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Abstract: Understanding users’ visual attention on websites is paramount to enhance the browsing
experience, such as providing emergent information or dynamically adapting Web interfaces. Existing
approaches to accomplish these challenges are generally based on the computation of salience maps
of static Web interfaces, while websites increasingly become more dynamic and interactive. This
paper proposes a method and provides a proof-of-concept to predict user’s visual attention on
specific regions of a website with dynamic components. This method predicts the regions of a
user’s visual attention without requiring a constant recording of the current layout of the website,
but rather by knowing the structure it presented in a past period. To address this challenge, the
concept of visit intention is introduced in this paper, defined as the probability that a user, while
browsing, will fixate their gaze on a specific region of the website in the next period. Our approach
uses the gaze patterns of a population that browsed a specific website, captured via an eye-tracker
device, to aid personalized prediction models built with individual visual kinetics features. We show
experimentally that it is possible to conduct such a prediction through multilabel classification models
using a small number of users, obtaining an average area under curve of 84.3%, and an average
accuracy of 79%. Furthermore, the user’s visual kinetics features are consistently selected in every set
of a cross-validation evaluation.

Keywords: visual attention prediction; eye-tracker sensor; visual gaze patterns; visual kinetics;
human–computer interaction; gaze data analytics

1. Introduction

Understanding the behavior of users’ visual attention on websites is an active research
area tackled by the fields of computer vision, human–computer interaction, and Web
intelligence. By using information gleaned from this understanding, a website can be
constructed to deliver information of greater utility and complexity, such as emergent
recommendations in regions of a Web interface that capture users’ attention, adapt visual
stimuli to users’ gaze patterns in real time, among other advantages. Traditional methods
to study users’ visual attention have historically focused on images. However, recently
more complex visual stimuli have been considered, such as videos [1–5], virtual reality
environments [6,7], egocentric videos [8,9], and websites. Unfortunately, the literature
on users’ visual attention on websites is generally based on salience maps computed for
static Web interfaces [10–13], where the website structure is always known in advance [14].
Therefore, as dynamic and interactive websites become increasingly prevalent, traditional
methods of evaluating visual attention, such as those based on static salience maps or
pre-determined website structures, are becoming less effective.

It is imperative to gain a deeper understanding of users’ visual attention on websites
to create an optimal online experience. This requirement can be realized by dynamically
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predicting users’ visual attention on specific regions of a website. This understanding offers
several advantages, such as identifying regions of the website that capture users’ attention
and making them more prominent; adjusting the layout and design to match users’ gaze
patterns, or improving the user experience by creating a more intuitive and user-friendly
interface. Furthermore, this understanding can aid in optimizing a website’s layout to
increase user engagement and conversion rates, and addressing usability issues, such as
elements on the website that may be causing confusion or frustration.

Users’ own browsing actions are the most significant source of difficulty in predicting
their visual attention in current dynamic websites. For instance, these actions may yield
the display of menus, pop-ups, or banners when clicking certain regions, or movement
of the webpage when using the lateral scroll. Given that the interaction with a website
generates constant changes in its layout, there exists the need for a prediction that identifies
the regions of a user’s visual attention without requiring the constant recording of the
current layout but knowing the structure it presented in a past period. To address this
challenge, this paper introduces the concept of visit intention, defined as the probability
that a user, while browsing, will fixate on a specific region of the website in the next period.
These regions are known as areas of interest (AOIs) and are defined by specific groupings
of the website components.

In this paper, visit intentions to AOIs are obtained through multilabel classifiers
that leverage different features extracted from eye-tracking data. The first set of features
comprises a user’s gaze fixations in different periods over the components of AOIs. Since
generally little information per user is available, our approach generates a population-level
classification model to improve generalization and reduce the risk of overfitting from
training models with few samples. Furthermore, this means that a subset of these features
embeds information about the behavior of other users in that of a specific participant. That
is, visit intention prediction models integrate, in the first instance, the features calculated
from a population-level gaze pattern, allowing a robust training of models of individual
visit intentions, increasing their performance. Another set of features comprises the user’s
visual kinetics, such as gaze position, velocity, and acceleration measurements in the X-
and Y-coordinates of the interface. We hypothesize that visual kinetics features enable the
prediction models to capture tendencies of the gaze at the beginning of a period, which
would inform future eye movement patterns.

This paper thus attempts to answer the following research question:

• RQ: To what extent is it possible to accurately classify a user’s visit intention in a
certain period in real time to specific AOIs of a website, leveraging population-level
general gaze patterns and a user’s particular gaze data?

To answer this research question, 51 users participated in an experiment browsing a
website with dynamic components in front of an eye-tracking device. This paper shows
that by using the population-level gaze patterns of a few users and applying diverse
classification methods and feature selection techniques, a user’s visit intention to AOIs in a
period can be predicted as proposed in RQ (average AUC = 0.843, average ACC = 0.79).
Furthermore, individual users’ visual kinetics features are consistently selected in every
cross-validation set, confirming the hypothesis.

This paper is organized as follows. Section 2 presents the related work. Section 3
defines key concepts, delivers a formulation of the problem to be addressed, and explains
the apparatus used for the experimentation carried out to answer the research question.
Section 4 explains the proposed prediction methodology. Section 5 shows an experimental
evaluation by applying the proposed methodology to a real dataset of Web users’ gaze
data. Finally, Section 6 presents the discussions of the work carried out, while the paper is
concluded in Section 7.

2. Literature Review

Visual attention is a mechanism that filters relevant areas of a stimulus from the rest
of redundant information. Knowledge of a user’s attention can be useful in applications
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such as coding and data transmission, improvement in recommendation and information
delivery systems, and performance evaluation in different visual stimuli, among others.

In the literature, attention is categorized into two functions: bottom-up attention and
top-down attention. The first corresponds to the selection of zones of a visual stimulus
based on its most salient inherent characteristics in relation to the background. This
function of attention operates with input in a crude, involuntary way. The second integrates
knowledge of the visual scene, goals or objectives of the user with respect to the stimulus.
Moreover, it implements longer-term cognitive strategies on the part of the person [15–17].

Studies focused on top-down attention models are less prominent in the literature
than their bottom-up counterparts, since their functionality is influenced by factors external
to the stimulus. In addition, calculated responses vary from model to model, i.e., from task
to task, making it difficult to generalize a stimulus model. On the other hand, different
models of bottom-up visual attention have been proposed. In this work, bottom-up models
are studied.

2.1. Attention Models in Static Stimulus

The focus of classic studies on visual attention corresponds to static visual stimuli,
that is, stimuli that do not present an alteration during the time period of exposure to a
user. In this field, there are multiple studies on visual attention when making “free viewing”
on images. Of these, there are mainly three approaches for the study of visual attention:
saliency map generation, scanpaths models and the saccade models.

Saliency maps are topographic representations of the visual prominence of a stimulus.
That is, they make it easier to understand areas of greater or lesser importance in the
selection of points of attention. There are multiple studies in which saliency maps are
applied to images. In [18], transformations are made from features present in different
natural images to maps of salience, searching for a smaller number of characteristics to use.
In [19], the images are convolved with a template and postprocessed to deliver the result.
Association methods have also been utilized. In [20], a method called saliency transfer is
presented, where a support set of best matches from a large database of saliency annotated
images is retrieved, and transitional saliency scores are assigned by warping the support set
annotations onto the input image according to computed dense correspondences. In other
research, deep learning approaches has been adopted. In [21], a deep convolutional neural
network is proposed that is capable of predicting fixations and segmenting objects in
different images. In [22], an approach based on convolutional neural networks is employed
which incorporates multi-level saliency predictions within a single network, capturing
hierarchical saliency information from deep, coarse layers with global saliency information
to shallow, fine layers with local saliency response. Other deep learning approaches applied
for salient object detection have been reviewed in the literature [23,24] or for co-salient
object (group of objects that occur together in an image) [25]. In general, there is a large
database of images and different models developed in the state-of-the art approaches [26],
as well as studies about their performance metrics [27,28].

Scanpaths are attempts to predict sequences of users’ fixations within a stimulus.
While many papers study scanpath generation and saliency map extraction independently,
research focusing on the fusion of these approaches is limited. However, some works
focus on the identification of scanpaths by using sampling methods on top of saliency
maps [10,11]. Other studies have utilized fixation data for the calculation of saliency maps,
such as the Attentive Saliency Network (ASNet), developed in [29].

Saccadic models represent another option. In [30], predictions of exploration routes
are made in natural images. In [31], the saccadic model considers age ranges of users.
This model integrates the interaction between the way in which users observe the visual
information and the mental state of each user.

It has been demonstrated that static models present good results; however, in this
work, we seek to study the visual attention of users in dynamic environments, which in
general are more complex since they consider time as a new variable.
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2.2. Attention Models in Dynamic Stimulus

There are models developed for bottom-up attention on dynamic stimuli, that is,
environments that present movement or that change their structure when interacting in
a certain way with the person. For example, a video presents alterations (frame-to-frame
movement), but it does not depend on the interaction. On the other hand, a web page
presents dynamism in its structure or content depending on the user’s interaction.

In [1], predictions of saliency maps are made in videos, frame-by-frame. For this
purpose, recurrent network methods with mixed density are used. In this study, the visual
stimulus is known over time, thus allowing it to be broken down into a series of static
images. However, the advantage of this approach, in which the saliency map for each frame
of the video is generated by the information from the previous frames, is that information
is integrated from the user interaction. Other studies have developed the evaluation of
attention in videos, such as [32] which compares a model without video annotations, with
annotations of foreground objects, and other biologically based annotations, or [33] where
a deep learning approach was adopted.

Saliency maps have also been applied to stimuli in web environments. In [34], a
saliency map is calculated at the task level. However, most studies have tended to focus
on static calculations [10–13]. That is, they do not examine the temporal component of the
user’s interaction with the website. Finally, there is a dynamic visual attention study [14] in
which the site is assumed to be known at all times, and at the same time, it is assumed to
know the duration of each subtask conducted by the user.

Although these methods correspond to a dynamic stimulus and contemplate informa-
tion of user interaction, they generally focus on knowing the stimulus at all times, either by
its nature independent of the user or by predicting the duration of subtasks (predicting the
structure of the stimulus in certain periods of time). Our approach seeks to generate pre-
dictions directly from visual data, without the need for predicting changes in the stimulus
or its structure control at all times, seeking to accelerate the processing times of the model
in execution.

2.3. Attention Models in Egocentric Vision

Egocentric vision is a recently introduced area of study. It details the analysis of
attention in videos captured with wearable cameras on a user such that the visual fields
during the execution of different tasks can be determined. In general, cameras are mounted
on the head or chest of the user, and in addition to recording the environment in which it is
carried out, the eye activity is recorded by an eye-tracker.

A recent study on gaze prediction in these environments is [8]. Here, the authors look
for the generation of saliency maps in future frames through frame prediction, a similar
approach to the one used in [9]. Although these environments are dynamic and depend
on user interaction, the possibilities for interaction are so broad that traditional bottom-up
models are insufficient for visual prediction [35]. Other models developed do not achieve
generalization because they have specific cases for each task [36,37].

As in the case of the dynamic environments described above, the models consider the
prediction of a visual stimulus structure or future sub-tasks for the estimation of visual
attention. This is because the stimuli in this area are too complex, escaping our framework.
In particular, what we are looking for is to study a dynamic stimulus that moves within
well-defined structures.

To the best of our knowledge, this is the first work to study attention transition between
zones of a dynamic visual stimulus that changes according to the user’s behavior, directly
from user’s visual information, without predicting changes in the stimulus structure.

3. Material and Methods
3.1. Problem Definition

This paper studies the visual attention of a user on a dynamic stimulus, within a
bottom-up attention environment, that is, where attention is guided by inherent properties
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of the stimulus, and not by factors internal to the user such as previous knowledge of the
stimulus or specific tasks to be carried out (top-down attention). To study the above topic, a
two-dimensional stimulus is created and is exposed to different users, and each interaction
is recorded with eye-tracker instrumentation.

User visual behavior is represented by the recording of gaze data. In this way, each
point of gaze xi is represented by a vector of three components xi = [xi, yi, Ti], where
the first two correspond to the horizontal and vertical coordinates of each record over a
two-dimensional stimulus, and the third corresponds to the time in interaction. In the
following, a signal is referred to as the visual record of a complete interaction.

The eye-tracker records a user’s visual signals. This gives us information of gaze,
being able to identify fixations and saccades. A fixation is the state in which the eyes
remain static, with some micro-movements, for a period of time (100–300 ms), for example,
over a word when reading. They are identified as sets of gaze data, and their position is
considered as the place where the user keeps their attention. A saccade corresponds to
ballistic movements that have a duration between 30 and 80 ms, made between one fixation
and another. This is not necessarily done in a straight line.

The development of this work is based on the segmentation of stimulus into AOIs,
that is, regions where the researcher is looking for user behavior. The space between the
AOI’s is called whitespace, which is not necessarily free of stimulus elements.

For the AOI definition, there is an approach where the stimulus is divided into equal
size regions, called segmentation in grid. On the other hand, AOI’s can be defined in a
semantic way, such that common meanings are used between zones assigned to the same
AOI. There may be differences in shape and/or size with respect to other AOI’s. We use
the latter approach in this work given that it is expected to obtain information about the
visual attention of the user in certain areas with a dynamic nature.

Therefore, an important factor in the problem is that for each AOI definition, it is
necessary to consider grouping the zones of the stimulus that present the same information
for the user. For example, grouping two news items within a newspaper allows the AOI
to be characterized as news information. However, grouping an advertisement with one
news item does not allow the AOI to be given a characteristic meaning.

This paper considers the visual attention of users to the different AOI’s defined within
a dynamic stimulus. For this, the concept of visit intention is defined, by which it is
evaluated in advance such that the AOI visual stops by a user will be verified. In this way,
given the visual stimulus, the AOI’s {Aj| j = 1...n} and a period of time v(t) = (T(t)

o , T(t)
f )

are given, where the values of the tuple correspond to the time limits of the period, which
are indexed by {t = 1, 2, ...}, and the visit intention Iv(Aj, v(t)) ∈ {0, 1} is defined as a
binary variable that indicates whether or not there is a user decision to visit Aj in that
period. The decision to visit an AOI will be measured as the existence of visual fixations
of the user within that stimulus zone. The visit intention for n AOI’s in a period time is a
vector IV(v(t)) = [Iv(1, v(t)), ..., Iv(n, v(t))].

It is assumed that the vector IV(v(t)) is characterized at the beginning of the time
period v(t), although in reality, the process of choosing it can take place during all the time
before the beginning of the window v(t). What we are looking for in the following sections
is the prediction of this vector for different time windows v(t). Time window and period of
time are used interchangeably throughout the paper, given the information of the user’s
behavior in the past time (periods v(s), s = 1, . . . , t− 1).

What follows from this section describes the experiment developed to study the
bottom-up visual attention of different users on a dynamic visual stimulus based on the
estimation of the values of visit intention in different time periods.

3.2. Participants

The experiment is conducted with 51 participants based on a convenience sample.
Of these participants, 34 are men and 17 are women, between the ages of 19–35. A large
percentage of the participants (88%) are students, and the occupations of the rest include
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a research assistant, a participant with a bachelor’s degree in Hispanic literature, and
four engineers.

The participants signed an informed consent form stating that they permit the use of
the data collected and meet the following requirements:

• They are healthy individuals who do not present with diseases that could harm the
results of the experiment, they are not under pharmacological treatment and they do
not have a history of neurological or psychiatric diseases.

• They do not present with the use of medications or drugs within the past 24 h.
• They present with good vision or corrected vision.

3.3. Apparatus
3.3.1. Instrumentation

The eye-tracker Tobii T120 (Tobii Technology AB, Stockholm, Sweden) is used, which
allows tracking of the subject’s gaze during the test. This setup corresponds to a screen of
17 inches, with a resolution of 1280 × 1024 px, where two infrared diodes generate patterns
of reflection on the corneas of the user’s eyes; the three-dimensional position of each eye is
calculated, and therefore, his or her gaze on the screen is determined. At the same time,
the pupil sizes of both eyes are recorded over time. The Tobii Studio software allows the
adjustment of the user’s position during calibration.

The system has a sampling rate of 120 Hz, a typical accuracy of 0.5 Hz, a typical drift
of 0.1 degrees, a typical spatial resolution of 0.3 degrees and a typical head movement error
of 0.2 degrees.

3.3.2. Web Page

To carry out the study, a dynamic stimulus corresponding to an informative web page
is used. This corresponds to new content for the user, as it is content written and edited by
the developer, organized in a one page design. To achieve the dynamic character, the static
and complete website version cannot be seen entirely on the screen, requiring the use of
a scrolling bar by the user. At the same time, dynamic elements within the page, such as
drop-down menus or moving elements, are considered.

The web page has different components, that is, the sections of the page that represent
an element in its own functions and actions. Web page components can be seen in Figure 1
with different colors, and correspond to the following: “Logo”; “Bar_Menu”; “Title”; “Img”
and “New” for each of the seven news items; “Banner”, for each of the four advertisements;
“Num_Pag” (corresponding to the pages number button); and “Sub_Butt” (corresponding
to the user’s subscription button). In addition, there are dynamic components, that is,
they appear according to the user’s interaction with the website. These are the country
selection bar, the menu bar presented in Figure 2 and the user registration pop-up window
in Figure 3.
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Figure 1. Static components of the Web page used in the experiment (content provided in Spanish).

Figure 2. Dynamic component of the Web page used in the experiment: Page drop-down menu
(content provided in Spanish).
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Figure 3. Dynamic component of the Web page used in the experiment: User registration pop-up
(content provided in Spanish).

3.4. Task Design

The objective of the experiment is to predict the attention zones of a user’s gaze during
the exposure of a dynamic stimulus in a bottom-up attention task. To perform this, a
fictitious website is chosen, created specifically for the experiment, which is run locally to
avoid possible delays in connection to the internet. The web page is detailed in Section 3.3.

A total of three websites are presented to each participant. Each considers the same
structure in the elements of the page, but the content varies. Advertisements and news
headers appear randomly and without repetition, out of a total of 12 available advertise-
ments and 21 news items. This approach avoids the experience effect of a user with the
stimulus and, at the same time, creates a dynamic stimulus with different content for each
user. The aim is that users navigate freely on the website and that this, together with the lack
of previous experience of the user with the page, allows the study of bottom-up attention.

The content that is chosen, both for news and announcements, is related to student
life. Topics include travel, courses, beer, education, music, technology and miscellaneous.

For the best analysis of the data, the control of variables such as luminosity and the
user’s movement is required, such that an isolated space is necessary to carry out the study.
For eye tracking, direct sunlight, which affects the quality of the measurements, should
be avoided. In addition, there should be no light from a top source. To avoid these effects
of light, the laboratory is isolated from external light with black-out curtains. In addition,
measures are taken to avoid all kinds of external interruptions during the experiment.

3.5. Experimental Procedure

During the experiment, only the person in charge of the test and the participant
are present in the experimental room. The latter is provided with an explanation of the
experiment and asked to read and sign the informed consent form.

The person sits in front of the eye-tracker screen in a manner similar to navigating on
a desktop computer, allowing the use of a mouse. The participant is asked to maintain a
fixed posture, without moving their head, to avoid data loss.

Each person is prompted to freely browse the web page for as long as they want and
to indicate when to finish.

Prior to the tests, each user is subjected to a relaxation stage consisting of the visu-
alization of three videos of four minutes each, consisting of picturesque landscapes with
background instrumental music. The second part of this stage asks the participant to take a
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deep breath for one minute with closed eyes and soft instrumental music in the background.
This stage aims to eliminate the Hawthorne effect (behavior modification as a consequence
of knowing they are being studied) and physiological effects. In addition, this stage allows
the baseline to be acquired for later treatment of the signals. Then, the page is presented
randomly to each participant.

3.6. Descriptive Analysis

A total of 153 signals are extracted from 51 volunteers for the signals of the gaze
behavior and event registration (click, display of dynamic elements, scroll, etc.). Fixations
with duration less than 100 ms are filtered from the model. Table 1 shows descriptive
statistics of the acquired signals.

Table 1. Descriptive statistics of the acquired signals.

Number of records 153

Recording time (s) tmin = 16.5 − tmax = 399
t̄ = 78.8 − σt = 51.9

Number of saccades smin = 62 − smax = 1129
s̄ = 262 − σs = 165

Fixation per record Fmin = 62 − Fmax = 1130
F̄ = 262 − σF = 164.6

Fixing duration per record (s) Fmin = 0.008 − Fmax = 3.273
F̄ = 0.22

4. Prediction Methodology

Figure 4 shows the methodology for the construction of predictive models of visit
intention in limited periods of time. First, components of the web page are established,
and then, AOI’s are defined. Afterwards, signal records are divided into time windows
of a specific length by solving a linear optimization problem. The time windows are then
optimally assigned to training and test sets for cross-validation. Labels for each time
window are created, and a oversampling balance method is used for each train-test set to
avoid overtraining. For each time window, it is possible to create a set of features used for
classification. Different methods are tested, and finally, the results are evaluated.

4.1. AOI Definition Criteria

Given the approach of the problem, each defined AOI must have a characteristic
meaning; therefore, components of similar semantic meaning were grouped into larger
areas. At the same time, the final size of each defined area is considered so that it can be
fully visible on the screen by scrolling the page in the corresponding dimensions.

In this way, the web page is separated into five semantic areas shown in Figure 5.
A sixth AOI is defined, corresponding to the registration menu that is displayed when a
user clicks on the button intended for this functionality, located in the upper navigation bar
(see Figure 3).

AOI 1 is dynamic, as the menu bar moves together with the screen movements given
by the scroll. The AOI’s 2 and 3 are groupings of outstanding news, and the division into
three and four news groups is chosen since the resolution of the screen allows these AOI’s
to be completely displayed when performing a lateral scroll. Following the same logic,
AOI’s 4 and 5 are generated corresponding to advertising banners within the web page.
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Figure 4. Prediction method. The process consists of five stages that are developed sequentially.
Firstly, the areas of interest are defined as sets of components within the website. Subsequently,
the signals captured experimentally are segmented into constant length time windows, which are
assigned to each of the sets of the k-fold cross validation. As the target variable for each window, a
binary label is generated that is one if the area of interest is visited in that temporal window or zero if
not, and subsequently MLSMOTE techniques are used for the balance between the different categories.
Later, for each time window, a set of features is associated with which the multilabel classification
models with k-fold cross validation of MLKNN, Ridge Regression, K-nearest neighborhood (KNN)
and support vector machine (SVM) are trained, where the latter three models are trained under
the binary relevance and classification chain approaches. Finally, the metrics shown in the “Result
evaluation” box are calculated to choose the best model.

AOI 6 has a dynamic nature and is activated by user interaction within the site. When
activated, the ocular fixations for the rest of the AOIs located below are deactivated.

Some components of the page are not included in any AOI, as is the case for the subscription
bar, the number of pages and the title of news; these are considered to be whitespace.

Thus, each defined AOI meets the conditions of the problem, where AOI 1 acquires the
meaning of the navigation menu, areas 2 and 3 refer to news, areas 4 and 5 to advertising
and AOI 6 to the user registration menu.
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Figure 5. AOIs for the web page. AOI1 comprises the page logo and the navigation bar at the top of
the web page. AOI2, located at the center of the web page, is composed of the titles of three news
articles and their respective images (Img 1, Img 2, and Img 3). AOI3 is composed of the titles of
four news articles and their images (Img 1, Img 2, Img 3, and Img 4). AOIs 4 and 5 consists of two
advertisements each one, located at the right-hand side of the web page. AOI6 corresponds to the
user registration pop-up, which is a dynamic component.

4.2. Time Window Segmentation and Cross-Validation

The models developed with population-level features simulate the continuous acquisi-
tion of gaze data over time. To evaluate this acquisition, the gaze signal is segmented into
time intervals called windows. These windows have a long τ, given as a parameter. Thus,
a long signal T will have t = 1, . . . , bT/τc time windows v(t).

To achieve external validity of the prediction models, it is necessary to generate
training and test datasets that maintain independence from each other. To achieve this
generalization, it is considered that both sets cannot share information from the same user.
Thus, using the k-fold cross-validation method, a partition per user is performed. In turn,
to select which users belong to each of the k-folds, an optimal allocation is performed that
balances the number of windows in each fold. Since each user’s total browsing time is
different, the number of users in each partition varies.

The assignment is made with a mixed integer linear programming model given by
Equations (1a) to (1f). Sets U = 1, . . . , N and KF = 1, . . . , K represent the number of users
and fold to be used in cross validation, respectively. Variables {yu,k|u ∈ U; k ∈ KF} are
defined with the value one if the user u is assigned to fold k; otherwise, they are zero.
The variables {xk|k ∈ KF} represent the sum of windows in fold k, given the assignment of
users. Thus, each user is assigned to a fold, minimizing the difference between the total
sum of windows in each fold k and the average number of windows in all folds. In the best
case, all folds will have a number of windows equal to the average x̄.

The restriction (1b) indicates that each user can be assigned to only one of the k-
folds. The restriction (1c) defines the variables xi, each representing the weighted sum
between the assigned users and the total number of windows it has in the interactions (Pu).
The restriction (1d) defines the arithmetic mean of the number of windows in the folds.
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minimize
K

∑
k=1
|xk − x̄| (1a)

subject to
K

∑
k=1

yu,k = 1, u ∈ U, (1b)

xk =
N

∑
u=1

yu,k ∗ Pu, k ∈ KF, (1c)

x̄ =
∑K

k=1 xk

K
, (1d)

xk ≥ 0, k ∈ KF, (1e)

yu,k ∈ {0, 1}, u ∈ U; k ∈ KF (1f)

To solve (1a–1f), we add new variables Ui, i = 1, . . . , K that represent |xi − x̄|. The tar-
get function is changed, and constraints (2b) and (2c) are added. This is how problem (2a–2e)
is defined.

minimize
K

∑
k=1

Uk (2a)

subject to Uk ≥ xk − x̄, k ∈ KF, (2b)

Uk ≥ −(xk − x̄), k ∈ KF, (2c)

Uk ∈ IR, (2d)

{(1b), (1c), (1d), (1e), (1f)} (2e)

4.3. Sample Balance

In multilabel classification problems, it is common that label frequencies are not the
same, with some that are more frequently active than others. In this case, since labels are
defined by combinations of AOIs, vectors will exist with few combinations, as in the cases
in which the dynamic areas of interest are activated, such as the pop-up windows, which
are carried out to a lesser extent than the activation of the static AOIs.

The MLSMOTE [38] resampling method is used to solve the sample imbalance prob-
lem. This method uses the minority class labels as seeds for the generation of new instances.
For each minority class label, it searches for the nearest neighbors by obtaining the charac-
teristics of the new samples using interpolation techniques. Therefore, the new instances
are synthetic rather than clones of other data.

4.4. Features Extraction for Multilabel Classification

For multilabel classification, a set of independent, population-level features is generated,
which are processed from gaze data signals and navigation history. Indexes j = 1, . . . , n
correspond to the defined AOI’s and c = 1, . . . , N to the components present in the web page.

The features related to the ocular fixations carried out in each component and AOI
are extracted, which are defined in Table 2. These features attempt to capture attention in
certain areas given the history of previously visited areas.
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Table 2. Predictive ocular fixation model features.

Feature Definition

{AOI_tslv}j

The “time since last visit” features for each AOI are calculated as the difference between the start time
of the current window and the time of the last time that user make a fixation in the j-th AOI

({AOI}j = 1). Value 0 in case of no previous visit.

{AOI_r1}j Independent time series features. rq correspond to 1 if the user makes a fixation in the q-th window
previous to the current one without temporal accumulation, 0 if not. That is, if {AOI}j = 1 for a
window v(t), then {AOI_rT}j = 1 for the window (vt+T).

{AOI_r2}j
{AOI_r3}j

{AOI_end_r1}j
Binary feature. Takes the value 1 if the previous window ends with a fixation in the j-th AOI and 0 if
not. This feature captures the fact that fixations can be interrupted by transitions between windows.

End_r1 Corresponds to an AOI indicator in which the previous window ends. It is calculated as:
End_r1 = ∑n

j=1 j ∗ AOI_end_r1j

{[Component]_his}c
The “history” feature for each component. Takes the value 1 if user has made a fixation on the

component in the past and 0 if not.

{[Component]_end}c
This feature indicates for a time window the last component in which user made a fixation in the

previous time window.

{[Component]_end_r1}c Similar to {AOI_end_r1}j features, but per component, built from the feature [Component]_end.

{[Component]_tslv}c The features “time since last visit” for each component is similar to {AOI_tslv}j.

{[Component]_atv}c

Features “average time of visits” for each component give the average time in ms of the fixations
made on the component by user in their interaction with the web page. If there are no fixations in

that component, it is assigned the value 0.

{[Component]_atbv}c

The “average time between visits” features for each component represent the average time in ms that
it has taken the user to perform a fixation on the component since last fixation on the same

component. It is assigned the value 0 in case there are no fixations.

{Heat_AOI}j

Using the signals registered in the training set, a feature of frequency of visualizations is generated in

each one of the defined AOI’s, in the time windows made by other users v(t)j in the times

corresponding to the analyzed time window v(t), that is:

Heat_AOI(v(t)) = ∑
Utrain
u=1 AOI(v(t)u )

Utrain

The feature “Heat AOI” adds information about the behavior of other users to the
behavior of a particular participant. It is expected that for a stimulus, the model will learn
to recognize the visual attention patterns of users over time, at the population level. In this
way, the weighting of this feature in the classification models allows learning how to use
these patterns in predictions.

Subsequently, visual kinematics features are defined, shown in Table 3. Position,
velocity and acceleration measurements are calculated in the X- and Y-coordinates of the
gaze position over the stimulus. These features seek to incorporate information in relation to
the shape of the ocular movement carried out in a period of time before the beginning of the
window, which would allow knowing the future movement patterns. The definitions for the
Y coordinate features (coordY, MeanY, StdY, VelY, MeanVelY, StdVelY, AclY, MeanAclY
and StdAclY) are similar to those of the X coordinate case.

Finally, features related to the eye-tracking function, both fixation and saccade, are
added (see Table 4). These features capture the areas to be visited according to the ocular
movements registered for the user.
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Table 3. Features of visual kinematics.

Feature Definition

coordX It is considered the last position of the previous time window, before starting the time window,
registered for the user.

MeanX, StdX Mean and standard deviation of the gaze position in the X-coordinate recorded in the user interaction
with web page in the previous time window.

VelX Derivative from position data at X-coordinate. This feature takes the velocity value corresponding to
the last register of the previous time window.

MeanVelX Mean and standard deviation of the speed in X, of the data recorded in the previous time window.StdVelX

AclX Derivative from speed data at X-coordinate. This feature takes the value corresponding to the last
acceleration register during navigation.

MeanAclX Mean and standard deviation of the acceleration data in the X-coordinate recorded in the previous
time window.StdAclX

Table 4. Features in Eye-Tracking Function.

Feature Definition

NFix Number of fixations made by the user during their interaction with web page along time.

TPromFix Average time, maximum time and minimum duration of the fixations made by the user during
navigation.TMaxFix

TMinFix

NSac Total number of saccades made by the user up to the time before the start of the current time window.

APromSac Average, maximum and minimum amplitude of the saccades taken by the user up to the moment
before the beginning of the current window.AMaxSac

AMinSac

4.5. Classification Models

In total, five feature selection methods are executed, namely, maximization of mu-
tual information (MLMIM), jointmutual information (MLJMI) [39], min-redundancy max-
relevance (MLMRMR) [40], normalized mutual information feature selection (MIFS) [41]
and robust feature selection (RFS) [42], on multilabel classification methods chosen be-
cause of their widespread use in the literature. The configurations used are briefly
described below:

Ridge Regression (RR): This model is used through the multilabel classification ap-
proaches of the binary relevance and classification chain, choosing the number of features in
the range 5 : 5 : 40, through the methods of feature selection mentioned. Given the features,
different values are chosen for the parameter λ = 0.25 : 0.25 : 2, and then β parameter
is estimated.

k-nearest neighbor (KNN): This method is used with the binary relevance and classifi-
cation chain approaches, setting the number of features to use in the range 5 : 5 : 40 and
the values of number of neighbors in the range K = 5 : 5 : 30.

Support vector machine (SVM): This method is used with the binary relevance and
classification chain approaches, setting the number of features to be used in the range
5 : 5 : 40, chosen through the feature selection methods, and the parameter C = 0.2 : 0.2 : 2.

Multilabel K-nearest neighbor (MLKNN): It is used directly without the approaches
of binary relevance or the classification chain, setting the number of features to use in the
range 5 : 5 : 40, chosen through the methods of feature selection, and the parameter relative
to the number of neighbors as k = 15.
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4.6. Performance Metrics

Models are evaluated by k-fold cross-validation, so the evaluation metrics are inde-
pendently averaged between the k training and testing sets. To measure the quality of the
solution and choose the best configuration, the following metrics are used. Yi corresponds
to the real label vector of the visit intention components, and Zi corresponds to the pre-
diction visit intention vector. Only in this case does n represent the number of instances
to evaluate.

The problem is originally seen as the search for a user’s attention zones over time. This
approach allows leeway such that the model does not have to achieve the full prediction
of the area served by the user. For this reason, the recall metric is not used directly for
the evaluation of a model, which establishes the percentage of activation in the labels
that are predicted, but it is used harmoniously in the F-measure metric. On the other
hand, it is expected that in cases where the model establishes tag activation, these will
actually be areas served by users, minimizing the error to the maximum degree. For this
reason, the precision metric, which measures the percentage of activation occurrences that
actually happen within the total activation proposed by the model, is used directly in the
model selection.

Area under the curve (AUC): A receiver operating characteristic (ROC) curve demon-
strates a classifier’s ability to discriminate between positive and negative values by chang-
ing a threshold value. When the area below the curve is one, it represents a perfect
prediction. In the multilabel classification case, it can be calculated from the macro ap-
proach, using the rankings of the instances for each label. Ranking r(xi, l) is defined as the
function for which the instance xi and the label yl returns the degree of confidence of l in
the prediction Zi. In this way, the calculation is given by:

AUC =
1
k ∑

l∈L

|x′, x′′ : r(x′, yl) ≥ r(x′′, yl), (x′, x′′) ∈ A|
|Xl ||X̄l |

Xl = {xi|yl ∈ Yi}, X̄l = {xi|yl 6∈ Yi}, A = Xl × X̄l

Accuracy (Acc): This is the ratio between the number of correctly predicted labels
and the actually active labels, given individually by components. It is averaged across
all instances:

Accuracy =
1
n

n

∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

Subset Accuracy (Exact): This is the instances percentage, where all coordinates of each
vector that are correctly labeled are compared to the total number of labels, that is, the
percentage of instances correctly predicted. In the below formula, the operator J K corresponds
to the bracket of Iverson, which is 1 if the logical proposition is true, and 0 if not.

Subset Accuracy =
1
n

n

∑
i=1

JYi = ZiK

Precision (Pre): The ratio between the number of correctly classified labels and the total
number of labels. Intuitively, it corresponds to the percentage of labels predicted as true
and that are really important for the instance.

Precision =
1
n

n

∑
i=1

|Yi ∩ Zi|
|Zi|

F-measure (F-mea): It is the average between precision and recall calculated in a
harmonic way. It measures how many relevant tags are predicted and how many of the
predicted labels are relevant.
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F-measure = 2 · Precision · Recall
Precision + Recall

where Recall is the percentage of correctly predicted labels among all labels:

Recall =
1
n

n

∑
i=1

|Yi ∩ Zi|
|Yi|

4.7. Methodological Limitations

One of the foremost limitations of this study is the utilization of a stimulus in the form
of a free visit to a web page on a desktop computer, which cannot be extrapolated to mobile
devices. This is a critical consideration, as the use of mobile devices is on the rise and can
significantly impact the browsing experience on a web page, due to variations in screen
size, modes of manipulation, and the user’s field of view. Additionally, while the free visit
task may provide a general understanding of page navigation, it is possible that the results
would differ if a different task were employed.

While efforts were made to include a diverse range of participants, it is important to
acknowledge that the results may be subject to variation if the sample were more diverse
in terms of demographic factors such as age or professional status. Additionally, it is
important to note that the results of this study may not be generalizable to other websites
that possess distinct characteristics, where interactions may present alternative types of
dynamic components. Furthermore, the areas of interest defined in this study are specific
to this particular website and may not be applicable to other websites with different
components or distribution. However, the methodology proposed in this study can be
replicated in other websites. Therefore, it is essential to continue research in this area in
the future.

5. Experimental Results

Classification models are executed with different configurations, making a cross-
validation of 10 folds. The average results measured in the test sets are given in Section 5.1.
Test set samples are not balanced, since synthetic data classification is irrelevant. The results
therefore correspond to the original distributions of the labels.

5.1. Main Results

The proposed configurations are executed using the programming given in [43] (“MLC
Toolbox”). The results are presented in Table 5, where the best models are summarized
(choosing the number of features and parameters) as detailed below:

• Ridge Regression Binary Relevance (RR-BR): Best results are achieved with the RFS
feature selection method, using 30 predictive features and the parameter λ = 1.75
(weighting of the coefficients of the variables in the target function).

• Ridge Regression Classification Chain (RR-CC): Best results are achieved with the RFS
feature selection method, using 30 predictive features and the parameter λ = 1.75
(weighting of the coefficients of the variables in the target function).

• KNN Binary Relevance (KNN-BR): Best results are achieved with the MLMIM feature
selection method, using 10 predictive features and the parameter K = 20 (neighbor-
hood size).

• KNN Classification Chain (KNN-CC): Best results are achieved with the MLJMI
feature selection method, using 10 predictive features and the parameter K = 15
(neighborhood size).

• SVM Binary Relevance (SVM-BR): Best results are achieved with the MLMIM feature
selection method, using 40 predictive features and the parameter C = 0.2 (weighting
of the loss function in the target function).
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• SVM Classification Chain (SVM-CC): Best results are achieved with the RFS feature
selection method, using 30 predictive features and the parameter C = 0.4 (weighting
of the loss function in the target function).

• MLKNN: Best results are achieved with the MLMIM feature selection method, using
10 predictive features.

Table 5. Results of average metrics in the 10-folds are delivered. The standard deviation of these
values within the same sets is given in parentheses.

Metrics AOI Prediction

Model AUC Exact Fscore Acc Pre AOI 1 AOI 2 AOI 3 AOI 4 AOI 5 AOI 6

RR-BR
0.844 0.285 0.658 0.566 0.877 0.755 0.686 0.747 0.725 0.785 0.971

(0.006) (0.010) (0.011) (0.010) (0.007) (0.016) (0.012) (0.009) (0.012) (0.013) (0.006)

RR-CC
0.844 0.285 0.658 0.556 0.877 0.755 0.686 0.747 0.725 0.785 0.971

(0.006) (0.010) (0.011) (0.010) (0.007) (0.016) (0.012) (0.009) (0.012) (0.013) (0.006)

KNN-BR
0.843 0.303 0.670 0.571 0.879 0.769 0.702 0.760 0.730 0.782 0.972

(0.005) (0.008) (0.009) (0.008) (0.004) (0.019) (0.01) (0.008) (0.01) (0.013) (0.004)

KNN-CC
0.839 0.302 0.679 0.579 0.878 0.763 0.710 0.729 0.790 0.79 0.967

(0.005) (0.006) (0.007) (0.006) (0.003) (0.015) (0.008) (0.01) (0.01) (0.013) (0.004)

SVM-BR -
0.291 0.663 0.564

-
0.777 0.681 0.757 0.712 0.782 0.969

(0.012) (0.005) (0.013) (0.014) (0.01) (0.008) (0.011) (0.013) (0.008)

SVM-CC -
0.287 0.662 0.561

-
0.775 0.682 0.751 0.712 0.775 0.970

(0.009) (0.009) (0.009) (0.015) (0.009) (0.007) (0.011) (0.014) (0.006)

ML-KNN
0.844 0.301 0.675 0.574 0.882 0.767 0.708 0.756 0.732 0.781 0.97

(0.005) (0.009) (0.009) (0.009) (0.005) (0.017) (0.01) (0.007) (0.011) (0.013) (0.004)

The best result is obtained with the model KNN binary relevance (model KKN-BR),
with parameter K = 20 (number of neighbors considered by the method) and the selection
of 10 features by the MLMIM method, since this maximizes the accuracy and subset
accuracy metrics. The features chosen are as follows:

• Ocular fixation model feature: AOI_6_r1, AOI_1_end_r1, AOI_3_end_r1, AOI_6_end_r1,
AOI_2_end_r1, AOI_3_r1, AOI_1_r1 AOI ocular fixations are selected.

• Visual kinematics features: coordY, coordX, MeanY
• Eye-tracking function features: No variables are selected.

Figure 6 graphs the approximation made by the MLMIM method for the calculation of
discretized (floor approximation of values) mutual information between X (features) and
Y (labels), for variables selected across all folds. Higher values indicate a better relation
of the variables with respect to the dependent variable. Possible values are in range
0 ≤ I(X; Y) ≤ min(H(X), H(Y)) for each value, where H() is the entropy and I(X; Y) is
mutual information value.

A total of ten features are listed. It is observed that all sets require the use of visual
kinetics features of gaze position at the beginning of the time window. In addition, it
is observed that the average Y-coordinate recorded in the past is sometimes required.
Subsequently, it is required to know the activation of any of the AOIs in the previous time
window, or the information about the AOI in which the previous window ends.
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Figure 6. Mutual information for each selected feature by the MLMIM method.

It is interesting to consider that the model only requires knowing the activation of
AOIs in a window of time in the past and not the full activity of user interaction. In the
sets in which component information is required, the use of the features that indicate
the activation of the dynamic components of the website in the previous time window is
observed, that is, the menu bar and/or the pop-up registration.

Upon studying the behavior in each of the AOI’s (right part of Table 5), it is observed
that the model chosen presents the best accuracy values for three AOIs and approaches the
best results of the other models for the other AOI’s.

The results obtained are validated by comparing them with the biases towards the
majority class, which is the proportion of labels with more repetitions with respect to the
total. In the formula, m is sample number, MC is majority class and the function inside the
argmax calculation is the majority class ratio.

MC (AOIj) = argmax
x={0,1}

∑m
q=1 1

(
AOI(q)j = x

)
m


For each AOI, the MC ratio values are 0.653, 0.567, 0.513, 0.629, 0.727, and 0.954, for

AOI’s 1, . . . , 6, where the majority class corresponds to the activation of each AOI (1 label),
except in the case of AOIs 2 and 3 (0 label). At the same time, the bias to the majority class
when considering the complete instance is 0.133 (considering the combination of labels
of each AOI of a vector as a label), which corresponds to the activation of AOIs 2 and 3.
Therefore, at the individual level and as a whole, the model improves the trivial case of
always choosing the majority class.

5.2. Sensitivity Analysis by Time Window Lengths

Sensitivity analysis is carried out, given variations in the time windows’ duration to
be considered in classification. With this analysis, it is expected that the robustness of the
methodology can be evaluated and used for the prediction of visit intentions.

First, models are run with all the combinations again, considering the duration of time
windows with τ = 3, 10, 15, 20 s. Table 6 shows the best settings for each prediction model.
Table 7 shows the metrics obtained by the best models for each combination.
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Table 6. Better configurations for each classification model according to time window duration. FS:
Feature selection method, NF: Number of features, P: Parameters.

Time Window Duration (Seconds)

Model τ = 3 s τ = 10 s τ = 15 s τ = 20 s

RR-BR
FS RFS MIFS RFS F-Score
NF 35 30 5 5
P λ = 0.25 λ = 1 λ = 1 λ = 1.5

RR-CC
FS RFS MLJMI RFS F-Score
NF 35 40 5 5
P λ = 0.25 λ = 0.25 λ = 1 λ = 1.5

KNN-BR
FS MLMRMR MLMIM F-Score F-Score
NF 10 40 25 10
P K = 20 K = 30 K = 25 K = 30

KNN-CC
FS MLJMI MLJMI RFS F-Score
NF 25 35 20 10
P K = 10 K = 10 K = 25 K = 25

SVM-BR
FS MLMIM F-Score F-Score F-Score
NF 40 40 5 10
P C = 0.2 C = 0.2 C = 0.4 C = 0.2

SVM-CC
FS RFS MIFS RFS F-Score
NF 35 40 5 5
P C = 1.6 C = 0.4 C = 2 C = 0.4

ML-KNN
FS MLJMI MLJMI RFS RFS
NF 15 40 20 30
P K = 15 K = 15 K = 15 K = 15

Table 7. Sensitivity analysis metrics on the duration of time windows for the best models.

Time Window Duration (Seconds)

Model and Metrics τ = 3 s τ = 5 s τ = 10 s τ = 15 s τ = 20 s

RR-BR

AUC 0.876 0.844 0.820 0.788 0.792
Exact 0.416 0.285 0.198 0.271 0.363

Fscore 0.683 0.658 0.719 0.781 0.850
Acc 0.609 0.566 0.606 0.686 0.771
Pre 0.893 0.877 0.881 0.861 0.913

RR-CC

AUC 0.876 0.844 0.825 0.788 0.792
Exact 0.416 0.285 0.192 0.271 0.363

Fscore 0.683 0.658 0.728 0.781 0.850
Acc 0.609 0.556 0.614 0.686 0.771
Pre 0.893 0.877 0.885 0.861 0.913

KNN-BR

AUC 0.865 0.843 0.824 0.813 0.804
Exact 0.423 0.303 0.194 0.233 0.343

Fscore 0.687 0.670 0.733 0.789 0.845
Acc 0.613 0.571 0.621 0.687 0.763
Pre 0.889 0.879 0.887 0.895 0.908

KNN-CC

AUC 0.865 0.839 0.815 0.801 0.800
Exact 0.424 0.302 0.200 0.246 0.360

Fscore 0.696 0.679 0.711 0.775 0.844
Acc 0.621 0.579 0.601 0.674 0.764
Pre 0.888 0.878 0.881 0.880 0.909
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Table 7. Cont.

Time Window Duration (Seconds)

Model and Metrics τ = 3 s τ = 5 s τ = 10 s τ = 15 s τ = 20 s

SVM-BR

AUC - - - - -
Exact 0.402 0.291 0.174 0.176 0.169

Fscore 0.686 0.663 0.669 0.722 0.701
Acc 0.609 0.564 0.554 0.612 0.601
Pre - - - - -

SVM-CC

AUC - - - - -
Exact 0.412 0.287 0.200 0.263 0.305

Fscore 0.690 0.662 0.680 0.758 0.787
Acc 0.613 0.561 0.568 0.660 0.702
Pre - - - - -

ML-KNN

AUC 0.871 0.844 0.823 0.805 0.809
Exact 0.420 0.301 0.193 0.244 0.365

Fscore 0.694 0.675 0.731 0.782 0.839
Acc 0.618 0.574 0.619 0.681 0.759
Pre 0.891 0.882 0.885 0.883 0.903

It can be seen that the settings chosen for each model are not the same for all the values
of the temporary duration of the window (τ). The best results are obtained with the use
of an RR-BR model for longer time windows. It is interesting to see that the case of τ = 3
obtains a better Exact metric.

First, the values of the subset accuracy (Exact) and accuracy (Acc) metrics are inspected
for different values of τ. Figures 7 and 8 shows the graphs of these values for each
classification model configuration.

Figure 7. Accuracy vs. Time Window Duration.

From these metrics, it can be seen that if a model with the best estimates of the
activation of each AOI is desired, then the case of a longer duration in the time windows
(τ = 20) is preferred, since in this case the accuracy (which measures performance by the
individual label of each AOI) increases in all models. However, when studying the subset
accuracy, that is, the correctness in the estimation of the activation of labels in a vector way
(all the AOI’s within a time window), the duration of the most extreme time windows is
preferred, that is, this metric increases with time windows of shorter duration (τ = 3) or
longer duration (τ = 20).
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Figure 8. Subset Accuracy vs. Time Window Duration.

To analyze the above, it can be considered that if all models achieve the same level
of training (which is not necessarily true), the vectors of the visit intention in smaller and
larger time windows show less variability. As the size of the window increases to infinity,
the variability in the visit intention tends to zero since it is expected to take the value 1 in
all AOI’s (although this may not be true in cases where AOI 6 is not visited). In the case of
a very small window (tending to zero), the intention to visit all AOI’s should tend to zero
as there is no time to make transitions to other AOI’s.

Subsequently, to better understand the results, the precision is studied. In Figure 9,
it is observed that the values for precision appear to be stable according to the lengths of
the windows, with the exception of the classifiers based on ridge regression, which tend to
decrease slightly more when choosing τ = 15.

Figure 9. Precision vs. Time Window Duration.

In all cases, precision values greater than 0.8 are achieved, a value commonly consid-
ered to be good in the literature. This result means that in the label activation predicted
by the model, more than 80% of the cases are performed correctly. In the case of τ = 20, it
achieves better accuracy, which may be related to the fact that there are more active labels
(as in the case of windows tending to infinity discussed in the previous paragraph), which
causes the existence of a greater number of true positive values.
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In the case of the F-measure values (see Figure 10), a high trend is observed as the
duration of the time windows increases. This result indicates that for longer time windows,
greater harmony is achieved between precision and recall.

Figure 10. F-Measure vs. Time Window Duration.

Finally, when evaluating the area under the curve (AUC) graph in Figure 11, it can be
observed that it decays for values with longer time windows. This observation indicates
that the number of times that the ranking value (confidence given to a certain label) of the
positive labels (corresponding to the activation of an AOI) exceeds the ranking for a negative
label (that is, no activation of an AOI) is lower. Therefore, the power of discrimination
between values predicted as positive (true positives) and negative values that are classified
as positive (false positive) is lower in longer time windows.

Figure 11. Area Under Curve vs. Time Window Duration.

The drop in AUC values shows that longer time window models have worse discrim-
ination between classes. However, in all cases, values above 0.8 are obtained, which is
considered good in the literature.

Given the above, it is concluded that at longer time windows, the accuracy and
subset accuracy will tend to improve, which does not necessarily reflect a good model
performance. It is necessary to consider the discriminative power between classes of the
model, for example, from metrics such as AUC. On the other hand, it is important to
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consider the exploratory analysis of the labels (individual and vectorial) in each case (tau
chosen), since it is necessary to make a trade-off between the variability of the labels and
the time used to make the predictions.

From previous results, it is considered that the estimation of shorter windows is better,
since it gives more detailed information of the visual attention in a better discretized time.
However, to ensure that the results of the model are valuable, the use of τ = 3 must be
evaluated both with respect to the time required by the model for its execution (which
does not exceed the duration of the corresponding window) and the variability of the label
sufficiency. By the previous criteria, the model from the beginning was considered with
τ = 5 as the main model.

5.3. Time Overhead Calculation

The window processing time for the multilabel classification model chosen is given
by the signal processing used in the prediction (cleaning of the signals and characteristics
calculation), in addition to the execution of the classification.

It is interesting to study the classification times given the duration of the time windows,
since on the same equipment, the methodology of the algorithm indicates the speed of
computation. The processing times of characteristics will depend on the amount chosen by
the model in each of the classifiers considered, according to the duration of the windows,
in addition to the processing equipment.

To compare classifiers’ performance, all combinations are run to classify windows
of different time duration. In particular, windows of length τ = {3, 10, 15, 20} s are
considered, in addition to the case of time windows of 5 s. Table 8 shows the mean and
standard deviation of execution times of the classifiers in seconds.

Table 8. Time processing of the classification models for different window lengths.

Time Window Duration (Seconds)

τ = 3 s τ = 5 s τ = 10 s τ = 15 s τ = 20 s

Model Evaluation Set Mean SD Mean SD Mean SD Mean SD Mean SD

RR-BR
Train 3.008 0.085 1.380 0.051 3.694 0.145 1.497 0.060 0.402 0.004
Test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RR-CC
Train 3.020 0.058 1.392 0.051 0.097 0.010 1.464 0.043 0.378 0.008
Test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

KNN-BR
Train 3.252 0.037 0.548 0.020 0.400 0.016 0.356 0.004 0.355 0.006
Test 1.294 0.007 0.481 0.012 0.092 0.004 0.027 0.002 0.016 0.002

KNN-CC
Train 0.002 0.002 0.000 0.000 0.000 0.000 1.427 0.033 0.395 0.009
Test 1.302 0.007 0.436 0.004 0.123 0.004 0.111 0.014 0.020 0.002

SVM-BR
Train 3.730 0.052 1.773 0.005 1.205 0.012 0.636 0.010 0.445 0.006
Test 0.013 0.007 0.008 0.003 0.000 0.000 0.002 0.002 0.002 0.002

SVM-CC
Train 4.511 0.054 1.870 0.031 3.905 0.049 1.559 0.047 0.488 0.016
Test 0.002 0.002 0.005 0.002 0.003 0.002 0.000 0.000 0.002 0.002

ML-KNN
Train 0.000 0.000 0.538 0.008 0.000 0.000 1.442 0.042 1.992 0.083
Test 0.300 0.018 0.081 0.002 0.008 0.003 0.020 0.010 0.013 0.008

Execution times for ridge regression models are less than one millisecond in the test sets.
This outcome is because the model is based on the storage of the weighting parameters of each
variable and only requires a multiplication with the features of the test sets to obtain the result.

Most expensive computational models correspond to those using the KNN base
classifier. This is because for a new window in the test set, its classification requires
searching for the neighborhood in the training set according to the size given by the
parameters of the model.

In Figure 12, it is observed that the execution time decreases with increasing time
window length; this effect occurs because with longer times, test sets are generated with a
smaller number of temporary window samples.
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Finally, it is observed that the classification times are less than the duration of each
time window present in the test sets, so they are applicable in an online environment. This
approach considers many windows, where the averages in the test sets are 398, 239, 120, 80,
and 60 for duration τ of 3, 5, 10, 15 and 20 s, respectively.

Figure 12. Classification Time Test Set by Fold.

6. Discussion

This paper proposes a method to predict users’ visual attention on specific regions of
a website called visit intention. This method has been developed in a controlled website
where the web objects and their content are known. However, its layout varies, under
certain limits, according to the user’s interaction. The proposed method for predicting the
visit intention does not require knowledge of the website’s structure at all periods. However,
the underlying idea is that the model learns to recognize the structure implicitly according
to the data of the user’s behavior and a compilation of visual attention in previous periods.

The trained multilabel classification models allow for predicting visit intentions by
jointly incorporating the population-level features of all the AOIs present on the website
within each period. In this way, these models comprise a user’s visual attention as a whole
in all AOIs of the website. The prediction is mostly made by using knowledge of the user’s
past behavior. In particular, the models use position kinematic features, which consist of
the location of the user’s gaze at the end of the previous period. With this, the model is
encouraged to learn the closest AOIs for the user in a new period based on the current
position. The results deliver a total of 10 characteristics in each of the training-test partitions
(see Figure 6). In this model, no eye-tracker feature function variables are used, and of the
rest, 73% correspond to eye-fixation characteristics and 27% to kinematic characteristics.
Indeed, other multilabel classification models can be evaluated, as can neural network
models based on deep learning, which is part of our future work.

One limitation of our visit intention approach is that, because of its experimental
control, it is not suitable for use in predictions of visual attention in egocentric viewing
environments, such as those analyzed in Section 2.3. The reason is that in these environ-
ments the stimulus, such as the frames of a video, tends to be less controlled and can suffer
considerable variability.

A second limitation is that the study is carried out for the case of bottom-up attention,
because users browse a previously unknown website. Therefore, the challenge of predicting
visit intention in top-down cases remains open. The reason is because in these cases users
tend to seek out certain information in specific regions of the website, depending on clearly
defined objectives. At the same time, their website browsing behavior depends on their
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knowledge about the layout that each user possesses (learned from interactions with other
similar websites).

On the other hand, the sample of participants included in the experimentation cor-
responds, for the most part, to a convenience sample of engineering students, who one
would expect to demonstrate greater fluency in website browsing. The study of results for
other types of users would allow a better generalization of the models and, at the same
time, could provide useful information regarding their improvement, for example, when
considering clusters of similar users in the estimation of parameters. Moreover, this sample
corresponds to people from the same location with shared cultural characteristics and
native speech corresponding to that of the site studied.

Bearing in mind the above limitations, and although a specific website has been
used, a proof-of-concept for the proposed method was achieved. Nevertheless, it is neces-
sary to evaluate these models for other stimuli, which would ensure their generalization,
depending on the quality of the results obtained.

Regarding the scalability of the solution, it has been demonstrated that the execution
of the classification models takes less time than the duration of the periods that are being
predicted. The transmission of data and the calculation of features from the eye-tracker
data are factors that must be considered in the selection of the period lengths; however,
in this paper, these factors have not been studied in greater depth. Depending on the
results of such a scalability study, the use of these approaches in the prediction would allow
considering other types of platforms, such as applications in mobile web environments and
tablets. This requires experimentation with new visual stimuli in a controlled manner and
under these new environments.

7. Conclusions and Future Work

A predictive model is proposed for the concept of visit intention, providing informa-
tion on the areas of interest of a website that will be visited by a user over a given time
period. A proof-of-concept of the proposed method has been achieved by experimenting
with a specific informative website that involves dynamic components. The results demon-
strate the feasibility of creating these predictive models and test the hypothesis stating that
the considered features are useful predictors of visual attention.

The proposed methodology bears an advantage in that it is not required to know the
structure of the website in each period, as in other studies reported in the literature; rather,
learning the dynamic changes through the gaze data registered for a user, estimating models
through population behavior as characteristics and employing a user’s visual kinetics to
train individual models for each instance of prediction are utilized. The model is applicable
from an analysis of execution times, and criteria have been provided in the selection of the
window duration used in the segmentation of the total time of user interaction, preferring
the use of windows of τ = 5 s for this case.

As future work, it is expected that these results can be integrated into more advanced
models of visual attention, in addition to the study of improvements based on models
for segmentation of users and the use of deep learning methods. On the other hand, it is
necessary to explore in greater detail the impact of the variables used in the models, to find
explainable patterns of the relationship with visit intentions. Furthermore, it is interesting
to consider the study of the methodology of this style in other visual environments (e.g.,
mobile devices) and in cases related to specific tasks (e.g., searching for a news item
on the site).
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