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Abstract: The concept of Digital Twin is of fundamental importance to meet the main requirements
of Industry 4.0. Among the standards currently available to realize Digital Twins there is the Digital
Twins Definition Language. Digital Twin requires exchange of data with the real system it models
and with other applications that use the digital replica of the system. In the context of Industry 4.0,
a reference standard for an interoperable exchange of information between applications, is Open
Platform Communications Unified Architecture. The authors believe that interoperability between
Digital Twins and Open Platform Communications Unified Architectures communication standard
should be enabled. For this reason, the main goal of this paper is to allow a Digital Twin based on the
Digital Twins Definition Language to exchange data with any applications compliant to the Open
Platform Communications Unified Architecture. A proposal about the mapping from Digital Twins
Definition Language to the Open Platform Communications Unified Architecture will be presented.
In order to verify the feasibility of the proposal, an implementation has been made by the authors,
and its description will be introduced in the paper. Furthermore, the main results of the validation
process accomplished on the basis of this implementation will be given.
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1. Introduction

The fourth industrial revolution (Industry 4.0) has been aimed from its very beginning
to the creation of more and more flexible, interoperable and innovative systems and services
to achieve effective business models that enhance the quality of production [1–3].

Industry 4.0 is featured by a continuously-evolving digital transformation. It aims to
automate all the traditional industrial practices, and it hopes to do so by bringing as much
of the equipment from the physical space into the virtual domain. This is where the Digital
Twin (DT) comes into play. Digital Twin emerged as an experimental technology set to
enable replication of elements, functions, operations and dynamics of physical systems into
digital world, with better control at testing, analysis, prediction and hazard prevention for
sensitive processes [4,5].

Digital Twins are used in different industrial settings, including health surveillance,
agriculture, smart cities, smart grids, manufacturing, meteorology, education and auto-
mobiles. Digital Twins support the development of production processes making them
reliable and flexible, enabling to visualise, monitor and optimize processes [4–7].

Different organisations are currently working aiming to standardize Digital Twin
definition, interoperability and how to interact with these Digital Twins. Two notable
projects in this area are the Asset Administration Shell (AAS) [8–10] and the Digital Twin
Definition Language (DTDL). The DTDL was born as an open-source initiative by Microsoft,
and it is already used in many commercial services offered by Microsoft, such as IoT Hub,
IoT Central and Azure Digital Twins [10,11].

One of the main features of a Digital Twin is the communication with the physical
world, from which a Digital Twin must receive the current state (e.g., collection of data
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measured by sensors). At the same time a Digital Twin has the need to publish output
data produced as a result of the processes accomplished on the physical system for which
it realizes a replica. A Digital Twin may have also the need to exchange data with differ-
ent applications according to the aims to be reached (e.g., monitoring, testing, analysis,
prediction and maintenance). For this reason, data exchange must be considered an im-
portant part of a Digital Twin; without data exchange, most of functions of a Digital Twin
could not be realized [12]. Interoperability of the data exchange seems a very important
requirement, allowing a Digital Twin to communicate with a multitude of physical systems
and applications.

Indeed, in the context of Industry 4.0, much effort has been spent and is currently
being accomplished to fully integrate industrial applications in a multitude of production-
related fields, safety and communication of machines, where they must interact and align
their information models. An overview of the main trends about data integration and
interoperability may be achieved by reading [13,14]. Interoperability between data and
applications in industrial context is considered one of the main goals of Industry 4.0 [15–17].

Open Platform Communications Unified Architecture (OPC UA) [18], is considered
one of the main reference standards for an interoperable exchange of information between
applications inside Industry 4.0 [19]. OPC UA is widely used in industry as it is regarded
as the most accepted protocol that harmonizes machine-to-machine interaction [20]. On the
basis of its powerful capabilities, OPC UA is one of the main candidates for leading the stan-
dardization and systems integration for present and future application frameworks [19,21].
The OPC UA is based on two communication models: client/server and publish/subscribe;
a comprehensive information model allows to represent data and the relevant semantics.

The idea behind the paper is to enhance the interoperability of a Digital Twin through
integration into the OPC UA domain. Figure 1 shows a Digital Twin exchanging data
with the real system it models, and with applications using the DT (as said before, these
applications may realize data analytics or maintenance, for example). Data exchange
with applications based on OPC UA communication system may be enabled through a
solution able to map the entire set of information maintained by a Digital Twin into the
OPC UA domain. Mapping should include every semantic aspect of the Digital Twin,
in order to really enable an interoperable data exchange between the two domains. The
proposal presented in this paper is based on the use of an OPC UA Server able to realize
this mapping. The OPC UA Server shown by Figure 1 is able to represent each element of
the Digital Twin in the OPC UA domain, making available the Digital Twin and its relevant
content to whatever application based on OPC UA client role. The mapping solution
here presented enables a Digital Twin to have a counterpart in the OPC UA domain;
each information (including semantic) maintained in a Digital Twin can be published by
the OPC UA Server, allowing an interoperable data exchange with a plethora of OPC
UA-compliant applications.

Among the available Digital Twins, the Digital Twin Definition Language model will
be considered in this proposal. The paper will present the use of the OPC UA information
model to structure and display a Digital Twin based on DTDL. The definition of a custom
data structures in the OPC UA information model, able to represent each element of the
original DTDL-based Digital Twin, will be introduced in this work. The proposed mapping
has been implemented in order to be validated; the relevant implementation and validation
will be introduced in the paper.

The paper is organised as it follows. Section 2 will highlight the related work in litera-
ture, pointing out the originality of this proposal. Sections 3 and 4 will give an overview on
OPC UA and DTDL, respectively. Section 5 will describe the proposed mapping between
DTDL and OPC UA information model. Section 6 will describe the implementation of the
proposed solution and the process adopted for the relevant validation. A final section will
allow to make discussions about the proposal and conclusions.
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2. Related Work

As said in the introduction, the main feature of the proposal is the use of OPC UA
information model to realize a mapping from the representation of the data exposed by a
DTDL-based Digital Twin and the OPC UA domain. Given this goal, this section aims to
analyze the works present in the current literature in order to deal with the two important
following issues.

The use of OPC UA in this proposal is justified if the reader realizes that OPC UA is
widely used in the current literature to realize mappings of information model between
different domains; for this reason, the first part of this section is devoted to this demonstra-
tion giving to the reader the overview of the main publications related to the use of OPC
UA to the mapping of different domains.

The proposal of using OPC UA to map the DTDL-based Digital Twin, is justified
if current literature does not present any other work about the same subject; for this
reason, the second part of this section is devoted to this demonstration, giving an overview
about the entire set of publications about the integration of OPC UA and the DTDL-based
Digital Twin.

Current literature provides a lot of publications pointing out the advantage in terms
of interoperability of the use of OPC UA information model to structure and expose
data coming from different domains of interest. An overview of examples of integration
of OPC UA and other domains currently present in the literature, will be given in the
following. In [22] a proposal to map Common Industrial Protocol (CIP) to OPC UA is
given; as known, CIP is an industrial protocol for industrial automation applications and
the proposal of a mapping with OPC UA is aimed to enhance its interoperability. In [23],
mapping of EtherCAT communication standard to OPC UA is presented; in this paper
is clearly stated that OPC UA is a widely used industrial communication middleware
and ensures interoperability between the devices, offering the possibility to map domain-
specific data models to OPC UA information model. In [24,25], interoperability between
OPC UA and oneM2M is dealt; this mapping allows the enhancement of interoperability
with Internet of Thing (IoT) domain, as oneM2M is considering one of the leading standards
for the IoT. In [26,27], the mapping between the OPC UA and OCF computer model is
presented, enabling interoperability in the smart home and smart building domain. In [28],
mapping between OPC UA and the IEC 61804 Electronic Device Description Language
(EDDL) is presented; this work allows integration of field device descriptions based on
the international standard IEC 61804 into OPC UA. Another example is given by [29]
where mapping between OPC UA and Unified Modeling Language (UML) is presented.
A formal mapping between OPC UA and the Semantic Web is given by [30]; an OPC UA-
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based mapping solution for statistically and dynamically typed programming languages is
proposed in [31]. A paper [32] presented an interoperability solution based on OPC UA in
service-oriented architectures. A mapping of OPC UA with IEC 61850 SCL SmartGrid was
proposed by [33].

The overview just given demonstrates that OPC UA is widely used to map different
domains enhancing interoperability. One question remains unanswered; it is about the
existence of mapping approaches between OPC UA and DTDL-based Digital Twins. This
question is very important in order to point out the originality of the paper. For this reason,
the second step accomplished in this section is that to give to the reader an overview about
the entire set of publications about the integration of OPC UA and the Digital Twins and in
particular about DTDL-based Digital Twins.

Among the Digital Twins currently available, several works focus on the mapping of
Asset Administration Shell DT and OPC UA. Mapping of AAS DT to OPC UA is proposed
by [34]. Another example of integration of AAS with OPC UA is given by [35]. Integration
of AAS DT and OPC UA is also subject of the official specifications [8,36], which define an
OPC UA model to expose AAS information to OPC UA applications and to exchange asset
information between Industry 4.0 components.

To the best of authors’ knowledge, considering the integration of DTDL-based Digital
Twin with OPC UA, only the software solution, called OPCUA2DTDL [37], is currently
available. This solution aims to convert an OPC UA information model into DTDL con-
structs; a DTDL digital model can be built starting from its definition based on OPC UA
specification. The main limit of this solution is that mapping in the opposite direction is
not allowed. In other terms, given an already defined DTDL digital twin is not possible to
achieve its counterpart in the OPC UA domain. Introduction pointed out that the paper
has this aim, proposing an integration able to map a Digital Twin realised by DTDL into
OPC UA information model. As Figure 1 shows, the proposed mapping solution is able to
represent every data collected by a DTDL-based Digital Twin into the OPC UA domain; in
other words, the mapping proceeds from the DTDL-based Digital Twin towards the OPC
UA and not in the other way.

In conclusion, this section pointed out that OPC UA is one of the main standards
used to enhance interoperability of different domains by mapping solutions, and to the
best of authors’ knowledge, the proposed mapping solution between DTDL and OPC UA
is original.

3. OPC UA Information Model

The OPC UA communication standard is based on both client/server and pub-
lish/subscribe communication models and provides a semantically enriched information
model in order to represent data.

The OPC UA Information Model provides a standard way for servers to expose
information to clients; publish/subscribe communication model is based on the same
information model used for the client/server communication model. The set of information
is maintained through OPC UA Nodes grouped together to compose the so-called OPC
UA AddressSpace [18,38,39]. The OPC UA Information Model is based on object-oriented
programming, so that some nodes representing instances inherit from other nodes defining
types; multiple inheritance and object composition are allowed [38].

Each OPC UA Node belongs to a class named NodeClass. Each NodeClass is derived
from the Base NodeClass which defines the common attributes of OPC UA Nodes, among
which: NodeId (which unambiguously identifies a Node in the OPC UA AddressSpace),
Description (which is a textual description of the OPC UA Node), BrowseName (used
to identify the OPC UA Node when browsing the OPC UA AddressSpace), WriteMask
(exposing the possibilities of a client to write the attributes of the Node), NodeClass (which
identifies the NodeClass of a Node) and DisplayName (which contains the name of the
OPC UA Node that should be displayed in an user interface). In the following, a very
concise overview of the main OPC UA NodeClasses will be given.
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Variable NodeClass is used to model data. It features an attribute named Value,
containing the data, and an attribute named DataType specifying the type of the content
of the attribute Value. Two types of Variables are defined: Property and DataVariable.
Property contains information describing particular features of other OPC UA Nodes (e.g.,
semantic information). A DataVariable maintains data values of a particular system (e.g.,
information produced by a temperature sensor in a control system).

Method NodeClass allows to model callable functions that initiate actions within an
OPC UA Server. One Method features two OPC UA Properties named InputArguments
and OutputArguments, used to specify the input and output arguments of the Method.

Object NodeClass is used to represent real-world entities such as system components,
hardware and software components or even a whole system. An OPC UA Object is a
container for other OPC UA Objects, Variables and Methods. As the Object Node does not
provide for a value, an OPC UA DataVariable Node must be used to represent the data of
an Object.

OPC UA Information Model includes NodeClasses defining types. ObjectType Node-
Class is used to hold type definition for OPC UA Objects. OPC UA defines the BaseObject-
Type which all the ObjectTypes must be extended from. OPC UA already defines several
standard ObjectTypes derived from BaseObjectType. An example is FolderType whose
instance, named Folder, is an Object organizing the AddressSpace into a hierarchy of OPC
UA Nodes; it represents the root node of a subtree.

VariableType NodeClass is used to provide for type definition of Variables. OPC UA
standard defines the BaseVariableType, which all the VariableTypes must be extended
from. Moreover, several standard VariableTypes derived from BaseVariableType are al-
ready defined by the standard. Among them there are the BaseDataVariableType and the
PropertyType. The former is used to create an instance of a DataVariable Node, whilst the
latter defines a Property Node.

DataType NodeClass is used to provide type definition of the Value attribute of a
Variable Node, as said before. DataType may be Built-in, Enumeration or Structured; arrays
of elements are also allowed.

Relationships may be defined between OPC UA Nodes; they are called References. The
ReferenceType NodeClass is used to define different semantics for References. References
may be classified in two different main categories: Hierarchical and NonHierarchical.

Among the Hierarchical References, the following ones will be used in the paper:
HasComponent, HasProperty and Organizes. The HasComponent is a Reference featuring
an OPC UA Object or DataVariable as the source, and an OPC UA Object, a DataVariable
or a Method as the target Node. If the source is an Object, the semantic associated to this
reference is that the source is made up by the target OPC UA Object, DataVariable and
Method Node. If the source OPC UA Node is a DataVariable, the target Nodes must be
other OPC UA DataVariables; the meaning, in this case, is that the source variable is made
up by a set of other variables. HasProperty Reference may connect a source OPC UA Node
to an OPC UA Property Node; the meaning is that the source Node features a property
described by the target Node. Organizes Reference allows to organize OPC UA Nodes
inside a Folder.

Among the NonHierarchical References, there are the HasTypeDefinition, HasSubtype
and HasModellingRule. HasTypeDefinition is used to bind an OPC UA Object or Variable
to its ObjectType or VariableType, respectively. HasSubtype Reference expresses a subtype
relationship between types. The HasModellingRule Reference is used to describe how
instances of a particular type should be created. The source of this Reference is named
InstanceDeclaration, whilst its target is a ModellingRule Object. An InstanceDeclaration is
an Object, Variable or Method that is the target of a Hierarchical Reference starting from
an ObjectType or VariableType Node (each of which will be called OPC UA type in the
following). A ModellingRule Object specifies what happens to the InstanceDeclaration
with respect to instances of the relevant OPC UA type. Several ModellingRule Objects
are defined in OPC UA. A Mandatory ModellingRule for a specific InstanceDeclaration
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specifies that instances of the OPC UA type referencing the InstanceDeclaration must have
a counterpart of that InstanceDeclaration. This means that each instance must hold an OPC
UA Node of the same NodeClass of the InstanceDeclaration; furthermore, the Reference
targeting this OPC UA Node must be of the same ReferenceType of the one pointing
the InstanceDeclaration. An Optional ModellingRule for a specific InstanceDeclaration,
instead, specifies that instances of the OPC UA type may have a counterpart of that
InstanceDeclaration, but it is not required. Other two ModellingRule Objects exist, named
MandatoryPlaceholder and OptionalPlaceholder. The difference with the previous ones is
that the counterparts of InstanceDeclaration may be more than one.

OPC UA defines standard graphical representation for both Nodes and References.
Some of them are summarized by Tables 1 and 2, respectively. For more information, please
refer to Annex C of [38].

Table 1. Graphical representation of some OPC UA Nodes.

OPC UA Node Standard Graphical Representation

ObjectType
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In order to better understand the role of the InstanceDeclaration and ModellingRule
Object, Figure 2 shows, on the right, a possible instance of the CustomType ObjectType,
called CustomInstance. It features a HasComponent Reference targeting the Object My-
Object, which is the counterpart of the InstanceDeclaration with the same name. Cus-
tomInstance Object features two HasProperty References, used to target counterparts of
the InstanceDeclaration <MyProperty>. As this Property points to an OptionalPlaceholder
ModellingRule Object, more than one instance may be present; in this example, two in-
stances have been considered, with two different Names (i.e., Property1 and Property2) are
shown by Figure 2.

Very recently, a new feature has been added to the OPC UA Information Model, called
AddIn [38,39]; it is based on the idea of object composition. An AddIn is an Object that adds
features (represented by its ObjectType) to the Node it is applied to. An AddIn is applied
to a Node by adding a Reference pointing to the AddIn Instance; a HasAddIn Reference or
a subtype shall be used. There are no restrictions for AddIn ObjectTypes and there is no
special super type for AddIns. The OPC UA feature based on AddIn and HasAddIn allows
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information modelers to create re-usable components that may belong to many different
ObjectTypes. Figure 3 shows an example of AddIn and HasAddIn Reference.
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In Figure 3, the AddIn Object called MyFeatures is added to the ObjectType NewType
(and to all the relevant instances, i.e., Objects of type NewType). The features added
through the AddIn are relevant to the MyAddInType ObjectType shown in the same figure,
on the left.

4. Digital Twins Definition Language

The Digital Twins Definition Language (DTDL) [11] was born from a Microsoft initia-
tive, with the aim of implementing a language capable of describing Digital Twin devices
and Digital Twin assets. For the creation of the DTDL, Microsoft relied on JSON-LD, a
connected data exchange format using JSON [40]. DTDL uses a structure based on classes
and metamodels, very similar to the Asset Administration Shell [8].

The DTDL implements six classes of metamodels: Interface, Telemetry, Property,
Control, Relationship and Component. These classes are able to fully define the structure
and behaviour of a Digital Twin.

In DTDL, resources are called interfaces and can contain a set of telemetry, properties,
commands, relationship and components. Telemetry describes data emitted by a resource,
whether it is a regular stream of sensor readings or a calculated data stream, such as the raw
data of sensors, processed data or data generated by DT models; Telemetry does not store
any data. Properties define values within a Digital Twin; these values can be read-only or
have read and write states. Properties have a backing storage; this allows us to read the
value of the property at any time. However, the property can also be writable according to
a particular setting; this allows us to store a value in the property.

Commands correspond to functions that can be invoked with optional input and
output parameters. Relationship describes a link to another digital twin and makes it
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possible to create graphs of digital twins. Component models the entities that exist in the
DT, including sensors, gateways, and digital systems.

5. Mapping Solution from DTDL to OPC UA

This paper aims to present a proposal to map the DTDL metamodel classes (i.e., Inter-
face, Telemetry, Property, Command, Relationship and Component) into corresponding
elements in the OPC UA Information Model.

As it was pointed out in Section 2, literature provides a lot of publications featuring
the use of OPC UA Information Model to structure and expose information coming from
different domains of interest. In general, the procedure used to reach this aim requires
a phase where all the requirements of the original domain of interest are collected and
compared with the standard elements of the OPC UA Information Model in order to find
the best mapping between them. Often, this is not an easy task because some concepts from
the source domain cannot be directly mapped into OPC UA; in these cases, the definition of
new types extending the original OPC UA elements must be realized. The reader may refer
to [34] to have an overview of the common practices adopted when OPC UA Information
Model is used to model a generic system.

In this proposal, the above-mentioned common practices have been taken into account
to map the DTDL metamodel classes into OPC UA Information Model; custom OPC UA
types have been defined through an extension of the current OPC UA Information Model,
able to represents the DTDL metamodel classes and the relevant properties. The following
subsections will present the mapping of the six DTDL metamodels classes, introducing the
custom OPC UA types defined to realize the proposal.

5.1. Interface

The metamodel class Interface allows to describe the contents of a digital twin, as told
in Section 4. Interfaces are reusable and can be reused as components in another Interface.
Table 3 shows the properties defined for this class.

Table 3. Properties of Interface class.

Property Mandatory/Optional

@type mandatory

@id mandatory

@context mandatory

comment optional

contents optional

description optional

displayName optional

extends optional

schemas optional

It has been assumed to map the Interface metamodel class with a custom OPC UA Ob-
jectType, called DTDLInterfaceType. The DTDLInterfaceType will inherit all the attributes
of the BaseObjectType, including those of the OPC UA Base NodeClass. Some of these last
attributes are used to represent a subset of the properties of the Interface class. Table 4
gives the mapping of the properties of the Interface class with the attributes of OPC UA
DTDLInterfaceType ObjectType.
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Table 4. Mapping of Interface class properties into OPC UA DTDLInterfaceType attributes.

Interface Class Properties DTDLInterfaceType Attributes

@id NodeId

displayName DisplayName

description Description

The DTDL @id property is used to univocally identify each metamodel class. On the
basis of the definition of NodeId given in Section 3, it is clear that this property may be
represented by the NodeId attribute of the OPC UA Node used to map the metamodel class.
The DTDL displayName and description properties give a localized name and description
of the interface, respectively; they may be represented by the OPC UA DisplayName and
Description attributes, respectively, as they share the same meaning.

Table 3 shows the presence of other properties, which have been mapped, as it will be
explained in the following.

In DTDL, the @type property is used to specify the type of the metamodel class; in
this case, this property must be set to the “Interface” value. As said in Section 3, each OPC
UA Node features the HasTypeDefinition Reference which allows to bind an Object or
Variable to its ObjectType or VariableType, respectively. For this reason, the DTDL @type
property may be represented by the HasTypeDefinition Reference pointing to the OPC UA
DTDLInterfaceType type for each OPC UA Object used to represent the DTDL Interface.
The DTDL @context property is used to specify the version of DTDL being used when
writing a digital twin definition. This information has no counterpart in the OPC UA
domain, and for this reason, its mapping is not required.

The remaining properties of Interface class shown by Table 3 (i.e., contents, comment,
schemas and extends) were mapped using OPC UA Nodes connected to the OPC UA
DTDLInterfaceType ObjectType, as shown by Figure 4.

The DTDL contents property is very important as it allows to define the set of objects
representing the contents of an Interface; these objects belong to the other DTDL metamodel
classes, i.e., Telemetry, Property, Command, Relationship and Component. As suggested
in [34], an element representing a set may be mapped into OPC UA using a folder, i.e.,
an Object of FolderType; this folder will organize the elements contained in the set. For
this reason, the mandatory FolderType Object called Contents is present in Figure 4. As
the DTDL contents property allows the definition of a set of different elements of different
types, in the proposal it is suggested to organize the different types of elements using other
folders. For this reason, Figure 4 shows the presence of other mandatory folders, called
Telemetries, Properties, Commands, Relationships and Components. Each of this folder
will organize the OPC UA Nodes used to represent the other DTDL metamodel classes, i.e.,
Telemetry, Property, Command, Relationship and Component; the relevant mapping will
be described in the following subsections. As the DTDL contents property is optional, the
lack of contents in a DTDL Interface will be mapped in OPC UA with empty folders.

The DTDL comment property allows to define a comment for model authors. It has
been mapped through the OPC UA Node named Comment, which is an optional property
of the ObjectType DTDLInterfaceType, as clearly shown by Figure 4.

The DTDL schemas property represents the set of the descriptions of the data types in
a digital twin interface. A full set of primitive data types are provided in DTDL, along with
support for a variety of complex schemas in the forms of Arrays, Enums, Maps and Objects.
In OPC UA the DataType NodeClass may be used to define the representation of the DTDL
data types. As said in Section 3, OPC UA DataType may be Built-in, Enumeration or
Structured; arrays of elements are also allowed. DTDL primitive data types may be easily
mapped to the OPC UA built-in types, whilst DTDL complex schemas may be mapped
to the OPC UA Enumeration, Structured and Array DataType. Proposals about this kind
of mapping were considered outside the scope of this work. The DTDL schemas property
is mapped into OPC UA through a set of OPC UA Nodes, each of which contains the
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information (i.e., the NodeId) of the OPC UA DataType mapping each single DTDL schema.
As shown by Figure 4, the OPC UA FolderType Object called Schemas has been used to
organize custom OPC UA PropertyType Nodes (called <Schema> in Figure 4), each of
which contains, in the Value attribute, the NodeId of the OPC UA DataType mapping each
DTDL schema exposed by the current interface.
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The last mandatory folder present in Figure 4 is the Extends FolderType Object. It
maps the DTDL extends property of the Interface Metamodel Class. In DTDL, Interfaces
can inherit from multiple interfaces; for this reason, the DTDL extends property is used to
maintain details of the set of interfaces each interface inherits from. Considering OPC UA
domain, existing recommendations suggests using object composition instead of multiple
inheritance. As explained in Section 3, the OPC UA feature based on AddIn and HasAddIn
reference allows the creation of reusable components that may belong to many different
ObjectTypes. This explains the use of HasAddIn reference in Figure 4, allowing the Extends
folder to point to the DTDLInterfaceType Objects modelling the DTDL Interfaces the current
interface inherits from.

5.2. Telemetry

The metamodel class Telemetry describes the data emitted by any digital twin, whether
the data is a regular stream of sensor readings or a computed stream of data, such as
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occupancy, or an occasional error or information message. Telemetry does not store any
data. This class has several properties shown by Table 5.

Table 5. Properties of the Telemetry class.

Property Mandatory/Optional

@type mandatory

name mandatory

schema mandatory

@id optional

comment optional

description optional

displayName optional

unit optional

Due to the lack of data stored within a DTDL Telemetry element, it has been assumed
to map it with a custom OPC UA ObjectType, called DTDLTelemetryType. Some of the
attributes of the OPC UA Base NodeClass are used to represent a subset of the properties
of the DTDL Telemetry class, as described by Table 6.

Table 6. Mapping of properties of the Telemetry class into OPC UA DTDLTelemetryType attributes.

Telemetry Class Properties OPC UA DTDLTelemetryType Attributes

name BrowseName

@id NodeId

description Description

displayName DisplayName

The same considerations accomplished for the properties @id, description and dis-
playName seen for the Interface class are still valid and can be applied to the Telemetry
class. The DTDL name property is defined as the “programming” name of the telemetry;
mapping with the OPC UA BrowseName attribute seems suitable.

Considering the other DTDL properties shown by Table 5, the following considerations
may be accomplished.

The DTDL @type property may be mapped as accomplished for the Interface class. In
particular, for each OPC UA Object of OPC UA DTDLTelemetryType type used to represent
the DTDL Telemetry, the @type property may be represented by the HasTypeDefinition
Reference pointing to the OPC UA DTDLTelemetryType type.

The other DTDL properties present in Table 5 may be mapped by OPC UA Nodes, as
shown in Figure 5.

The ObjectType DTDLTelemetryType has two optional OPC UA properties, Comment
and Unit, mapping the DTDL properties comment (which allows to define a comment for
model authors) and unit (which defines a semantic type of the Telemetry), respectively.

The DTDL schema property represents the data type of the Telemetry; OPC UA
DataType seems suitable to represent this property, as said in the previous subsection.
The proposed approach is to map the DTDL schema property with a custom OPC UA
PropertyType Node, which contains information about the OPC UA DataType chosen to
represent the DTDL data type. The attribute Value of the OPC UA PropertyType Node
is used to contain this information. On the basis of this assumption, a custom OPC UA
PropertyType Node has been considered for the DTDLTelemetryType ObjectType; Figure 5
shows this mandatory node called Schema. Its Value attribute will contain the NodeId of
the OPC UA DataType mapping the current DTDL schema.
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5.3. Property

The metamodel class Property allows to store values within a digital twin. These
values can be read-only or have read and write states. For example, a device serial number
may be a read-only value that can be read at any time; the desired temperature on a
thermostat may be a read-write value that can be updated. This class has several properties,
shown by Table 7.

Table 7. Properties of the Property class.

Property Mandatory/Optional

@type mandatory

name mandatory

schema mandatory

@id optional

comment optional

description optional

displayName optional

unit optional

writable optional

As the DTDL Property class is used to store values, it seems that it may be represented
very well by the OPC UA DataVariable Node. For this reason, it has been assumed to map
the DTDL Property class with a custom OPC UA DataVariableType, called DTDLProperty-
Type, derived from the BaseDataVariableType.

Some of the basic attribute of the DTDLPropertyType may be used to represent
properties of the Property class. Table 8 shows the proposed mapping of Property class
properties with the attributes of OPC UA DTDLPropertyType. About the DTDL properties
name, @id, description and displayName, the same considerations accomplished about
the same properties seen for the two previous classes are still valid and can be applied to
the Property class. The DTDL schema property represents the data type of the Property;
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as said before, OPC UA DataType seems suitable to represent this property. As a custom
OPC UA DataVariableType has been considered to map the DTDL Property, the attribute
DataType can be used to map the DTDL schema. About the writable property, it has been
mapped to the WriteMask attribute as the semantic is exactly the same.

Table 8. Mapping of properties of the Property class into OPC UA DTDL PropertyType attributes.

Property Class Properties OPC UA DTDL PropertyType Attributes

name BrowseName

schema DataType

@id NodeId

description Description

displayName DisplayName

writable WriteMask

About the other properties, mapping of @type has been accomplished using the same
approach described in the previous subsections. The other properties have been mapped,
as shown by Figure 6; the DTDLPropertyType features two optional properties, Comment
and Unit, mapping the DTDL properties comment and unit, respectively.
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It is important to point out that the proposed modelling of the DTDL Property class
with the custom DTDLPropertyType DataVariableType allows to make available the OPC
UA attribute Value, which may be used to maintain the current value of the digital twin
property. According to the WriteMask attribute, the value may be read-only, or it may be
updated. This is very important to be pointed out, as this feature allows to fully map the
capability of DTDL Property class to store values within a Digital Twin.

5.4. Command

The metamodel class DTDL Command allows to describe a function or operation that
can be performed on digital twins. Table 9 shows the properties defined for this class.
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Table 9. Properties of the Command class.

Property Mandatory/Optional

@type mandatory

name mandatory

@id optional

comment optional

description optional

displayName optional

request optional

response optional

It was assumed to represent the Command class through a custom OPC UA ObjectType
called the DTDLCommandType. The reason of this mapping is due to the need to represent
both properties and method; on account of what said about OPC UA, the only NodeClass
suitable to represent complex structure is the ObjectType. The DTDLCommandType
will inherit all the attributes of the OPC UA Base NodeClass. Some of these attributes
are used to represent the properties of the Command class, as shown by Table 10. The
considerations about mapping of the properties shown in the table, accomplished for the
previous mappings, are still valid for the Command class.

Table 10. Mapping of properties of the Command class into the OPC UA DTDLCommandType
attributes.

Command Class Properties OPC UA DTDLCommandType Attributes

name BrowseName

@id NodeId

description Description

displayName DisplayName

About the other properties, mapping of @type has been accomplished using the same
approach described for the DTDL classes seen before. In particular, it has been assumed
that this property was represented by the HasTypeDefinition Reference pointing to the
OPC UA DTDLCommandType ObjectType for each OPC UA Object used to represent a
DTDL Command.

Three properties of the Command class are still to be mapped into OPC UA, i.e.,
comment, request and response. Furthermore, the function or operation represented by
the Command class must be modelled in OPC UA. In order to realize these mappings, the
structure shown by Figure 7 has been considered. As shown, the DTDLCommandType
ObjectType features a property and a method. The optional property called Comment
models the comment property of the DTDL Command class. The OPC UA method called
Command represents the function/operation modelled by the DTDL Command class;
according to the OPC UA specifications, each method features optional input and output
parameters. In this proposal, they are called Request and Response, respectively, and
represents the relevant properties of the DTDL Command class.

5.5. Relationship

The metamodel class DTDL Relationship describes a link to another (separate) digital
twin and enables graphs of digital twins to be created. The class features the properties
shown by Table 11.



Sensors 2023, 23, 2349 16 of 27Sensors 2023, 23, 2349 16 of 27 
 

 

 
Figure 7. OPC UA DTDLCommandType. 

5.5. Relationship 
The metamodel class DTDL Relationship describes a link to another (separate) digital 

twin and enables graphs of digital twins to be created. The class features the properties 
shown by Table 11. 

Table 11. Properties of the Relationship class. 

Properties Mandatory/Optional 
@type mandatory 
name mandatory 
@id optional 

comment optional 
description optional 

displayName optional 
maxMultiplicity optional 
minMultiplicity optional 

properties optional 
target optional 

writable optional 

As accomplished for other DTDL metamodel classes, this class has been mapped us-
ing an OPC UA ObjectsType. A custom ObjectType has been defined and called DTDLRe-
lationshipType. Table 12 shows the mapping of some of the Relationship class properties 
with the attributes of this OPC UA ObjectType. The same considerations about the map-
ping choices accomplished for the other previous classes may be applied for these prop-
erties. 

Figure 7. OPC UA DTDLCommandType.

Table 11. Properties of the Relationship class.

Properties Mandatory/Optional

@type mandatory

name mandatory

@id optional

comment optional

description optional

displayName optional

maxMultiplicity optional

minMultiplicity optional

properties optional

target optional

writable optional

As accomplished for other DTDL metamodel classes, this class has been mapped using
an OPC UA ObjectsType. A custom ObjectType has been defined and called DTDLRelation-
shipType. Table 12 shows the mapping of some of the Relationship class properties with
the attributes of this OPC UA ObjectType. The same considerations about the mapping
choices accomplished for the other previous classes may be applied for these properties.
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Table 12. Mapping of properties of the Relationship class into the OPC UA DTDLRelationshipType
attributes.

Relationship Class Properties OPC UA DTDLRelationshipType Attributes

name BrowseName

@id NodeId

description Description

displayName DisplayName

writable WriteMask

About the other properties shown by Table 11, mapping of @type has been accom-
plished using the same approach described before, i.e., using the HasTypeDefinition Refer-
ence. The other properties were mapped using OPC UA Nodes, according to the schema
shown by Figure 8.
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It has been assumed that the DTDLRelationshipType ObjectType features three op-
tional properties named Comment, MinMultiplicity and MaxMultiplicity. They model
the DTDL properties comment, minMultiplicity and maxMultiplicity, respectively. The
comment property is a comment for model authors, whilst minMultiplicity and max-
Multiplicity represent the minimum and maximum multiplicity for the target of the
relationship, respectively.

The DTDL property named properties represents the set of Property classes that define
relationship-specific state; in other words, they define the main features of the relationship,
if required. In order to represent this set, a folder has been considered in OPC UA; in
Figure 8, it is called Properties. This folder will contain OPC UA Nodes, each modelling a
Property class; Figure 8 shows that the folder Properties organizes OPC UA Property Nodes
belonging to DTDLPropertyType. As the DTDL properties is optional, the Modelling Rule
relevant to each OPC UA Property Node is an OptionalPlaceholder.
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The last DTDL property to be mapped is the target, representing the link to a DTDL
Interface. In OPC UA, the links between Nodes are realized using References, as explained
in Section 3; for this reason, the DTDL target was mapped into OPC UA through a Reference
pointing to the OPC UA Node modelling the Interface to which the Relationship refers. A
custom Reference, called DTDLHasTarget, has been defined as a subtype of HasChild (that
is, in turn, a subtype of HierarchicalReference), as shown by Figure 9. Figure 8 shows that
the DTDLHasTarget reference allows an Object of DTDLRelationshipType type to point
to a DTDLInterfaceType Node, modelling a DTDL Interface. It is very important to point
out that the DTDLInterfaceType Object shown in Figure 8, with the generic name Interface,
must be an Object already existing and representing a DTDL Interface as said before.
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5.6. Component

The metamodel class Component enables interfaces to be composed of other interfaces.
Components are different from Relationships, because they describe contents that are
directly part of the interface, whilst a relationship describes a link between two interfaces.
Table 13 shows the properties defined for this class.

Table 13. Properties of the Component class.

Property Mandatory/Optional

@type mandatory

name mandatory

schema mandatory

@id optional

comment optional

description optional

displayName optional

A custom OPC UA ObjectType NodeClass has been used to represent the Component
class; it was named DTDLComponentType ObjectType. Table 14 shows the mapping of
some properties of the DTDL Component class with the attributes of OPC UA DTDL-
ComponentType.
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Table 14. Mapping of properties of the Component class into the OPC UA DTDLComponentType
attributes.

Component Class Properties OPC UA DTDLComponentType Attributes

name BrowseName

@id NodeId

description Description

displayName DisplayName

The property @type has been modelled using the HasTypeDefinition Reference, as
explained in the previous subsections. The properties comments and schema have been
mapped using OPC UA Nodes, as shown by Figure 10. The DTDLComponentType Object-
Type has an optional property called Comment; it models the DTDL property comment.
The other DTDL property to be mapped is the schema, which defines the DTDL Interface of
the component. As the DTDL Interface has been modelled in OPC UA by an Object of the
DTDLInterfaceType type, Figure 10 shows the presence of a mandatory Object of this type.
In order to allow the DTDLComponentType Object to point to the DTDLInterfaceType
Object, a custom Reference has been defined called DTDLHasSchema, as shown by Fig-
ure 10. The DTDLHasTarget Reference has been defined as a subtype of the HasComponent
Reference, which is a Hierarchical Reference, as stated in Section 3.
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6. Implementation and Validation

The custom OPC UA Information Model presented in the previous section has been im-
plemented by the authors and the software implementation is freely available at the GitHub
repository [41]. In particular, the repository maintains the “dtdl_opcua_information_models
_mapping.tt2pro” file; the reader may use free software tools such as UaModeler from
Unified Automation [42] to import this file and explore the custom OPC UA NodeClasses
implemented and described in the previous sections. The repository [41] maintains also a
xml file that can be used to realize an OPC UA Server by developing a custom program;
OPC UA Foundation provides a standard syntax, called NodeSet2, containing the descrip-
tion in xml of the (standard or custom) OPC UA information model to create and populate
an AddressSpace inside a server. In particular, the xml available in [41] contains the custom
OPC UA NodeClasses described in Section 5. The process of importing the xml file in a
program depends on the OPC UA SDK used to create the OPC UA Server.
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The implementation of the custom OPC UA information model presented in this paper,
allowed the authors to validate the proposal. Several case studies were considered, and
real mappings were realized and tested. In order to give a clear idea about the procedure
used to validate the proposal, in the following subsections, details about the different steps
followed in the validation procedure will be given. Details will refer to a single case study;
a very simple example has been considered in order to be easily read and understood.

6.1. Case Study

It has been assumed to take into consideration a Digital Twin of a building, modelling
each component and, in particular, each room. In particular, the DT of a room will be
considered in this case study. A basic model of a Room has been defined, and its extension,
called MeetingRoom, has been considered. The MeetingRoom model includes all the
properties of the Room model, adding other ones.

The DTDL Interface models shown by Figure 11 are considered. As it can be seen, the
interface called “MeetingRoom” is shown on the right; it features a contents property made
up by two Property elements (i.e., “occupied” and “tempValue”). This interface extends
a simpler interface called “Room”, shown in the same Figure 11 on the left; the DTDL
Interface “Room” is made up by only one Property (i.e., “setlight”).
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6.2. Digital Twin Instance in Microsoft Azure Platform

The DTDL “MeetingRoom” model shown by Figure 11 was implemented inside
Microsoft Azure Digital Twin platform available in [43]. A particular tool named “Azure
Digital Twin Explorer” is available in this platform to import DTDL models and to create
instance of Digital Twins based on DTDL. The Room and MeetingRoom DTDL models
were uploaded in this tool, and a single instance of the “MeetingRoom” Interface has
been created; the instance was named “MeetingRoomA”. Figure 12 shows the graphical
representation of this instance inside the “Azure Digital Twin Explorer” tool.
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As it can be seen from Figure 12, the Digital Twin instance is graphically represented
by a circle, and all the main properties of this instance are shown on the right side. First
of all, the identifier of the Digital Twin instance is clearly specified on the top; it is “Meet-
ingRoomA”, as said before. The figure shows the three properties occupied, setlight and
tempValue featured by the DTDL MeetingRoom model. The actual values of these proper-
ties are also shown (e.g., value 22 for the tempValue). These values were assigned by the
authors through the explorer tool.

6.3. Definition of an OPC UA Server

According to Figure 1, the next step of the proposed mapping is the definition of an
OPC UA Server able to map each Digital Twin instance into the OPC UA domain. In our
simple case study, the Digital Twin instance is “MeetingRoomA”, shown by Figure 12. This
instance and all the related information must be mapped into the OPC UA domain.

OPC UA Server was implemented in NodeJS using NodeOPCUA [44], which is an
OPC UA SDK, making available the OPC UA communication stack written in TypeScript
for NodeJS; this stack is needed in order to use the OPC UA standard services, including
those needed to access the AddressSpace. The Azure SDK for NodeJS [45] available on
GitHub has also been used; this software realizes the communication stack needed to the
access to the Digital Twin instances through a NodeJS program.

The realization of the OPC UA Server must include the implementation of the custom
AddressSpace proposed in this paper and the code of the suitable procedures to populate
this AddressSpace with real values.

Applying the mapping solution presented in Section 5, the OPC UA AdressSpace
mapping the “MeetingRoomA” instance may be achieved. Figure 13 shows the OPC UA
Nodes realizing this mapping.

In particular, the OPC UA Object “MeetingRoomA” is an instance of the DTDLInter-
faceType ObjectType, representing the DTDL Interface model. It features a component
(pointed by the HasComponent reference) made by the mandatory folder Contents; this
folder organizes the folder Properties, organizing two OPC UA DataVariable Nodes in-
stances of the DTDLPropertyType type. They model the two DTDL properties “occupied”
and “tempValue”. Figure 13 points out the main attributes of these Objects, including the
DataType, the WriteMask and the Value. It is important to point out that the contents of the
Value attribute are set exactly to the same values shown in Figure 12, i.e., true for occupied
and 22 for tempValue.
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The OPC UA Object “MeetingRoomA” features another component made up by the
mandatory folder Extends. As explained in Section 5.1, this folder is used to map the
extends property of the Interface class. The HasAddIn reference in Figure 13 allows the
Extends folder to point to the DTDLInterfaceType Object modelling the DTDL Interfaces
the current interface inherits from, i.e., the Interface named “Room”, according to the DTDL
description shown by Figure 11 on the left.

The OPC UA DTDLInterfaceType Object “Room” represents the Interface with name
“Room”, and it features only one OPC UA DataVariable Node organized by the Properties
folder. This Node represents the DTDL property named “setlight”, shown in Figure 11.
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Again, several attributes are shown, including the Value, which contains the same value
shown for the Digital Twin instance in Figure 12.

It is important to point out that the other mandatory folders of the DTDLInterfaceType
ObjectType (see Figure 4) are not represented in Figure 13 only for space reasons. According
to the content of the DTDL Digital Twin given by Figure 11, these folders are empty, as no
DTDL entities are present to be organized by the lacking mandatory folders.

The OPC UA AddressSpace shown by Figure 13 was implemented using the UaMod-
eler [42] tool. Figure 14 shows the graphical representations of the OPC UA Nodes that
have been created using the UaModeler tool.
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As said before, the Digital Twin instance “MeetingRoomA” features three properties
(i.e., occupied, tempValue and setlight) whose value changes over the time. Changes in
the DT instance are generally due to updates of the real system for which the Digital Twin
realizes a digital replica. Using the “Azure Digital Twin Explorer”, these values may be
changed by the user in order to simulate the updates from the real system, as accomplished
by the authors during the validation procedure (Figure 12 shows the actual values of these
properties, which were assigned by the authors through the explorer tool).

It is clear that the information maintained by the Digital Twin instance and by the OPC
UA Server must be consistent. This means that each change in a property of the Digital
Twin instance must be updated into the OPC UA Server and vice versa. For this reason,
realization of the OPC UA AddressSpace as shown by Figure 14 in the server is not enough,
but a custom program is needed to be implemented inside the server to realize this update
in automatic fashion. Each time information changes inside the Digital Twin instance, the
same change must be reflected in the OPC UA Server and vice versa.

Only the most important pieces of code relevant to the updating of the information
from Digital Twin will be presented in the remainder of this section.
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Figure 15 shows the code relevant to the main initializations needed in the server.
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At the beginning, the OPC UA AddressSpace to be used in the server must be created;
this is accomplished through variable “xmlFiles” that contain xml files written according
to the NodeSet2 format. In the figure, the “opcua.nodesets.standard” file includes the
standard information model, whilst the “dtdl” file includes the custom information model
presented in Section 5, plus the set of nodes shown by Figures 13 and 14.

A constant containing the name of the Digital Twin instance “MeetingRoomA” is de-
fined. Creation of an instance of the Digital Twin class (i.e., “dt” in Figure 15) is required to
manage authentication and communication with the Microsoft Azure Digital Twin instance.

Figure 14 shows that three OPC UA Nodes are present in the OPC UA AddressSpace of
the server representing the three properties of the Digital Twin instance “MeetingRoomA”
(i.e., occupied, tempValue and setlight). In this example, it has been assumed that these three
nodes feature the NodeIds (‘ns=2;i=6006’), (‘ns=2;i=6007’) and (‘ns=2;i=6008’), respectively.
The function “server.engine.addressSpace.findNode()” allows to find the node of interest
within the OPC UA Server AddressSpace, passing the relevant NodeId (made up by a
namespaceindex and identifier); it returns an UaVariable relevant to the contents of the
node specified. In this example, the variable “propertyTempValue” is relevant to the node
with NodeId (‘ns=2;i=6007’); each change in the Node is accomplished also on the variable
and vice versa.

Figure 16 shows another piece of code implemented in the OPC UA Server relevant only
to the automatic updated of the property tempValue of the DT instance “MeetingRoomA”.

As shown by Figure 16, the function “dt.getDigitalTwin()” is used; it invokes a service
provided by Azure Microsoft allowing to access to any details of any digital twin instance
specified as an argument of the call. Considering the DT instance shown by Figure 12, the
call of this function allows to achieve several pieces information, among which are $dtId,
$metadata, $model and tempValue. In particular, here, the authors are interested only to
the tempValue property; for this reason, the variable tempvalue in Figure 16 is set to the
current value of tempValue property from the Digital Twin instance.

In order to realize an automatic update of each value of the property tempValue, the
asynchronous method “refreshFunc” shown by Figure 16 is used; the method is in charge
to invoke the “dt.getDigitalTwin(TwinId)”, and when the information from the DT instance
is received, the value of the tempValue property is delivered to the server by the “callback”
function shown by Figure 16. As it can be seen, the callback features several arguments,
among which is a DataValue with the updated value of tempValue.

The last code shown by Figure 16, “propertyTempValue.bindVariable(optionsTempValue)”,
is very important, as it associates the “refreshFunc” with the OPC UA Node with NodeId
(‘ns=2;i=6007’), i.e., the propertyTempValue variable. The consequence of this code is that,
every time a client desires to read the current value of the OPC UA Node with NodeId
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(‘ns=2;i=6007’), the “refreshFunc” is invoked, and the last value of the tempValue property
of the DT is updated in the OPC UA Server.
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6.4. Verification of Consistency

The last step followed in the validation procedure adopted by the author was the
execution of several tests aimed to verify the consistency between information maintained
by Digital Twin instance and OPC UA AddressSpace. Considering the simple case study
presented here, several changes in the properties of the DT instance “MeetingRoomA” were
performed, verifying that the consistent changes occurred in the OPC UA Server, accessing
the information by OPC UA client applications.

7. Discussions and Conclusions

The paper introduced a solution of mapping from DTDL to the OPC UA Information
Model. The proposal allows to represent each DTDL element into a corresponding OPC UA
element. This allows to enable the interoperability of DTDL-based Digital Twin. Through
the solution proposed in the paper, information maintained by a DTDL-based Digital
Twin can be published by an OPC UA server that makes this information available to
any OPC UA-compatible device (acting as OPC UA client and/or OPC UA subscriber).
The authors have presented an overview of the current state-of-the-art, pointing out the
originality of their work. Furthermore, a software implementation has been presented; it
is freely available on the GitHub repository. Implementation was allowed to validate the
proposed approach.

The authors believe that the proposed mapping accomplishes the goals set by the
fourth industrial revolution, creating systems and services increasingly flexible, interopera-
ble and innovative, improving the quality and efficiency of industrial production, by using
Digital Twins. They believe that the proposed solution opens up a lot of opportunities in
the interoperability between applications based on Microsoft Azure Digital Twin and the
OPC UA domain.
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