates predictive modeling, land-based in situ sens-
ing, and mobile sensors based on autonomous robotic vehicles. The proposed approach
complements traditional soil surveys by offering observations on specific quantities with
higher spatial and temporal resolutions at selected locations.

At the core of the proposed framework is active learning-based predictive model
building. The approach is to dynamically and gradually deploy sensors based on applica-
tion requirements. The main idea is to iteratively determine sensor locations, in particular,
the locations of mobile sensors, in parallel to the process from which the user acquires
an understanding of their application requirements. The active-learning-based process
removes the need to compute a fixed sensor development plan that is a hard computational
problem (generally a Nondeterministic Polynomial- or NP-hard problem [11]). Further, it
no longer requires full knowledge about the user’s application requirements on the outset.

We use autonomous robots for collecting data from environments. Due to recent
progress in autonomy and data processing capability in Unmanned Ground Vehicles (UGV)
and Unmanned Aerial Vehicles (UAVs) [12], these vehicles can be equipped with sensors to
collect physical, chemical, and biological attributes to support a variety of users. Compared
to fixed land-based sensors, the robotic platforms can provide extensive area coverage with
a relatively small number of units. The use of mobile sensors enables the practicality of the
active learning-based approach. UGVs/UAVs allows us to deploy sensors on demand and
adjust to the modeling results of the monitored physical/chemical/biological attributes.

Our predictive models are built upon machine learning algorithms aided by the
active-learning-based sensor Deployment. Complex physical/chemical laws govern soil
modeling. It is difficult to predict/interpolate/extrapolate certain soil conditions that are
not directly observed. Machine learning as a data-driven approach is capable of inferring a
complex model from observed data alone. Our system uses machine learning to interpolate
observed quantifies spatially and temporally, but more importantly, predict quantities that
are not directly observed. For example, soil density and soil moisture can be predicted
from multi-spectral image data observed via UAV [13,14]. As a result, the models provide
high-accuracy data at locations where no sensors are present or certain quantities of interest
where precise direct sensor observations are not available, which reduces required sensors
and thus reduce operating and maintenance cost.

The contribution of this work is as follows:

1. We propose a heterogeneous sensing framework that features land-based stationary
sensors, mobile sensors onboard UAVs and UGVs. This framework takes advantage
of development in sensing technologies, sensor networks, and robotics and provides a
sensing coverage aiming to meet the requirements of different users. We envision that
a soil monitoring system designed in this framework will need fewer sensors than
otherwise, which offers an advantage in operating and maintenance cost.
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2. Modeling is an essential component of the design. The machine learning-based mod-
eling interpolates and predicts quantities of interest from collected data. An important
feature of the design is to reserve a set of sensors called the “calibration sensors”.
These sensors are not used for building the machine learning models, rather, they
are to check the interpolation and prediction accuracies, whose requirements are
determined by the users.

3. In contrast to the conventional planning-based sensor development, our approach
is characterized by an active learning-based sensor deployment. This approach is
an iterative model building process. The process is integrated with a multi-robot
planning algorithm, via active learning, the algorithm dispatches UAVs and UGVs
with onboard sensors to collect quantities of interest to meet the users’ requirements
on temporal and spatial resolution and accuracies of the predictive models.

2. Related Work

Several areas of research and development are a motivation and foundation of this work.

2.1. Soil Sensing

Modern soil sensors takes advantage of a variety of sensing mechanisms and offer
in situ measurement of a range of soil properties. The sensing mechanisms range from
electrical and electromagnetic, optical and radiometric, mechanical and electromechanical,
acoustic, pneumatic, to electrochemical. The sensors can measure soil texture, density,
carbon content, moisture, salinity, pH level (acidity/basicity), nitrogen content, and carbon
exchange capacity [15]. In contrast, remote sensing measures reflected and emitted radiation
of an area at a distance, typically via a satellite or an aircraft [16]. UAVs ease the acquisition
of high resolution remote sensing images, such as multispectral images for soil monitoring,
in particular, when we correlate the images with other soil properties [17].

This work neither directly contributes to the development of in situ and proximal
soil sensors, nor to that of remote sensing technology. Instead, it proposes a framework to
leverage this sensing technology to monitor soil conditions in a large terrain at scale for a
range of users.

2.2. Digital Soil Mapping and Machine Learning

Soil surveys are a traditional method to create soil maps. However, the soil maps
are static, with coarse spatial granularity, and often based on obsolete data [18]. Digital
soil mapping (DSM) creates soil maps via computerized processing of in situ soil sensing,
proximal soil sensing, and remote sensing data [18]. The advantages of DSM include the
ability to update and reproduce soil maps frequently.

Another advantage of DSM is its potential to provide quantitative predictions of soil
attributes along with uncertainty quantification and to avail an interpretation or a ranking
of the importance of pedogenic factors on soil attribute distribution via computational
and statistical models [18]. Researchers investigated a variety of empirical approaches for
spatial predictions of soil attributes at unvisited locations, the locations where no direct
observations are taken [19]. These prediction methods are generally a coarse approximation
of the complex physical or chemical reality, e.g., assuming a linear model [19].

Recently there has been a growing interest in applying machine learning models to
predict soil attributes [20]. Machine learning models can discover complex patterns and
rules in the data and apply the patterns and rules to soil attribute prediction. A variety
of machine learning models have been applied to soil attributes prediction, and these
models include regressions (e.g., multiple linear regression), clustering (k-nearest neighbor),
classification (support vector machine, random forest), neural network models [20]. There
are a number of challenges in machine learning based models. One is the acquisition of
sufficient “model-building” data, and the other is about evaluation, i.e., how we know the
model can predict well for unknown attributes as such a model can overfit the training
data, which is so-called the generalization problem.
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With regard to the recent advance of using machine learning for predicting soil at-
tributes, our approach is unique. First, current machine learning-based models assume the
availability of large soil observation datasets as training data, which is often not realistic
because the soil survey data are often static and expired. Prior models commonly use a
cross-validation approach to evaluate the models, and do not take into consideration how
the model should be evolved to future observations. Our framework is to take advantage
of recent advances in soil sensing and unmanned robotics in order to provide sensing
coverage and resolution at scale. More importantly, we propose an active learning-based
modeling building and evaluation process [21,22]—as we shall discuss, using mobile sen-
sors onboard unmanned vehicles, we can iteratively add sensing locations strategically
in order to control the quality of predictive machine learning models. Combined with
land-based sensors, our framework is aimed at effective evaluation and generalization of
the model via a selected set of calibration sensors.

2.3. Path Planning for Mobile Robots

The proposed framework features a set of unmanned vehicles, or mobile robots to carry
mobile sensors. Iteratively, the framework selects a list of sensing locations and dispatches
the vehicles to collect sensor data. Carefully planned paths of mobile robots to visit these
locations can speed up sensor data collection and reduce the cost of robot navigation. This
problem is closely related to multi-Travelling-Salseman Problem (mTSP) [23], a known
NP-hard problem. The goal of mTSP is to calculate the visiting sequence of sites for each
robot while minimizing a cost function. Classical mTSP formulation assume a simple
navigation cost between two connected nodes without concerning the physical obstacles.

For single robot path planning in environments with obstacles, the Probability Roadmap
(PRM) algorithm [24] is widely used. The algorithm takes random samples of the map’s
free space, testing them for their reachability, and use a local planner to connect these
configurations to form a graph. A search algorithm is applied to the resulting graph to
determine a path between the starting and goal configurations.

Multi-robot Information-driven Path Planning (MIPP) and other Gaussian Processes
(GP) based approaches build a model of the spatial distribution of the phenomena of interest
using mutual information entropy between different locations in the environment [25].
Robots are commanded towards high information entropy regions.

Another related area is the multi-robot Simultaneous Localization and Mapping
(SLAM) problem [26–28]. There the objective is to stitch multiple local maps together
to form a global map for path planning, where each local map is constructed using local
range and/or vision sensors. Typical sensors for map building include LIDAR, stereo
cameras, and even regular mono-color cameras. SLAM problems are often solved as non-
linear optimization problems by minimizing the errors between the robot observation and
a generative parametrized trajectory model. The execution of the multi-robot paths in our
proposed framework is controlled by the robot SLAM and navigation software stack using
the GTSAM implementation [28].

Our multi-robot path planning problem differs from the mTSP in several aspects. First,
the cost model is different. The main component in our cost model is the projected accuracy
of the underlying predictive model which is constructed by the visited sensor locations.
As such, our path planning solution is a tour to a subset of sensor sites from a larger pool
of candidates, but not the entire set of the candidates.
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3. Model-Driven Sensing Framework

Our soil sensing framework integrates stationary and mobile sensors within a pre-
dictive modeling and machine learning computational paradigm. Figure 1 illustrates
the proposed sensing framework. The framework features a heterogeneous sensor net-
work, i.e., a sensor network consisting of stationary and mobile sensors. Stationary
sensors are land-based fixed sensors while mobile sensors are mounted on unmanned
robotic vehicles (e.g., UAVs and UGVs). Permanently installed soil sensor devices usually
have multiple special sensors to detect a wide range of physical, chemical, and others
properties of the soil. The robotic vehicles (UAVs or UGVs) can be fitted with com-
pact sensors to collect data. Several commercially available robotic vehicles can be used,
including the Clearpath Jackal robot that is a mobile robot of choice for numerous re-
search projects and current in use in our lab [29,30] (The Clearpath Jackal robot is a
product of Clearpath Robotics Inc., Ontario, Canada. For more information, see https:
//clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/, accessed on 12 Febru-
ary 2023). The examples of the mobile sensors or sensors onboard robotic vehicles can
be a gamma spectrometer, an electromagnetic induction instrument, and a ground facing
camera [31]. Additionally, we assume that UAVs can collect remote sensing data as a
secondary input. An example of the UAV sensor data is multi-spectrum imaging data,
which can be used to predict the interested soil condition, such as soil moisture, soil carbon
content, or soil bulk density [13,14,32–34].

Model
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Figure 1. Model-driven sensing framework with heterogeneous sensor networks and active learning.

The centerpiece of our framework is predictive modeling. Via the data collected from
the heterogeneous sensor network, we can build two types of predictive models.

• Same attribute interpolation model (or interpolation model). From the collected sensor
data, this model estimates the distribution of the observed attributes, which allow
us to further predicts the same soil attributes at an arbitrary location or in a future
time instance. We refer to the former as spatial interpolation and the later temporal
interpolation. For brevity, we call this type of predictive model interpolation model.

• Associative attribute prediction model. This model is built from the data of a set
of attributes; however, the model estimates one or more attributes that are different
from the set of attributes. For instance, we can use multi-spectral images to build a
model to estimate soil bulk density. For brevity, we call this type of predictive model
prediction model.

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
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There are several challenges to building these predictive models. Traditional predic-
tive modeling requires a thorough understanding of the underlying physical/chemical
processes in soils. In many cases, a precise model requires data on soil types, which can
vary significantly by location. These imply that not only do we need domain knowl-
edge/expertise in the physical and chemical processes, but also we often end up with
different predictive models for different regions and parameters setting. To address these
two challenges, to reduce the dependency on specific domain expertise and to obtain a
more generic predictive modeling framework, we propose a data-driven approach and
leverage machine learning algorithms to build predictive models.

Our approach is inspired by the recent success of machine learning algorithms in
discovering complex pattern and latent associations in high dimensional datasets. Our
work addresses the fundamental problem, i.e., whether the algorithms via the two types
of predictive models can produce sufficiently accurate values of soil condition of interest
at desired spatial and temporal resolution. The proposed active learning based model
building pipeline adopts a unique treatment to process the sensor data in three distinct
stages as shown in Figure 1:

• Initial training sensors (or fixed sensors). We plan an initial deployment of a few
stationary sensor, and use the data collected from these initial set of sensors to build a
machine learning-based model for interpolation and associative attribute prediction.
These sensors are fixed because their deployment locations do not change being a
mobile sensor or a stationary sensor.

• Calibration sensors. These are a set of sensors deployed to locations of the user’s
interest to determine whether the framework’s model provides adequate temporal
and spatial resolution and accuracy for the user’s application, such as monitoring
soil condition for a particular agriculture crop. For instance, in our machine learning
based predictive models, data collected via these sensors serve as “ground-truth” to
estimate the accuracy of the models.

• Dynamically deployed sensors (or dynamic sensors). Based on the accuracy of the
predictive models and the user’s requirement, we determine the next iteration of the
active learning model building process. If the accuracy is not sufficient, continue
the active learning process and select locations to set up stationary sensors or to
dispatch mobile sensors. The data collected from these sensors in conjunction with
those collected from the initial training sensors are used to build or improve the
predictive models. For convenience, we call collectively the initial training sensors and
the dynamic sensors as training sensors. The sensing locations of the training sensors
gradually grow as the result of active learning.

Algorithm 1 illustrates the concept of this active learning model building pipeline.
The algorithm first divides the initial batch of sensors into the training sensors (T0) and
calibration sensors (C0). The sensor data (Di) from the training sensors is used to construct
a predictive model (Mi). Next, we evaluate whether the model meets the user requirements
based on the ground-truth observation from the calibration sensors (Ci). If the model
performance is less than satisfactory, the algorithm selects additional sets of training and
calibration sensors and deployment locations (St,i, Sc,i). This is followed by a model
updating using the new training and calibration sensor sets. The entire process will iterate
until the model converge.
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Algorithm 1: Active learning for building predictive models
Input:

S0: an initial set of sensors;
Output:

T: training sensors and their deployment locations;
C: calibration sensors and their deployment locations;
M: final predictive machine learning model;

1 Function ActiveLearningModelBuilding
2 /* Plan and deploy initial training and calibration sensors */
3 (T0, C0)← InitialSensorDeployment (S0)
4 /* Build machine learning model iteratively via active learning */
5 for i ∈ (0, 1, 2, . . .) do
6 Di ← CollectSensorData (Ti)
7 Mi ← BuildMachineLearningModel (Di)
8 /* Compare predictions/interpolations at calibration sensors */
9 if MeetUserRequirement (Mi, Ci, . . .) then

10 return Ti, Ci, Mi
11 end
12 /* Add sensors and locations in order to improve predictive model */
13 (St,i, Sc,i)← SelectSensorsAndLocations (. . .)
14 DeploySensors (St,i, Sc,i)
15 Ti+1 ← Ti ∪ St,i /* Update training sensors and sensing locations */
16 Ci+1 ← Ci ∪ Sc,i /* Update calibration sensors and sensing locations */
17 end
18 end

4. System Design

This section presents the main computational components of our active learning
framework. Two machine learning models are used for model fitting: a spatial interpolation
model and an associative attribute prediction model. Both models are based on the Gaussian
process (Section 4.2). The two predictive machine learning models are embedded in the
active learning process (Algorithm 2). A multi-robot sensing assignment and path planning
algorithm is also discussed.

4.1. Predictive Models

Following a probabilistic machine learning approach, we consider two types of models
as follows [35]:

• A spatial interpolation model assumes that the target function f (l) = q is a spatial
function, where the input l = (lx, ly, lz) specify a spatial location. In our case, similar
to many GIS systems, we can use the geographical coordinate (lx, ly) and depth lz
as input. The predicted quantity q can be any soil properties observed. Given a set
of observations Q = (q0, q1, q2, . . .) observed at locations L = (l0, l1, l2, . . .), we can
approximate the function f by fitting the function with the given data. The dataset
will often contain noise, outliers, and are likely incomplete. There is uncertainty to de-
termine what f is. To address the uncertainty, a probabilistic approach is to infer from
the data a probabilistic distribution of function f , i.e., to infer p( f |Q, L). The spatial
interpolation essentially estimates the distribution of the interested qualities (q∗) at a
given location (l∗),

p(q∗|l∗, Q, L) =
∫

p(q∗| f , l∗)p( f |Q, L)d f (1)

• A different predictive model f (o) = q assume the input o is the observations of a set of
soil attributes. Given a set of observations O = (o0, o1, o2, . . .) and Q = (q0, q1, q2, . . .),
we are to similarly determine function f . Likewise, the data can have noise, may not
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be complete, can also have errors. To make a prediction of q∗ for an observation o∗,
we compute,

p(q∗|o∗, O, Q) =
∫

p(q∗| f , o∗)p( f |O, Q)d f (2)

There is flexibility about what constitutes an observation. To monitor soil condition,
we typically treat oi = (qi,1, qi,2, . . . , qi,nq , li) where qi,1, qi,2, . . . , qi,nq are the values of nq
attributes of interest, such as moisture, temperature, and others while li = (li,x, li,y, li,z)
is the location where we observe the attributes. However, we can also consider for
some applications oi = (qi,1, qi,2, . . . , qi,nq) where location is irrelevant.

Observing the similarity between Equations (1) and (2), we unify the interpolation
and the prediction models. We compute p( f |X, y) where X is the observed data on a set of
“independent variables” and y is the dependent variable. To make a prediction on a new
value of the independent variables (x∗), we will evaluate

p(y∗|x∗, X, y) =
∫

p(y∗| f , x∗)p( f |X, y)d f (3)

For the interpolation model, we let x = l = (lx, ly, lz), the sensing location and y,
a quantity we are interested in. For the prediction model, we set x = o = (q1, q2, . . . , qnq , l)
where (q1, q2, . . . , qnq) is nq quantities of interest and l the location. Alternative, for the
prediction model, we let x = o = (q1, q2, . . . , qnq) when location is irrelevant. We solve the
unified model via Gaussian Process.

Algorithm 2: Model-based heterogeneous sensing with active learning and
Gaussian process

Input:
S0: an initial set of sensors;
R: m mobile robots to be deployed after initial deployment of S0;

Output:
T: T = (St, Lt), training sensors and their sensing locations;
C: C = (Sc, Lc), calibration sensors and their sensing locations;
M: final machine learning model;

1 Function ActiveLearningModelBuilding
2 (T0, C0)← InitialSensorDeployment (S0)
3 LR ← ∅ // sensing locations sampled by mobile robots, initially empty
4 for i ∈ (0, 1, 2, . . .) do
5 D0,i ← CollectSensorData (T0)
6 /* Building machine learning models, interpolation or prediction

models or both using sensed data D0,i ∪ DR,i */
7 Mi ← BuildGaussianProcessModel (D0,i, DR,i)
8 if MeetUserRequirement (Mi, Ci, . . .) then
9 return Ti, Ci, Mi

10 end
11 /* Select candidate sensing locations for mobile robots */
12 Li ← SelectLocations (R, Mi)
13 LR ← LR ∪ Li
14 /* Select subset of LR and plan robots’ paths */
15 (L′R, PR)← PlanRobotPaths (Li, R, Mi)
16 /* robots collect sensing data while traveling via onboard sensors */
17 DR,i+1 ← DeployRobotsToLocations (R, L′R, PR)
18 end
19 end
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4.2. Gaussian Process Models

The probabilistic models in Section 4.1 require us to compute a probability distribution
of function in the general case, i.e., p( f |X, y). An efficient method to define and calculate
such a distribution is via Gaussian process (GP) [35]. The general form of GP is defined as
p(y1, y2, . . . , yn) = p( f (x1), f (x2), . . . , f (xn)), a distribution over the values of the function
at a finite, but arbitrary set of points, x1, x2, . . . , xn where f (xi) = yi, i = 1, 2, . . . , n. In
GP models, we assume p( f (x1), f (x2), . . . , f (xn)) is a Gaussian distribution whose mean
is µ(x) and covariance Σ(x) where x = (x1, x2, . . . , xn). Covariance Σ(x) is given by a
covariance function, calculated by a kernel function, i.e., Σij = Σ(xi, xj) = κ(xi, xj).

The intuition behind GP is to predict an unknow datapoint based on its similarity
to the known or trained observations. Simply put, given an input, say x∗, the machine
learning model predict an output, say y∗ = f (x∗) to be similar to the data, e.g., if xi and
xj are similar to x∗, then the model should be made such that f (x∗) is similar to f (xi)
and f (xj). The covariance function κ(xi, xj) can be thought of as a measure of “similarity”
between points xk, k = 1, 2, . . . , n. For a given point x∗ whose function value is sought for,
if x∗ is similar to xi and xj, y∗ = f (x∗) should be similar to yi = f (xi) and yj = f (xj) [35].
Because of this, the success of a Gaussian process model is by and large determined by the
kernel function that encodes prior knowledge about the similarity of inputs observations xi.

The literature has investigated a number of kernel functions for covariance Σ(x) [36].
Some of these kernel functions, such as the Radial Basis Function (RBF) kernel, are station-
ary while the others not, such as the dot product kernel. Some are very smooth (infinitely
differentiable), such as RBF and the others rough, such as the Matérn kernels. Kernel func-
tions can also be periodic, such as the exp-sine-squared kernel or aperiodic. Experimenting
with different kernels is a method to select the most appropriate one for the data in hand or
the quantities of interest.

Gaussian process models have the advantage that we obtain the probabilistic distri-
bution of y∗ give x∗. Since marginalization, summations, and conditioning of a Gaussian
distribution remains a Gaussian distribution, following the Gaussian assumption (dis-
cussed above), p(y∗|x∗, X, y) is a Gaussian distribution that we fully characterize by its
mean and variance [35,37]. Given this, not only can we obtain a point estimate about y∗,
such as the mean (i.e., ȳ∗), but also the uncertainty of the point estimate. In Section 4.3.2 we
shall discuss how we take advantage of this to select mobile sensor locations to complete
the active learning model building process.

4.3. Mobile Robot Sensing and Path Planning

After an initial deployment of sensors, we leverage m mobile robots to visit to perform
in situ sensing (or proximal sensing) at a set of locations. The overall objective is to identify
p best sensing locations for the m robots to visit in order to improve sensing resolution and
predictive models’ accuracies. The problem can be loosely defined as the multi-Travelling
Salesman Problem (mTSP) [23], albeit with a different model of path cost. Our multi-
robot path planning problem at hand has the following difference over the classical mTSP
problem setting:

• The set of locations where robots must visit and perform sensing is not pre-determined.
Rather, a set of candidate locations is derived from the probabilistic model built from
the sensor data already collected (Section 4.3.2). Our algorithm must select a set of
new locations for new sensor data. The choice of locations must minimize the errors
of the updated data model once the new sensor data is collected by the mobile robots.

• The mobile robot path planning algorithm minimizes a cost/objective function that
contains two parts: (1) the expected errors of the predictive models over the survey
area post deployment of the mobile robots, and (2) the total time required for the
robots to complete the survey mission. The second part is similar to the cost function
in a classical mTSP problem setting [23]. However, in our work, the two cost terms
should be weighted in the overall cost function.
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The path planning problem is a non-linear optimization problem. Given the path cost
function, the problem is not “easier” than mTSP. The mTSP problem is NP-hard and are
typically solved by heuristic algorithms [23]. In this work, we focused on a simple greedy
approximation by decomposing the problem into two steps:

1. Find the p data locations to dispatch the mobile robots, with the objective to minimize
the modeling error;

2. Run an mTSP algorithm to minimize the robot navigation cost.

Additionally, we also consider the following:

• We assume a uniform terrain model such that the navigation cost is a linear function
of the Euclidean distance (i.e., L2 distance) traveled. In practice, navigation cost
by itself can be modeled from robots’ deployments, in particular, implemented in
conjunction with SLAM. Figure 2a shows the map built by a robot when it explores an
unknown area.

• The robot navigation can be realized using either a centralized solution or a distributed
solution. A distributed solution could use an auction-bidding process where a moder-
ator will issue next locations to visit, and each robot bid on the next available target
locations. The bid is the Euclidean distance from the robot’s current location to the
goal, the lowest bid wins, and the robot selects that goal. When there is a structural
change to the communications network, meaning a robot is added or removed, all
auctions are restarted, with the lowest bid winning. Any robot that loses the auction
returns to the start of the process by waiting for a new auction to win before starting
their own.

 

 

 

 

 

 

(a)

 

 

 

 

 

 

(b)
Figure 2. This is the global and local maps constructed by an autonomous robot when exploring an
unknown terrain. The gray area represents the unknown area. (a) Robot autonomous navigation and
mapping; (b) local map with observed obstacles.

4.3.1. Path Planning

The candidate sensing locations and possible paths are represented by a complete
graph G = (V, E). The vertex or node set V to represent the nv candidate locations
while E is the candidate paths. From V we select K, p ≤ K ≤ nv locations that forms a
connected component of G. For each edge, the associated navigation cost is denoted as ci,
i = 0, 1, 2, . . . cne . The set of robots is denoted as R = ri, i = 1, 2, . . . , m. Binary variable
{l}i,j ∈ {0, 1} is set to 1 if a location vi ∈ V is assigned to robot rj. Binary variable
{e}i,j ∈ {0, 1} is 1 if edge ei is assigned to robot rj. We aim to minimize the cost function c:

c = w1 ∑
vi∈V,rj∈R

||g(vi)− f (vi)||{l}i,j + w2 ∑
i∈R,j∈E

ci{e}i,j (4)
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with constraints
{l}1,i = 1, ri ∈ R (5)

∪{ei|{e}i,j = 1, ei ∈ E, rj ∈ R} contains a Hamiltonian path (6)

{e}i,j = 0, i ∈ {i1, i2}, li1,j = 0, li2,j = 0, ei ∈ E, rj ∈ R (7)

∑
vi∈V,rj∈R

{l}i,j ≥ p (8)

∑
vi1
∈V
{l}i1,j = ∑

vi2∈V
{l}i2,j, rj ∈ R (9)

Cost function (4) has two terms. The first is the modeling error and the second is the
robot navigation cost where w1 and w2 are two weights, and w1 + w2 = 1, 0 ≤ w1 ≤ 1,
and 0 ≤ w2 ≤ 1. Function g(·) is the ground truth of the data field, and function f (·)
represents the predicted data field with the addition of the mobile robots. The error term of
the data field is thus denoted by w1 ∑vi∈V,rj∈R ||g(vi)− f (vi)||{l}i,j. The navigation cost
becomes w2 ∑i∈R,j∈E ci{e}i,j the sum of path costs of the robots weighted by w2. If K = p
and w1 = 0, the problem becomes the classical mTSP problem and can be solved as an
instance of Mixed Integer Linear Programming (MILP), whose solver is available in many
optimization packages.

Constraint by Equation (5) is to ensure all robots begin from “home”, i.e., depart from
node 1, the starting location. Equation (6) enforces that the assigned location to any robot
must form a path, which is feasible since we assume the graph is complete and any two
nodes are reachable from each other. Equation (7) requires that an edge cannot be assigned
to a robot if none of its incidental vertices are assigned to the robot. Next, Equation (8)
reflects the requirement that we must schedule the robots to visit at least p locations. Finally,
Equation (9) must hold because the locations visited by a robot becomes a path (i.e., the
edges are connected).

4.3.2. Selections of Sensing Locations

The predictive models are built iteratively. For each iterator, we select nv candidate
locations to deploy m mobile sensors in order to improve the quality of the predictive
models. This process is part of active learning model building in the proposed framework
(Section 3).

There are a number of methods to determine the nv locations, for instance, based
on mutual information entropy or based on prediction error. The intuition of the former
comes from information theory. The locations to be sampled should favor areas with low
information (high entropy), which is more useful to provide correction on the current
predictive model. That of the latter is the result of probabilistic modeling. The probabilistic
model yields a distribution of function f (Section 4.1) from a given set of observations,
from which, we can also know the error distribution over the sensing area. We expect
that adding sensing data from those locations where the errors are the greatest can reduce
the errors.

For either, we propose a simple greedy algorithm to select the candidate data locations.
The initial list of candidate points is selected at the grid points over the target domain D.
We then calculate the local entropy value or standard errors on the initial list. We then
select the top P candidate node. We can then select the top nv candidate node, such as
using Non-Maximum-Suppression (NMS) [38]. The purpose of NMS is to prevent over-
representing of some target areas with high entropy index or high error index. Algorithm 3
is the procedure to select the candidate locations via prediction error.
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Algorithm 3: Sensing locations selection via standard error
Input:

D: domain D;
M: current probabilistic data model n domain D;
d: grid distance for candidate locations that form a grid

Output:
P: a set of mobile sensing locations

1 Function SelectLocationsByError (D, f , d)
2 Z ← GetGridLocations (D, dg)
3 E← M(Z) // estimate standard error from M
4 P← SelectBestLocation (Z, E)
5 return P
6 end

4.3.3. Implementing Path Planning

The path planning formulation in Section 4.2 has a simplified navigation cost assuming
a flat field with no terrain obstacles. In the real world, the actual navigation cost between
two locations are more than the simple L2 distance of the two points. The real-world
scenarios often have natural rock blocks or man-made obstacles between sensor locations;
hence, the straight line is not necessarily the lowest-cost path or a feasible one due to the
robot’s maximum climbing capability. To estimate the actual cost of a path, detailed and
accurate altitude information of the target area is required. This information can be obtained
from public datasets such as the US topographic map database [39], which also contain
information on man-made and natural features on the ground, such as roads, railways,
contours, elevations, and rivers. With the altitude information, the lowest path and its
cost can be estimated using the probabilistic roadmap (PRM) algorithm [24]. Given two
sensing locations, the PRM takes random samples from a surrounding convex space, testing
them for whether they are in the free space, and attempt to connect these configurations to
other configurations to form a connected graph where each edge cost approximates the
terrain-dependent cost. A graph search algorithm is then applied to determine the shortest
path between the source and the destination. This computation only needs to be carried out
once and the results are used by the UpdatePathCosts() function in the main path planning
algorithm (Algorithm 4).

Algorithm 4: M-robot path planning
Input:

m: the number of robots;
L: locations to visit;
n: batch size;

Output:
P: a set of robot paths;

1 Function MRobotsPathPlanning (m, L)
2 P0 ← KNearestNeighbors (m, L) // calculate the initial path set
3 for i ∈ (0, 1, 2, . . . , ..., N) do
4 Ci ← UpdatePathCosts (P0)
5 Pb ← RandomlySelectPaths (n, Pi)
6 Po ← SelectBestPath (Pb, Ci)
7 Pb ← GenericAlgorithm (Po, Pb)
8 Pi+1 ← Pb
9 end

10 return PN
11 end

Next, we use a Genetic Algorithm (GA) based implementation [40] to generate the
complete tour path for each robot. The algorithm uses a multi-chromosome genetic repre-
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sentation to code solutions into individuals. Each chromosome represents a sub-path of a
candidate path. Special genetic operators, such as crossover, sliding, and flip are used to
allow sub-path to be mutated and exchanged among the solution population. The main
difference in our implementation is: (1) the number of salesmen (i.e., the number of robots
in our case) is no longer an optimization goal and is treated as a constraint, (2) we use K-
Nearest-Neighbor (KNN) clustering to generate the initial site allocation in the population,
(3) the GA minimizes the max cost of the M robot, instead of the total cost in the original
version. The algorithm is described in Algorithm 4 below.

5. Evaluation and Numerical Experiments

This section provides the assessment process for the quality of the Gaussian process
models, the effectiveness of active learning, and the robot path planning algorithm. It is
notable that the main focus of this work is the data processing framework on an established
dataset. Nevertheless, it is necessary to discuss the characteristic of the robot and appropri-
ate sensors/equipment in a deployed heterogeneous system. Table 1 summarizes the robot
and sensor details.

The robot platform is model Jackal, a skid-driving autonomous robot manufactured
by Clearpath Robotics. The Jackal robot is equipped with a suite of navigational sensors,
including a LIDAR sensor, IMU sensor, and an accessory vision sensor to provide basic
autonomous driving functionality. The navigational sensors allow the robot to plan a
motion path toward a goal location. The built-in SLAM software stack can also avoid
obstacles in the planned route and make local adjustments. The robot baseline configuration
has an endurance of 4 h running at 2 m/s.

In a physical deployment, the field soil data are acquired using the in situ sensor or
laboratory analysis of the soil sample collected by the robot. As shown in Table 1, many
soil data can be collected by the robot in the field using the rugged sensor packaging. Soil
moisture, canopy radiometer, salinity, pH, and nitrogen sensors are examples of in-site
devices. For the type of data that cannot be measured with portable sensors, such as the
metal concentrations, samples will be collected by the Jackal robot for lab test.

Table 1. Robot platform and sensor characteristics [15,41–48].

Robot Platform

Robot Dimension Speed Climbing Slope Lidar range Endurance Payload

50× 43× 25 cm 2.0 m/s 0–20◦ 200 m 4 hour 20 kg

Sensor Characteristics

Soil Sensor Mechanism Soil Properties Remark

Salinity Sensor Electrical Salinity Compact
pH Sensor Electrical pH Level Compact
Density Mechanical Soil density Compact
Nitrogen Optical Soil nitrogen Compact
VH400 Moisture Sensor Electrical Water content Portable, submerging
NDVI canopy sensor Optical-Electrical Radiometer Compact
Agilent 4210 MP-AES Plasma-spectral Metal analyzer Laboratory
GEN3 LITE Sampling Robot arm Samples collection Portable

5.1. Evaluation Data Set

We use the Meuse data set for the evaluation and experiments [49,50]. The Meuse data
set is publicly available [51,52] and is widely studied for soil study [53–55]. The dataset
contains 155 soil samples collected in a floodplain of the Meuse river near Stein, South
Limburg, in the Netherlands [56]. The main attributes include the concentrations (measured
in parts-per-million or ppm) of four heavy metals: cadmium, copper, lead, and zinc.
Additional attributes include the geolocations of the soil samples, the distances from the
sampling points to the Meuse river, the flooding frequency classes (1 for high flooding
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frequency, 2 for medium flooding frequency, and 3 for no flooding), the types of soils
following the Dutch soil classification system (1 for Rd10A—Calcareous weakly-developed
meadow soils, 2 for Rd90C-VIII—Non-calcareous weakly-developed meadow soils, and 3
for Rd10C—Red Brick soil, fine-sandy, silty light clay). The elevation is measured as relative
elevation above the local river bed in meters. The tabular data also record the percentage of
organic matter, the presence of lime (0 for absent, 1 for present), and land use class (such as
Aa for Agriculture but unspecified, Ab for Agriculture—sugar beets, Ag for Agriculture—
small gains, and so on, in total, 16 classes). To help interpret the evaluation results below,
we present descriptive statistics including minimum, maximum, mean, median, standard
deviation of the concentrations of the 4 heavy metals in Table 2.

Table 2. Heavy metal concentration (ppm) statistics of Meuse data set.

Heavy Metal Minimum Maximum Mean Median Standard Deviation

Cadmium 0.20 18.10 3.25 2.10 3.51
Copper 14.00 128.00 40.32 31.00 23.60
Lead 37.00 654.00 153.36 123.00 110.96
Zinc 113.00 1839.00 469.72 326.00 365.89

5.2. Evaluation Metrics

To evaluate the predictive models f : X 7→ y, where X ∈ Rd, d ∈ N, and y ∈ R, we
choose two regression evaluation metrics, the R-squared (R2) and the Mean-Absolute-Error
(MAE) [57]. The R-squared is also called the coefficient of determination and is defined
as R2 = ∑(y∗ − ȳ)/ ∑(y− ȳ). It is “a standardized measure of how much of the variance
in the dependent variable is ‘explained’ by the independent variables in the regression
model [58].” High R2 values indicate a good agreement between the regression model and
the training data set [58,59]. Although R2 is the de facto tool to evaluate regression models,
there are caveats [58,59]. To supplement R2, we also examine MAE, defined as |y∗ − y|,
the magnitude of error of the estimate when compared to the ground truth [57].

5.3. Predictive Models

We consider three predictive models, a spatial interpolation model that interpolates
heavy metal concentrations, an associative attribute prediction model that predicts heavy
metal concentrations at arbitrary locations, a combined model that integrates both interpola-
tions and prediction. The building block of our predictive models is a Gaussian process
model [60] with a Rational Quadratic kernel function k(xi, xj) = (1 + d(xi, xj)

2/(2αl2))−α.
Here d(·, ·) is the Euclidean distance and is particularly suitable for spatial interpolation
and prediction models where location is an independent variable. The kernel function
is parameterized by α, the scale mixture parameter and l, the length scale of the kernel.
Via a simple grid search, we set these two hyperparameters as α = 10 and l = 10 unless
otherwise specified. During training, the injection noise is controlled by a hyperparameter
αgp added to the diagonal of the kernel matrix. This can be interpreted as the variance of
additional Gaussian measurement noise on the training observations. We set it as αgp = 0.2
unless otherwise specified.

In statistics and machine learning, one confounding problem is the trade-off between
two types of error: bias errors and variance [61]. The former is the difference between
a model’s prediction and the ground truth, while the latter is the spread of the model’s
prediction on the data. A high bias error is often the result of under-fitting, which leads to
inaccurate prediction. On the contrary, a high variance error means that the model does
not generalize well to the extended dataset domain, which can result from overfitting. It is
well-known that we cannot simultaneously reduce both types of error and a trade-off is
often made for a particular modeling problem.

We use a 10-times 5-fold cross-validation technique to balance the trade-off between R2

and MAE error. In the 5-fold step, we split the data into five equal-size partitions. For the j-



Sensors 2023, 23, 2365 15 of 25

th run, 1 ≤ j ≤ 5, we use 80% of the samples for training (partitions
{i|1 ≤ i ≤ 5, i 6= j}), and the rest 20% (partition j) for evaluating. We repeat the above
5-fold cross-validation ten times, each after randomly shuffling the samples. In the train-
ing data, the heavy metal concentrations are known. In the evaluation data, the heavy
metal concentrations are treated as unknown during prediction and the prediction model’s
outputs are y∗. By comparing the ground truth values of the evaluation data with the
predicted, we compute two evaluation metrics, R2 and MAE. Since we repeat the evaluation
for 10× 5 = 50 times, the two metrics are averaged over the 50 repetitions. The averaging
can reduce variation in the model assessment, i.e., we can reproduce the metrics across
multiple runs of the 10-times 5-fold cross validation despite randomness in the order of the
data samples and the training procedure.

5.4. Baseline Predictive Model

For the spatial interpolation model, the locations (lx and ly) of 80% of samples are for
building the model, we then use the model to compute interpolations at the locations of
the samples in the evaluation data. By comparing the interpolations with the group truth
values, we compute two metrics, R2 and MAE. The reported metrics in Table 3 are the
averages of the two metrics and their standard deviation over the 50 repetitions.

Table 3. Standalone spatial interpolation model via Gaussian process.

Heavy Metal
Training Data Evaluation Data

R2 ± σ MAE ± σ R2 ± σ MAE ± σ

Cadmium 0.89± 0.02 0.76± 0.08 0.44± 0.20 1.61± 0.36
Copper 0.89± 0.02 5.46± 0.47 0.52± 0.16 11.10± 2.05
Lead 0.88± 0.03 24.89± 2.99 0.47± 0.23 49.81± 10.00
Zinc 0.87± 0.01 90.19± 6.52 0.57± 0.17 152.98± 31.75

Next, we build a prediction model to predict a new attribute from sensor data. A
sensor here collects or computes four attributes, the distance to the Meuse river, the flood
frequency class, the elevation, and the percentage of organic matter in soil. These attributes
are independent variables. From a new observation, we want to predict a heavy metal
concentration. Table 4 summarizes the predictive performance of the model.

Table 4. Standalone prediction model via Gaussian process.

Heavy Metal
Training Data Evaluation Data

R2 ± σ MAE ±σ R2 ± σ MAE ±σ

Cadmium 0.84± 0.03 0.83± 0.08 0.77± 0.08 1.00± 0.20
Copper 0.85± 0.02 6.08± 0.41 0.77± 0.08 7.49± 1.27
Lead 0.87± 0.02 26.15± 2.15 0.59± 0.13 46.01± 6.85
Zinc 0.86± 0.01 90.74± 5.44 0.74± 0.07 122.63± 18.13

Finally, we combine the interpolation and the prediction models. This is to treat the
locations and the sensed data (e.g., the distance to the Meuse river, and the flood frequency
class, the elevation, and the percentage of organic matter in soil) as independent variables,
and predict the heavy metal concentrations. Table 5 gives R2 and MAE for the model.

Table 5. Combined spatial interpolation and prediction model via Gaussian process.

Heavy Metal
Training Data Evaluation Data

R2 ± σ MAE ±σ R2 ± σ MAE ±σ

Cadmium 0.88± 0.01 0.73± 0.06 0.78± 0.08 0.98± 0.21
Copper 0.86± 0.02 5.79± 0.47 0.76± 0.09 7.55± 1.35
Lead 0.92± 0.01 20.33± 0.97 0.67± 0.11 39.80± 7.95
Zinc 0.90± 0.01 75.51± 4.62 0.75± 0.08 114.66± 23.37
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The experiment results are summarized in Tables 3–5. We have several observations:

• All three predictive models can fit training data very well.
• The prediction model and the combined model outperform the interpolation model in

both R2 and MAE by a wide margin.
• The performance metrics obtained from the evaluation data are not as good as those

from training data. As such, the metrics from the training data alone cannot be used
to determine the quality of the fit. Thus, it is important to use a separate data set to
evaluate the model and to determine if the model meets the users’ need. This provides
a justification of the calibration sensors for the proposed framework and system.

• The combined model can have a significant improvement over the standalone spatial
interpolation model and the standalone prediction model. As shown, although the
metrics are almost identical among Cadmium, Copper, and Zinc, the metrics of Lead
is a significant improvement, namely, R2 of the combined model is improved by
(0.67− 0.47)/0.47 ≈ 43% over the interpolation model and (0.67− 0.59)/0.59 ≈ 14%
over the standalone prediction model.

5.5. Predictive Model via Active Learning

This section examines the predictive modeling augmented with active learning strategy.
We set m = 1 and fix to a single location to deploy the robot to collect samples.

We re-examine three models, a spatial interpolation, a prediction, and a combined
model in numerical experiments. With active learning strategy, we divide the data samples
into three parts, the evaluation data set, the initial training set, and the candidate data set
for improving the predictive models. The evaluation data set consists of randomly selected
20% samples from the whole data set. The initial training data set is 8% random samples,
i.e., 10% randomly sampled from the remaining 80% samples. The candidate data set is the
rest, 72% random samples whose locations are to be visited by a mobile robot. The active
learning model building process follows Algorithm 2 where it selects new sensing location
via Algorithm 3.

Figures 3–5 illustrates the model building process of the spatial interpolation model,
the prediction model, and the combined model. We observe the following:

1. These results shows that R2 and MAE improves quickly as new sensing locations are
visited by a mobile sensor over iterations.

2. Once the model converges to the best predictive performance indicated by the greatest
R2 and the lowest MAE; however, it does not help further by adding more sensing
locations and will eventually degrade the predictive performance. This is exactly
what we would expect from an effective active learning model building pipeline that
aims to select the best sensing locations at each iteration—since we evaluate the model
by using a fixed set of candidate sensing locations, eventually, we are left with a set of
sensing locations that are or whose data samples are out of distribution, such as less
informing, or more noisy, or erroneous, or lack of constraining sensors nearby.

3. The combined model significantly improves not only the predictive performance but
the stability or the trend of convergence of the model when compared to the other two.
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Figure 3. Standalone spatial interpolation model built with active learning. The figures show R2 and
MAE for predicted heavy metal concentrations on the evaluation data set. (a) R2 for interpolated
cadmium concentration; (b) MAE for interpolated cadmium concentration; (c) R2 for interpolated
copper concentration; (d) MAE for interpolated copper concentration; (e) R2 for interpolated lead
concentration; (f) MAE for interpolated lead concentration; (g) R2 for interpolated zinc concentration;
(h) MAE for interpolated zinc concentration.
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Figure 4. Standalone prediction model built with active learning. The figures show R2 and MAE
for predicted heavy metal concentrations on the evaluation data set. (a) R2 for predicted cadmium
concentration; (b) MAE for predicted cadmium concentration; (c) R2 for predicted copper concentra-
tion; (d) MAE for predicted copper concentration; (e) R2 for predicted lead concentration; (f) MAE
for predicted lead concentration; (g) R2 for predicted zinc concentration; (h) MAE for predicted zinc
concentration.
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Figure 5. Combined interpolation and prediction model built with active learning. The figures
show R2 and MAE for predicted heavy metal concentrations on the evaluation data set. (a) R2

for predicted cadmium concentration; (b) MAE for predicted cadmium concentration; (c) R2 for
predicted copper concentration; (d) MAE for predicted copper concentration; (e) R2 for predicted
lead concentration; (f) MAE for predicted lead concentration; (g) R2 for predicted zinc concentration;
(h) MAE for predicted zinc concentration.

5.6. Active Learning with Mobile Sensors (Robots)

Finally, we present the numerical experiment with both active learning and multi-robot
planning enabled. For mobile robot path planning. Figure 6 shows the generated location
assignment and the corresponding visitation sequence for the robots. We fix m = 3 for a
three robot team. The resulting task requires each robot to travel about 14,000 m. As shown,
the assigned workload of the three robot is balanced.

During the path planning process, the target sensing locations for each robot evolve by
mutating, crossing-over, and shrinking within the feasible operations. Figure 7 shows the
initial sensing locations and the final sensing locations when the model reaches an adequate
performance requirement. In this case, the search will terminate when R2 computed from
the calibration sensors converge. Figure 8 shows the visualization of Zinc concentration
built by the final predictive model. The ground truth and the sample locations are also
shown. We select the best predictive model based on R2 computed on the calibration
sensors, i.e., we continue the active learning process until R2 begins to drop after reaching
the maximum, and select the model when R2 is the greatest. We use the final model to
predict the entire set of the Meuse data points (155 predicted values (denoted as y∗)). We
also compute the prediction error (i.e., y∗ − y) for the entire dataset. The result shows that
the predicted concentrations and the ground truths are very close.
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Figure 6. Generating robot paths for m = 3 robots. (a) Sensing locations to be visited by the robots;
(b) Distance matrix between any two sensing locations where a location is represented by its index.
(c) Paths traveled by the m = 3 robots when the total distance is minimized. We differentiate
the paths of the m = 3 robots using three different colors. (d) Total distance history over path
planning iterations.
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Figure 8. Predicted heavy concentration using the combined model, ground truth, and prediction
error (i.e., y∗ − y). (a): predicted Zinc concentration in soil; (b): ground truth of Zinc concentration;
and (c): prediction error of Zinc concentration.
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6. Discussion

We shall discuss some limitations of this work and future work that might address
the limitations.

6.1. Bias-Variance Trade Off and Calibration Sensors

It is a common practice to evaluate a machine learning model using cross validation
where we divide the data into training and test data. This concept motivates us to design
our active learning model building with a set of calibration sensors. During active learning,
we select a new sensing location based on a metric on predictive performance, e.g., in
Algorithm 3, we select sensing locations with large predicted standard error. For this, we
cannot rely on training data alone. We illustrate this in Figure 9. For this, our experimental
setting is as follows. We conduct a 10 times 5-fold cross validation. The validation data
is akin to the data collected by the calibration sensors. In the Gaussian process, we use
hyperparameter αgp to indicate the noise level in the data. The noise level is unknown
and αgp can be set to different values. Figure 9 shows that when αgp is small, the Gaussian
process model attempts to fit the data closely, which results in R2 close to 1 and also
low MAE. As αgp increases, the model do not fit the data exactly, leading to smaller R2.
Without the evaluation data, the data from the calibration sensors, we would select models
with high R2 or low MAE. However, this is clearly problematic. R2 obtained from the
evaluation data will increase with αgp, an opposite trend to that obtained from training
data. Thus, we should select sensing locations based on evaluation data.

6.2. Limitation and Threats to Validity

This work focuses on proposing a model building framework for soil sensing aimed
to satisfy the application requirements of the users, such as agricultural specialist and
climate scientists. To support the argument that the proposed framework can deliver
soil data to the users in a cost-efficient fashion, we design a soil sensing system in the
framework. The centerpiece of the system is the building of Gaussian process predictive
models iteratively via active learning.

To evaluate the system, we conduct numerical experiments. We select two regression
model performance metrics, R2 and MAE. Users can have a diverse range of requirements,
many of which are beyond our knowledge. Nevertheless, the end users may opt for
different metrics to gauge the model building process.

For the evaluation, we must have the ground truth soil data. In this work, we leverage
the Meuse data set available in the public domain. Clearly, the Meuse data set cannot
represent soil conditions that exhibit far greater heterogeneity. As such, there is an internal
thread of validity whether our observations obtained from the numerical experiments can
hold for other data set.

The system relies on the Gaussian process models. With a Gaussian process model,
we obtain in essence a joint probability distribution of the relevant variables and from the
distribution, we can compute the variance and standard error. Because of this convenience,
we choose to implement the active learning modeling building process leveraging the
Gaussian process models. One limitation is that Gaussian process models can suffer from
scalability problems when dealing with a large amount of data [62].

Additionally, this work gives emphasis to the model building process other than the
best performing models. Recently deep learning models show promise for a wide range
of applications [63]. It can be the case that deep learning-based models outperform the
Gaussian process models examined in this work.

Last but not least, our numerical experiments assume a uniform terrain model such
that the navigation cost is a linear function of the Euclidean distance traveled. This is an
oversimplification, in particular, for ground mobile robots since the robots’ navigation cost
depends on not only the distance traveled but also the terrain and the ground condition.
The results of our navigation model can be extended to include terrain dependent costs as
discussed in Section 4.3.3.
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6.3. Future Work

To address the limitations, we consider four directions. First is to implement the active
learning model building process with the mobile robot platforms we have and to deploy
and experiment them in an agricultural field. This achieves two objectives. This shall
be a usable system for agriculture users, and we shall collect additional sets of soil data
samples to validate this study. Second is to extend this work to deep learning and other
models, such as deep neural networks, ensemble models, and tree-based models [64,65].
We anticipate these models have the ability to capture complex soil conditions, and thus
lead to superior predictive performance. The third is to integrate geographical features,
chemical, physical, and geological models to modeling building (active learning) and
predictive modeling [55,66–68]. Finally, although it is a challenging and complex optimiza-
tion problem, it is worth investigating path planning for our sensor system in a variety
of terrains.
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Figure 9. Bias-variance trade off. (a): Cademium; (b): Copper; (c): lead; (d): Zinc.

7. Conclusions

In this work, we propose a soil monitoring framework characterized by heterogeneous
sensor networks consisting of stationary and mobile sensors. The framework is centered
on predictive modeling built using an active learning model building process. This is
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to reflect on two important constraints that likely impede the process of bringing recent
advances in robotics and predictive modeling to soil monitoring. Soil monitoring is likely
in the tool set of a diverse range of users because soil provides ecosystem services to
mankind. These users have different application requirements. It is a challenge to meet
the requirements. Another constraint is that because of the complex geological, chemistry,
and physical process embedded in soil process, it is rare that we can fully understand the
complex process and the users may also gradually learn what they need. The proposed
framework thus provides great flexibility to meet diverse user requirements, and via an
iterative active learning process, the framework gradually accommodate users’ evolving
requirements, newly acquired sensing devices, and integrate user’s new understanding.

Within this framework, we implement a system that via active learning to select
locations to deploy mobile sensors and to build three types of predictive models. The system
demonstrates the feasibility and the promise of the framework.

Additionally, the numerical experiments with the system also lend us worthy lessons.
First, naively adding more sensed data may not improve the performance of predictive
models. Second, the combined model integrating interpolation and prediction leads to the
best predictive performance.
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