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Abstract: The zero-shot image classification (ZSIC) is designed to solve the classification problem
when the sample is very small, or the category is missing. A common method is to use attribute
or word vectors as a priori category features (auxiliary information) and complete the domain
transfer from training of seen classes to recognition of unseen classes by building a mapping between
image features and a priori category features. However, feature extraction of the whole image lacks
discrimination, and the amount of information of single attribute features or word vector features
of categories is insufficient, which makes the matching degree between image features and prior
class features not high and affects the accuracy of the ZSIC model. To this end, a spatial attention
mechanism is designed, and an image feature extraction module based on this attention mechanism
is constructed to screen critical features with discrimination. A semantic information fusion method
based on matrix decomposition is proposed, which first decomposes the attribute features and then
fuses them with the extracted word vector features of a dataset to achieve information expansion.
Through the above two improvement measures, the classification accuracy of the ZSIC model for
unseen images is improved. The experimental results on public datasets verify the effect and
superiority of the proposed methods.

Keywords: image classification; attention mechanism; matrix decomposition; attributes; word vectors

1. Introduction

In recent years, deep learning algorithms have made rapid progress in the image
recognition field, but they require significant human and material resources to obtain a
sufficient quantity of manually annotated data [1]. In many practical applications, a large
quantity of labeled data is difficult to obtain, and the variety of objects is increasing, which
requires the computer training process to constantly add new samples and new object
types [2,3]. The problem of how to use computers and existing knowledge to classify and
identify samples with insufficient or even completely missing label data has become a
pressing problem. For this reason, ZSIC [4] was created. It is a technique that trains a
learning model to predict and recognize data without class labels (unseen classes) based on
some sample data with class labels (seen classes), supplemented by relevant common-sense
information or a priori knowledge (auxiliary information) [5,6].

To achieve ZSIC, a popular strategy is to learn the mapping or embedding between
the semantic space of classes and the visual space of images based on seen classes and the
semantic description of each category. Semantic descriptions of categories usually include
attributes [7], word vectors [8], gaze [9], and sentences [10]. At present, the embedded-
based methods [11–15] are used to learn visual-to-semantic, semantic-to-visual, or latent
intermedium space, so that visual and semantic embedding can be compared in shared
space. Then, the unseen classes are classified by nearest neighbor search.

Most of the existing embedding methods, either based on end-to-end convolution
neural networks or deep features, emphasize learning the embedding between global
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visual features and semantic vectors, which leads to two problems [16]. First, there are only
slight differences between some features of seen and unseen classes. For some datasets, the
inter-class difference is even smaller than the intra-class. Therefore, global image features
cannot effectively represent fine-grained information, which is difficult to distinguish in
semantic space. Second, compared to visual information, semantic information is not
rich enough. The attribute features of categories are usually based on manual annotation,
rely on professional knowledge, and are limited by the dimension of visual cognition.
The dimension of attribute features is usually not high, and as intermediate auxiliary
information, the amount of information is insufficient [17]. The word vectors are mostly
obtained through models such as word2vec [18], GloVe [19], or fastText [20]. Relatively
speaking, the word vectors may contain more noise and are difficult to combine with human
prior knowledge; thus, their interpretability and discriminability are poor. Therefore, the
imbalanced supervision from the semantic and visual space can make the learned mapping
easily overfitting to seen classes. Inspired by the attention mechanism in the field of natural
language processing, a few methods [16,21–23] introduce attention thinking into ZSIC.
These methods learn regional embedding of different attributes or similarity measures
based on attribute prototypes and learn to distinguish partial features, but they ignore the
global features and the information imbalance of semantic and visual space.

Based on the above observation, this paper proposes an improved ZSIC model. The
main contributions are as follows:

(1) A feature attention mechanism is designed, and an image feature extraction module
based on the attention mechanism is built. The features in different regions of the
image are assigned attention weights to distinguish the key and non-key local features,
and then the local features are fused with the global features.

(2) A semantic information fusion module based on matrix decomposition is built. The
matrix decomposition method is used to transform the binary features of attributes
into continuous features and transform their dimensions to be the same as word
vectors. In addition, attribute features are fused with word vector features to obtain
more accurate and richer fused semantic features as a priori category features.

(3) The improved ZSIC model promotes the alignment of semantic information and
visual features. Experiments on the public dataset show that the improved ZSIC
model improves image classification accuracy.

2. Related Work
2.1. ZSIC Methods

Recent ZSIC methods focus on learning better visual–semantic embeddings. The core
idea is to learn a mapping between the visual and attribute/semantic domains and transfer
semantic knowledge from seen to unseen classes according to the similarity measure. Some
methods [11,12,24,25] follow the visual-to-semantic mapping direction and align visual
features and semantic information in semantic space. However, when high-dimensional
visual features are mapped to a low-dimensional semantic space, the shrink of feature
space would aggravate the hubness problem [26,27] that in some instances in the high-
dimensional space becomes the nearest neighbors of a large number of instances. To tackle
these problems, some methods [13,14,28–30] map semantic embedding to visual space and
treat the projected results as class prototypes. Shigeto et al. [31] experimentally proved that
the semantic-to-visual embedding is able to generate more compact and separative visual
feature distribution with the one-to-many correspondence manner, thereby mitigating the
hubness issue. Ji et al. [32] also follow the inverse mapping direction from semantic space
to visual space and proposed a semantic-guided class imbalance learning model which
alleviates the class-imbalance issue in ZSIC. In addition, for the class-imbalance issue, the
generative models have been introduced to learn semantic-to-visual mapping to generate
visual features of unseen classes [33–37] for data augmentation. Currently, the generative
ZSIC is usually based on variational autoencoders (VAEs) [37], generative adversarial nets
(GANs) [33], and generative flows [34]. However, the performance of this type of method
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greatly depends on the quality of generated visual features or images, which is difficult to
guarantee, and the mode is prone to mode collapse. Furthermore, to alleviate the hubness
issue, common space learning is also employed to learn a common representation space for
interaction between visual and semantic domains [15,38,39]. However, these embedded-
based models only use the global feature representation, ignoring the fine-grained details
in the image, and the training results are not satisfied for the poorly identified features.

2.2. Attention Mechanism

The concept of attention was first introduced into natural language processing tasks.
In particular, because soft attention is differentiable and can learn parameters by back-
propagation of the model, it has been widely used and developed in computer vision
tasks. Zhu et al. [40] applied an attention mechanism in the facial expression recogni-
tion task and proposed a cascade attention-based recognition network by a hybrid of
the spatial attention mechanism and pyramid feature to improve the accuracy of facial
expression recognition under uneven illumination or partial occlusion. Sun et al. and
Liu et al. applied an attention mechanism in the semantic segmentation task of remote
sensing images. They proposed a multi-attention-based UNet [41] and an attention-based
residual encoder [42], respectively. Through channel attention and spatial attention, the
capability of fine-grained features was improved. The above attention mechanism includes
(i) feature aggregation and (ii) a combination of channel attention (global attention) and
spatial attention (local attention), which are common branches of the attention mechanism.
In addition, Obeso et al. [43] proved that the global and local attention mechanism in deep
neural networks works well with the human visual attention mechanism. Inspired by
the above works, several researchers incorporated an attention mechanism into models
for ZSIC. For example, Yang et al. [16] proposed a semantic-aligned reinforced attention
model to discover invariable features related to class-level semantic attributes from variable
intra-class vision information, and thereby to avoid misalignment between visual infor-
mation and semantic representations. Xu et al. [21] jointly learned discriminative global
and local features using only class-level attributes to improve the attribute localization
ability of image representation. Chen et al. [22] proposed an attribute-guided transformer
network to enhance discriminative attribute localization by reducing the relative geometry
relationships among the grid features. Yang et al. [23] proposed to learn prototypes via
placeholders and proposed semantic-oriented fine-tuning for preliminary visual–semantic
alignment. These methods locate salient regions according to semantic attributes and ignore
meaningless information to promote the alignment between a visual space and a semantic
space. Compared with these methods, we also consider the combination of local features
and global features, as well as the imbalance of information in semantic and visual space.

3. Materials and Methods

The basic embedding-based ZSIC model framework is shown in Figure 1.
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The image feature extraction layer uses a deep CNN to extract image features and
input them to a middle embedding layer. A priori class information (auxiliary information)
is usually attribute features or word vector features. In the middle embedding layer, the
correlation between image features and a priori class information is calculated. Let the
total number of seen classes be n and a priori class feature vector of the i-th seen class be βi,
whose dimension is m. In the training stage of the model, the images xi belonging to the
i-th seen class are input into the image feature extraction layer to extract m-dimensional
image feature vectors αxi ; αxi and βi are input into the middle embedding layer, and a
relationship similarity (αxi , βi) between αxi and βi is established to obtain the matching
score. Cosine distance is used to calculate the matching score. Compared with the European
distance, cosine distance is more consistent with the distance calculation form of the high-
dimensional vector, and its formula is

score = similarity(αxi , βi) =
∑m

k=1 akbk√
∑m

k=1 ak
2
√

∑m
k=1 bk

2
(1)

where αxi = [a1, a2, . . . , am] and βi = [b1, b2, . . . , bm].
In order to match the image feature vectors and the prior class feature vectors belong-

ing to the same class as closely as possible, that is, to maximize the matching score, the loss
function is used as follows:

loss = − 1
n

n

∑
i=1

αxi · βi
‖ αxi‖ · ‖βi‖

(2)

In the testing stage of the model, the image feature vectors of unseen classes are
extracted through the feature extraction layer and then matched with the prior class feature
vectors corresponding to each class in the middle embedding layer. When the matching
score is the highest, the corresponding class is the prediction class of the input image.

Using the above model framework, the improved embedding-based ZSIC model is
shown in Figure 2. Details are as follows.
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3.1. IFE-AM Module

In ZSIC tasks, image features need to be matched with a priori class features, while
image features extracted by CNN correspond to a whole image, so they lack discrimination.
Therefore, an image feature extraction module based on an attention mechanism (IFE-AM)
is constructed (as shown in Figure 2) to focus high-level image features on the key regions of
the input image, in order to reduce the deviation from the priori class features and improve
the degree of matching. The typical convolutional neural networks VGG-19 and ResNet-34
are taken as examples to illustrate the attention mechanism designed in this paper.

The flowchart of the spatial attention mechanism that weights the feature vector of
each position is shown in Figure 3.
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Let the output features of the last layer of the CNN be F, with dimension [x, y, p],
which contains p channels. For F, set window [x, y], and use max pooling and average
pooling to obtain two p-dimensional feature vectors Fmax and Fmean, respectively, and then
concatenate them to obtain [ Fmax, Fmean]. Then, [ Fmax, Fmean] is connected to the fully
connected (FC) layer, the hidden layer unit is set as p, and a p-dimensional query vector
Q is output for feature selection of the attention mechanism. The feature map of the i-th
channel in F is recorded as f i, i = 1, 2, . . . , p, and its size is x × y; the feature vector of the
j-th position in F is recorded as lj, j = 1, 2, . . . , x × y, and its size is p × 1. Calculate the dot
product of Q and lj to obtain the feature weight wj of the j-th position, and then use the
softmax function for normalization to obtain the feature weight matrix W. The formula is
as follows:

W = softmax
(

wj) = softmax(dot(QT, lj

)
) (3)

The feature values at different positions in f i are weighted and summed according to
the weight matrix W, and Fattention is output.

Finally, based on the idea of residual connection, the feature vectors Fmax, Fmean, and
Fattention are summed to obtain the final output eigenvector Foutput.

3.2. SIF-MD Module

ZSIC methods rely on prior class information to complete the transfer from seen
classes to unseen classes, so accurate and informative class description information is the
key. Currently, the commonly used a priori class description information includes attribute
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features and word vector features. In order to make the two types of a priori class de-
scription information complementary and improve the amount of information, a semantic
information fusion module based on matrix decomposition (SIF-MD) is constructed, as
shown in Figure 2.

Usually, the dimensions of manually set attribute information is small, and the attribute
features are all binary features of 0 or 1, which are relatively sparse and independent; the
dimensions of word vectors are relatively large, which are characterized by continuity
between [–1, 1]. To carry out information fusion, the matrix decomposition method is
used to transform the binary features of attributes into continuous features and transform
their dimensions to be the same as word vectors. The architecture diagram of the matrix
decomposition of attributes is shown in Figure 4.
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First, use attribute matrix D (M × N) to represent n-dimensional attribute vectors of m
classes, which is decomposed into U (M × K) and V (N × K) with the equation

D = UVT (4)

where k is the dimension of the matrix decomposition. Make UVT as close as possible to D,
that is, fitting attribute feature D through matrix U and matrix V. The loss function is the
mean squared error MSE (mean squared error) method:

loss =
M

∑
i=1

N

∑
j=1

(
Di,j − D̂i,j

)2 (5)

D̂i,j = UiVT
j (6)

where Ui denotes the vector in the i-th row of matrix U, i = 1, 2, . . . , M, and Vj denotes the
vector in the j-th row of matrix V, j = 1, 2, . . . , N.

To prevent overfitting, the L2 canonical term is added to Formula (5):

loss =
m

∑
i=1

n

∑
j=1

(
Di,j − D̂i,j

)2
+ λ

(
‖Ui‖1 + ‖Vj‖1

)
(7)
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Each row in U is a k-dimension vector, which matches the dimension of the word
vector of the corresponding class. The matrix U and the word vector matrix W(m × k) are
summed in certain weight proportions as fused semantic features Wadd, which are given by

Wadd = αW + (1− α)U (8)

where α is a parameter with a range of [0, 1]; Wadd is a fused semantic feature, retaining
the content of attribute features and word vector features.

4. Experiment Results

The experiment is based on the 4× 1080Ti GPU server of Ubuntu16.04, the Python
3.6 virtual environment is built through Anaconda, and deep learning frameworks of
TensorFlow1.2.0 and Keras2.0.6 are installed.

The top-1 accuracy and top-3 accuracy were used to evaluate the classification results
of the zero-shot classification model on the test set. The training set and test set were
randomly selected four times to obtain four groups of experimental results, and the average
classification accuracy was recorded.

4.1. Dataset

The experiment was conducted based on the Animals with Attributes 2 (AwA2) [27]
dataset. AwA2 is a public dataset for attribute-based classification and zero-shot learning,
and it is publicly available at http://cvml.ist.ac.at/AwA2, accessed on 9 June 2017. The
dataset contains 37,322 images and 50 animal classes, and each class has an 85-dimensional
attribute vector. It is a coarse-grained dataset that is medium-scale in terms of the number
of images and small-scale in terms of the number of classes. In experiments, we followed
the standard zero-shot split proposed in reference [9], that is, 40 classes for training and
10 classes for testing. The training set and test set do not intersect. Among the training set,
13 classes were randomly selected for validation to perform a hyperparameter search.

4.2. Ablation Experiment of IFE-AM Model

According to the model structure shown in Figure 2, the experiments were conducted
with the representative VGG-19 and ResNet-34 as the backbone networks, which are
called VGG-A and ResNet-A, respectively. The image features were extracted by the pre-
improved and improved networks, and the attribute features of the dataset were used to
conduct experiments.

4.2.1. Training Loss and Classification Accuracy

When the model is trained, the training loss is calculated according to Formula (2).
Figure 5 shows the change curves of the training loss (train_loss) corresponding to different
feature extraction networks.

Table 1 shows the epochs required for training and train_loss values corresponding to
different feature extraction networks, as well as the classification accuracy (top-1 and top-3)
of the test set.

Figure 5 and Table 1 show that the train_loss of the ResNet-34 model decreases faster
than the VGG-19 model. The final train_loss of the VGG-19 and ResNet-34 models tends to
be stable, but the train_loss of the ResNet-34 model is lower. From the decreasing trend in
train_loss, the train_loss of the VGG-19 model fluctuates greatly, and the decreasing process
of train_loss of the ResNet-34 model is more stable. The ResNet-A model is also superior to
the VGG-A model in decreasing speed and the stability of train_loss. This shows that the
ResNet-34 model with residual connections can realize matching between image features
and prior class features faster, better, and more stably. In addition, for both the VGG-A
model and ResNet-A model, although their train_loss overall declines slightly slower, their
required training epoch and loss value after stabilization are significantly lower than those
of the original VGG-19 and ResNet-34 networks. This shows that the IFE-AM module
proposed in this paper, as a feature-weighted focusing strategy, improves the model’s

http://cvml.ist.ac.at/AwA2
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ability to capture image features in space, thus realizing further fitting of deep features;
additionally, the attention mechanism is based on the method of weighted information
fusion, which makes the acquisition and update of information more stable, thus achieving
a faster and more stable fitting effect.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14 
 

 

 
(a) Change curve of train_loss corresponding to VGG-19 and ResNet-34 

 
(b) Change curve of train_loss corresponding to VGG-A and ResNet-A 

Figure 5. Change curves of train_loss. 

Table 1 shows the epochs required for training and train_loss values corresponding 
to different feature extraction networks, as well as the classification accuracy (top-1 and 
top-3) of the test set. 

Table 1. Test results. 

Feature Extraction 
Network 

IFE-AM Epochs Train_Loss Top-1 (%) Top-3 (%) 

VGG-19  17 0.174 40.1 53.1 
ResNet-34  16 0.155 41.7 56.1 

VGG-A √ 13 0.147 43.2 60.9 
ResNet-A √ 5 0.139 43.3 63.9 

Figure 5 and Table 1 show that the train_loss of the ResNet-34 model decreases faster 
than the VGG-19 model. The final train_loss of the VGG-19 and ResNet-34 models tends 
to be stable, but the train_loss of the ResNet-34 model is lower. From the decreasing trend 
in train_loss, the train_loss of the VGG-19 model fluctuates greatly, and the decreasing 
process of train_loss of the ResNet-34 model is more stable. The ResNet-A model is also 
superior to the VGG-A model in decreasing speed and the stability of train_loss. This 
shows that the ResNet-34 model with residual connections can realize matching between 
image features and prior class features faster, better, and more stably. In addition, for both 
the VGG-A model and ResNet-A model, although their train_loss overall declines slightly 
slower, their required training epoch and loss value after stabilization are significantly 
lower than those of the original VGG-19 and ResNet-34 networks. This shows that the IFE-
AM module proposed in this paper, as a feature-weighted focusing strategy, improves the 

Figure 5. Change curves of train_loss.

Table 1. Test results.

Feature Extraction
Network IFE-AM Epochs Train_Loss Top-1 (%) Top-3 (%)

VGG-19 17 0.174 40.1 53.1
ResNet-34 16 0.155 41.7 56.1

VGG-A
√

13 0.147 43.2 60.9
ResNet-A

√
5 0.139 43.3 63.9

For the image classification results of the test set, the top-1 and top-3 of the ResNet-34
model are all larger than those of the VGG-19 model, which shows that its residual structure
has a good effect on the fitting of deep image features. The top-1 and top-3 of the ResNet-A
model are higher than those of the VGG-19 and ResNet-34 models without the attention
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mechanism, which shows that the attention mechanism can focus the features of spatial
attention and effectively improve the generation of image features and the matching effect
with prior class features. The accuracies of VGG-A and ResNet-A are similar, but the top-3
of ResNet-A is significantly improved, which shows that the ResNet-A model can obtain
more accurate image features in high-dimensional space, making the distance between
classes farther, the distance within classes closer, and the matching effect with semantic
features better.

4.2.2. Feature Segmentation

According to the model shown in Figure 4, for VGG-A and ResNet-A, the image feature
Foutput = Fmax + Fmean + Fattention is split, and Fmax, Fmean and Fattention are, respectively,
output to the next layer for comparison with Foutput. The accuracy of the final image
classification is shown in Tables 2 and 3.

Table 2. Comparison of different image features in the VGG-A model.

Image
Features Attention Feature

Fusion Top-1 (%) Top-3 (%)

Fmax 39.9 45.0
Fmean 40.3 51.1

Fattention
√

40.9 51.9
Foutput

√ √
42.3 60.9

Table 3. Comparison of different image features in the ResNet-A model.

Image
Features Attention Feature

Fusion Top-1 (%) Top-3 (%)

Fmax 39.1 41.1
Fmean 41.7 56.1

Fattention
√

42.9 61.1
Foutput

√ √
43.3 63.9

As shown in Tables 2 and 3, the image classification results of the improved ResNet-
A model based on the attention mechanism are better than those of the VGG-A model.
Whether it is the VGG-A or ResNet-A model, the image classification accuracy correspond-
ing to different image features satisfies Foutput > Fattention > Fmean > Fmax, which verifies
the effect of image feature extraction based on the spatial attention mechanism. Inspired
by the idea of residual connection, the three features are superposed to obtain Foutput,
which fuses the information of different features and finally obtains the optimal image
classification result.

4.3. Ablation Experiment of SIF-MD Module

Since the above experiments verified that ResNet-A and Foutput are better, the following
further experiments are conducted on these bases. Three models of word2vec, GloVe, and
fastText were used to extract the word vector features of each class in the dataset, with
a dimension of 256. The attribute features of the dataset were decomposed according
to Formulas (4)–(7), and the loss threshold value was set as 0.1. Then, the decomposed
attributes were weighted and fused with word vector features extracted by word2vec,
GloVe, and fastText, respectively, according to Formula (8). The fusion parameter α was set
as [0, 1] and the step size as 0.1.

The image classification experiment of the test set was repeated five times, and the
average value of the top-1 was taken. The experimental results corresponding to different
word vectors and different fusion parameters α are shown in Table 4. Figure 6 more
intuitively shows the changing trend of top-1 accuracy with α when different word vectors
are used as auxiliary information.
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Table 4. Image classification top-1 accuracy of the test set.

Word Vector
α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

word2vec 43.1 43.1 43.1 43.3 43.7 43.8 43.8 44.0 44.3 44.5 44.2
GloVe 43.1 44.3 44.6 44.6 44.6 44.7 45.0 45.1 45.8 45.3 44.7

fastText 43.1 43.0 43.3 43.6 43.2 42.8 42.5 42.5 42.2 42.2 42.1
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As shown in Figure 6, the top-1 accuracy of the word vector extracted by GloVe as
prior class features is significantly higher than that extracted by word2vec or fastText. As
shown in Table 4, when α = 0, that is, only the attribute features are used as the prior class
feature, the top-1 accuracy of image classification is 43.1%. When α = 1, that is, only word
vectors are used as prior class features, the top-1 accuracies corresponding to word2vec
and GloVe are 44.2% and 44.7%, respectively, which are better than the results when only
attribute features are used, while the top-1 accuracy corresponding to fastText is lower
than the results when only attribute features are used. For the word vectors extracted by
word2vec, GloVe, and fastText, the fusions with attribute feature all have positive effects.
For the word2vec word vector, when the fusion weight α = 0.8 and 0.9, the top-1 accuracy is
1.2% and 1.4% higher than that of the attribute vector only and 0.1% and 0.3% higher than
that of the word vector only, respectively. For the fastText word vector, when the fusion
weight α = 0.2, 0.3, and 0.4, the top-1 accuracy is 0.2%, 0.5%, and 0.1% higher than that of
the attribute vector only and 1.2%, 1.5%, and 1.1% higher than that of the word vector only,
respectively. For the GloVe word vector, when the fusion weight α = 0.6, 0.7, 0.8, and 0.9,
the top-1 accuracy is 1.9%, 2.0%, 2.7%, and 2.2% higher than that of the attribute vector only
and 0.3%, 0.4%, 1.1%, and 0.6% higher than that of the word vector only, respectively. The
results show that it is meaningful to fuse attribute features and the word vector features.

5. Discussions

To verify the effectiveness of the method proposed, the method is compared with
the baseline model and existing classical models. The baseline model only uses the deep
learning network ResNet-34 or VGG-19 to extract image features and uses attributes or
word vectors as auxiliary information. The results of the comparative experiment are
shown in Table 5 and Figure 7. In the table, “ResNet-34 + attribute” refers to the model that
uses ResNet-34 to extract image features and uses attributes as auxiliary information. The
image classification results were evaluated with top-1 accuracy. The experimental results
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of IAP, CONSE, and CMT adopt the results given in references [27,31]. The dataset and the
splits of the training set and test set in the experiments of all methods are the same as that
of our method, and no methods were pre-trained by large datasets (such as ImageNet).

Table 5. Image classification results of different methods.

Method Top-1 (%)

1 ResNet-34 + attribute 41.7
2 ResNet-34 + word2vec 42.3
3 ResNet-34 + GloVe 42.7
4 ResNet-34 + fastText 40.6
5 VGG-19 + attribute 40.1
6 VGG-19 + word2vec 40.4
7 VGG-19 + GloVe 41.2
8 VGG-19 + fastText 39.9
9 IAP 35.9
10 CONSE 44.5
11 CMT 37.9
12 ours 45.8
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As shown in Table 5 and Figure 7, for the baseline model, the top-1 accuracy of
the model using ResNet-34 to extract image features is higher than that of the model
using the VGG-19 network; the top-1 accuracy of the model using word vectors extracted
by word2vec or GloVe as auxiliary information is higher than that of the model using
attributes; and the top-1 accuracy of the “ResNet-34 + GloVe” method is the highest,
with a value of 42.7%. The top-1 accuracy of our method is 3.1% higher than that of
the “ResNet-34 + GloVe” method. For existing classical methods, IAP detects unseen
classes based on attribute transfer between classes, the attribute features are limited by the
dimension of visual cognition, and the amount of information is insufficient. CONSE uses
CNN to extract image features without distinguishing the importance of different regional
features, and only uses word vectors extracted by word2vec as auxiliary information. CMT
uses Sparse Coding to extract image features and uses a neural network architecture to
learn the word vectors of categories. Although more semantic word representations are
learned by using local and global contexts, the discrimination of word vectors is poor,
and the imbalanced supervision between semantic features and visual features is still
large. Our method assigns attention weights to different regions of the image through the
SIF-MD module and strengthens the key features highly related to semantic information.
In addition, it alleviates the imbalanced supervision issue between semantic features and
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visual features through IFE-AM module. These improvements promote the alignment of
visual features and semantic information and make the matching degree of the two higher,
which is very important for ZSIC. Thus, the top-1 accuracy of our method is 9.9% higher
than IAP, 1.3% higher than CONSE, and 7.9% higher than CMT. The above experimental
results prove the effectiveness of our method.

6. Conclusions

To improve the accuracy of the ZSIC model based on embedded space, the IFE-AM
model and SIF-MD module are constructed in this paper. After the existing CNN is used
to extract the image feature map, the max pooling, average pooling, and spatial attention
methods are used to obtain three feature vectors, and then they are fused as the final image
features. The attribute matrix of the dataset is decomposed to match its dimensions with
the extracted word vector, and then the attribute and word vector are weighted and fused
as auxiliary information of the improved ZSIC model.

Experiments were conducted on a public dataset. First, the ablation experiment of the
IFE-AM model was carried out. The experimental results show that the top-1 and top-3
accuracies corresponding to ResNet-A are 1.6% and 7.8% higher than those of ResNet-34,
respectively; the top-1 and top-3 accuracies corresponding to VGG-A are 3.1% and 7.8%
higher than those of VGG-19, respectively. Then, the ablation experiment of the SIF-MD
module was carried out. The experimental results show that the top-1 accuracies of using
fused semantic information as auxiliary information are significantly higher than that of
using attribute or word vector alone. Third, comparative experiments were carried out,
and the results show that the accuracy of the proposed method is significantly higher than
the baseline method and several existing classical methods.

For different types of semantic information, the fusion parameter is not fixed and
needs to be determined by experiments. How to derive the value of the fusion parameter
in theory is our future work. A small- to medium-sized dataset is considered in our work,
and larger data scenarios will be explored in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

ZSIC Zero-shot image classification
CNNs Convolutional neural networks
IFE-AM Image feature extraction module based on an attention mechanism
SIF-MD Semantic information fusion module based on matrix decomposition
AwA2 Animals with Attributes 2
FC Fully connect
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