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Abstract: This research studies the problem of a joint capacity/capacity reliability analysis of the mul-
tiuser multi-input multioutput (MIMO) system functioning in the presence of generalized multipath
fading. The study presents the derived results of the closed-form analytical statistical description of
the ergodic sum-rate capacity, the capacity reliability and the capacity’s higher-order statistics in the
case of complex Nakagami-m distributed channel transmission coefficients. A numerical verification
of the derived expressions was performed, and it demonstrated excellent correspondence with the
simulation. The system performance was evaluated with the help of a numerical analysis of the joint
first- and second-order statistics description, depending on the channel and system parameters. The
results demonstrated several peculiarities, e.g., the existence of a specific extremum of the capacity
reliability for small-sized MIMO systems, its opposite behavior (in terms of the varying number of
antenna elements) for heavy and light fading, and the existing asymptotic regions of the system and
the channel parameters.
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1. Introduction

Multiple Input Multiple Output (MIMO) systems has become an intrinsic technolog-
ical solution for the most modern communication systems [1]. Moreover, the increasing
demands for higher throughput (i.e., the increasing utilized spectral bandwidth) and greater
connectivity (i.e., the increasing number of communicating devices) extend it to a multiuser
massive-MIMO modification [2,3]. In this situation, the forecast of the overall link quality
greatly depends on the communicating systems’ description accuracy, including such ef-
fects as the transmit/receive antenna correlation [4,5], multipath fading propagation [6],
and the specifically employed signal processing strategy. The resultant decision about the
need for system parameters adaptation is drawn based on the performance metrics that are
being used: error rates, security performance, outage, capacity, etc.

One of the possible descriptions of MIMO systems relies on the higher-order statistics
of the channel capacity (C-HOS) [7–15]. It results from the fact that under the channel’s
random fluctuations, the instantaneous capacity deviates from its stationary value. The rate
and magnitude of those deviations may cause sufficient distortions of the overall system
performance quality. C-HOS have been intensively studied for various fading channels,
diversity reception techniques and specific system configurations: generalized-gamma
fading with equal gain (EGC) combiner [14], κ–µ shadowed [15] and η–µ [12] fading with
maximum ratio combiner (MRC) and spectrum aggregation by MRC with κ–µ and κ–µ
shadowed fading [13].
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By now, one of the mainstream approaches in C-HOS calculation is based on the
moment-generating function (MGF) application, rather than on the probability density
function. First proposed in [8], it was further elaborated in [9–11,15] to yield results for
specific systems under investigation including the expression of C-HOS in the asymptotic
regime for the case of generalized fading (see [10]).

Although the third and the fourth C-HOS (i.e., skewness and kurtosis) did not find
wide application, the second moment of the channel capacity (amount of dispersion (AoD))
and its complement (capacity reliability (CR)) were proven to be important indicative
factors of the performance quality. Thus, they should be taken into consideration when
analyzing MIMO system [12,13,15] functioning in the presence of fading.

Regarding the channel model, it must be stressed out that in the cases of the latest
existing and future promising communication systems (for example, 5G, WiFi-7) [16,17]
the contraction of the coverage area (especially in urban scenario and inside the buildings)
leads to a discrepancy between the practical channel measurements and the initial assump-
tion of the Gaussianity of channel-coefficient in-phase/quadrature components. This, in
turn, results in the problem of the overestimation/underestimation of the system’s overall
performance, thus leading to incorrect decisions about the deployed strategy (i.e., signal pro-
cessing, power allocation, etc.). In such a situation, more involved models can be employed
(although with a loss of the potential for a closed-form analytical description) [6,18].

On the other hand, as it was demonstrated in [19], the performance of modern com-
munication systems, especially of those employing MIMO technology, is highly sensitive to
the phase distribution of the wireless channel’s transmission coefficients, which is generally
disregarded in most of the models.

One of the possible alternatives (assumed herein) that can handle both of those prob-
lems is the generalization of the well-known Nakagami-m distribution [20], i.e., the complex
Nakagami-m model [21,22]. Delivering a compromise between the generality of physical
scenarios’ description and analytical tractability, it operates with a signal’s instantaneous
values, opposite to the classical one that deals only with the envelope, thus delivering a
greater versatility in the ways the phase statistics are accounted.

Initially proposed in [21], it has been widely applied to various problems of wireless
communications. For example, in [19] it was used to demonstrate that the knowledge of
the phase distribution of the channel’s transmission coefficients significantly affects the
performance of spatial multiplexing schemes in MIMO communication systems. In [23],
marginal and joint moments of the complex Nakagami-m random variable envelope and
phase were obtained and applied to the problem of a random mixture decomposition for the
simplification and generalization of bit error probability expressions for the PSK modulation
over an amplify-and-forward relay channel. The problem of complex Nakagami-m random
variable generation for channel modelling was extensively discussed: in [24] a simulator
for both the phase and the envelope with arbitrary parameters was proposed; in [25], it
was further improved and included the prespecified temporal autocorrelation function;
and in [26], a relation between the Nakagami-m, Gaussian and gamma distributions was
exploited to propose a simplified method of physical channel coefficients generation. In [27],
a complex Nakagami-m fading model was used to analyze an average bit error rate of
the quadrature spatial modulation of a MIMO system. The results were further improved
in [28] with the proposed modified generalized quadrature spatial modulation and its
reduced codebook version, which were analyzed for the same channel. The OFDM system
performance (in terms of the bit error rate of the BPSK modulation) for the case of complex
Nakagami-m fading with both uniform and nonuniform phase distributions was analyzed
in [4]. In [29], the assumed model was used to assess the communication assistance via
reconfigurable intelligent surfaces in terms of the bit error rate, outage probability and
ergodic capacity. A performance analysis of the communication systems with the low-
resolution analog-to-digital converters (ADC) functioning in the presence of the complex
Nakagami-m fading was carried in [30] in terms of the outage probability and the total
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sum-rate capacity of the MIMO system and in [31,32], in terms of the energy distortion
coefficient for the energy-based signal detection.

It must be pointed out that in most modern communications systems, multiuser
scenarios are assumed. This means that specific care is needed in the choice of the user’s
signal detection algorithms, since it impacts the overall system performance measured,
for example, in terms of the ergodic capacity (adopted in the submission) [33]. A classical
compromising choice for MIMO systems proposes that the receiver employs the zero-
forcing (ZF) processing strategy, which is examined in this research.

One must note that MIMO technology itself is an umbrella-type technology, i.e., it in-
cludes various branches that are identified by specific signal precoding/decoding schemes
and transmitting/receiving circuitry management. The latter one gave rise to the so-called
spatial modulation (SM) [34,35] (generalized spatial modulation (GSM)), which helps to
minimize the number of transmitting/receiving radiofrequency (RF) chains and, at the
same time, increase the spectral efficiency, for example, generalized quadrature SM [36].
Although for high dimensional MIMO (e.g., more than 8× 8), it demonstrates superiority in
terms of system capacity over the classical spatial multiplexing [37], it still leaves room for
signal precoding/decoding at the stage of antenna management, for example, zero-forcing
processing, as one of the prevalent algorithms (see, [38,39]). Despite the very promising
features of GSM, it is not widely applied in modern and ad hoc systems, not least due to
the complex description and performance analysis; for instance, its closed-form capacity
description in the presence of fading is still an open problem and to the best of one’s
knowledge, only upper and lower bounds for the simple fading scenarios exist (see [40,41]).
Moreover, since most modern communication standards adopt a moderate number of
antenna elements, the adopted herein model does not assume GMS, although the obtained
results can be further modified by taking into account RF circuitry management.

The analysis of the complex Nakagami-m fading channel’s ergodic capacity has been
taken into account in the technical literature several times. As a matter of fact, all the
proposed solutions fall into one of three categories: the ones that rely on the random matrix
theory methods (applied to the MIMO system/correlation matrix), the ones that imply
some limiting properties or asymptotic behavior (yielding upper/lower bounds) or those
that are tied to some sort of approximations.

The first approach (see [42]), for the case of a uniform power allocation strategy with
no diversity reception, allows one to derive the closed-form expression for the ergodic
capacity of the 2× 2 and 2× 3 MIMO systems in terms of the joint eigenvalue density
function of the matrix W = H†H (here, H is the channel matrix). Apparently, due to
analytical overcomplication, this approach fails to deliver a closed-form expression for
higher dimensions. In [43], the authors assessed the problem via copula theory and
presented analytic results for the MIMO 2× 2 system. In [44], a Coulomb gas analogy was
assumed to derive the approximated cumulative density function of the largest eigenvalue
of the matrix W, which, as the authors stated, could be further employed to bound the
MIMO system’s performance, although no further improvements were done.

Within the second approach, the authors in [45] obtained the upper bound of the
ergodic capacity for the uncorrelated MIMO channel in general (i.e., without specifying a
signal processing strategy), and further elaborated the results in [46] with the same chan-
nel but including the minimum mean-square error (MMSE) and zero-forcing processing,
although limiting the results to only two receivers. The problem of this approach is that,
as it was pointed out in [47], for a complex Nakagami-m channel even in the case of ZF
beamforming, the presence of correlation across the data streams impedes the derivation of
the closed-form expression for the ergodic capacity.

The third approach mostly relies upon the assumption that at some stage of the deriva-
tions, the complex closed-form expressions can be efficiently approximated by some easier
ones. For example, in [48], it was demonstrated that for uncorrelated Rayleigh channels
in the case of power-normalized ZF processing, the output signal-to-noise ratio (SNR)
followed the Fisher–Snedecor distribution [49], which could be efficiently approximated
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by a χ2 distribution (see [50]), and in the general case, the χ2 distribution (see [51,52])
was the closed-form solution. Specifically for the complex Nakagami-m channel, in [53],
for the maximum ratio combining receiver, the output SNR per stream was approximated
with a more general distribution, the gamma distribution (as it was proposed in [54]), to
derive the average spectral efficiency. The same approach was used in [30] for the capacity
prediction without antenna correlation but with a specific focus on low-resolution ADCs.
The extensive numeric simulation performed later (see [55]) helped to establish a simple
per-stream SNR for ZF processing in the presence of complex Nakagami-m fading.

Although much effort has been applied to the problem, no closed-form solution
applicable to multiuser massive MIMO systems exists. Moreover, the problem of the
capacity reliability has not been approached.

Thus, motivated by the problem stated above and the mentioned drawbacks of the
existing solutions, the proposed research performs a closed-form capacity’s higher-order
statistics analysis of the multiuser MIMO system employing the zero-forcing postpro-
cessing and operating in the presence of a multipath fading channel described by the
complex Nakagami-m distribution. Moreover, to fill in the gap between the existing re-
sults, the closed-form expressions for the sum-rate capacity were derived for the arbitrary
system size, based on the gamma approximation of the ZF postprocessing’s signal-to-
interference-plus-noise ratio. The major contributions of this work can be summarized as
follows:

• The closed-form expressions were derived for: (a) the single-stream and sum-rate
capacity’s moment-generating functions; (b) the zero-forcing multiuser MIMO ergodic
capacity; (c) the capacity reliability and the amount of dispersion; (d) the general-order
capacity statistics.

• A thorough joint analysis of the system capacity and its reliability from all possible
channel parameters for different fading scenarios—heavy fading and light fading—
was made.

• A pronounced extremum of the capacity reliability for small-sized MIMO systems
with respect to the fading Nakagami-m parameter was discovered, and the opposing
behavior (depending on the system size) for hyper-Rayleigh and lighter-than-Rayleigh
fading conditions was demonstrated.

• The asymptotic parameters’ regions where either the ergodic capacity or capacity
reliability are almost insensible to the parameters’ change were identified.

The remainder of the paper is organized as follows: Section 2 provides some prelim-
inary results of the assumed (a) wireless multiuser MIMO system and its description in
terms of the MIMO channel matrix including receive/transmit side correlation effects, (b)
the statistical description of the employed channel model connecting each pair of trans-
mitting and receiving antennas, (c) the signal processing strategy under consideration
and (d) the system performance description in terms of the capacity’s higher-order statistics.
Section 3 describes the closed-form expression derivation of the assumed C-HOS. Section 4
presents a thorough numerical analysis of the derived expression depending on various
channel and system parameters’ values, and the conclusions are drawn in Section 5.

2. General System Description
2.1. System Model

This research considered a multiuser MIMO communication system with NT trans-
mitting and NR receiving antenna elements functioning in the presence of a multipath
fading propagation. The received signal vector model ~y was mathematically formalized as
follows [56]:

~y = H~x +~n, (1)

where ~x is the transmitted signal vector, ~n is the vector of zero-mean circular symmetric
additive complex white Gaussian noise (AWGN) with variance σ2 (i.e., ni ∼ CN (0, σ2)),
and H is the MIMO channel matrix.
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For later derivations, it was assumed that H complies with the Kronecker separable
model (see, for instance, Section 4.2.2.3 in [57]):

H = Σ
1/2
R HwΣ

1/2
T , (2)

where Σ
1/2
T and Σ

1/2
R are the matrix square roots of the transmitting/receiving side correlation

matrices, and matrix Hw is composed of the independent complex transmission coefficients
(i.e., [Hw]i,j = ḣi,j) between any pair of receiving and transmitting antennas [57].

Since it is usually assumed that the correlation decays with the spacing between the
interarray antenna elements [56,57], this research considered a widely used exponential
correlation model [58] (for both sides) described by the so-called one–step correlation
coefficient ρi,j, which quantifies the correlation between the ith and jth elements:

[Σ]i,j =


1 ρ ρ2 · · · ρN−1

ρ 1 ρ · · · ρN−2

ρ2 ρ 1 · · · ρN−3

· · · · · · · · · · · · · · ·
ρN−1 ρN−2 ρN−3 · · · 1

, (3)

where ρ = ρt if Σ = ΣT (i.e., the transmitting side is assumed), and ρ = ρr if Σ = ΣR (i.e.,
for the receiving side).

2.2. Channel Model

As was mentioned earlier, the majority of the existing results in MIMO communica-
tions rely on the assumption that the complex channel transmission coefficients ḣi,j are sub-
ject to a complex Gaussian distribution [59]. This assumption is generally valid due to the
central limit theorem applied to the multitude of (a) propagation paths, connecting any pair
of the transmitter and the receiver, and (b) the reflections/multiple-reflection/diffraction of
each multipath component. For such scenarios, the statistical properties (e.g., probability
density function, cumulative distribution function, moment-generating function, etc.) of
the complex channel matrix H are available via the random matrix theory [60,61].

On the other hand, modern communication systems exhibit shrinkage of the coverage
area [62] leading to the decrease of the number of multipath components, hence failing to
comply with the Gaussian approximation. In this case, a more suitable distribution can be
assumed for ḣi,j.

This research considered the complex transmission coefficient to follow the complex
Nakagami-m distribution, which is defined in terms of its envelope (|ḣ|)/phase (Θ = ∠ḣ)
distributions:

w|ḣ|(r)=
2mmr2m−1

ΩmΓ(m)
exp

(
−mr2

Ω

)
, 0 ≤ r < ∞, (4a)

wΘ(θ)=
Γ(m)| sin 2Θ|m−1

2mΓ2
(m

2
) , −π ≤ θ ≤ π, (4b)

or, equivalently, in terms of its in-phase hI = <
(
ḣi,j
)

and quadrature hQ = =
(
ḣi,j
)

compo-
nents’ distributions:

whI,Q(z) =
m

m
2 |z|m−1

Ω
m
2 Γ
(m

2
) exp

(
−m|z|2

Ω

)
, −∞ < z < ∞. (5)

The model is described in terms of two parameters:

• The mean power of the received signal Ω, i.e., Ω = E{|ḣ|2};
• The Nakagami fading parameter m, which is the inverse of the amount of fading

m =
(E{|ḣ|2})

2

Var{|ḣ|2} .
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Here, E{·} is the expectation operator, and Var{·} is the variance operator.
The flexibility of this model is mainly contingent on the fact that for certain values of

m, the expressions (4a)–(5) can be simplified, leading to:

• Rayleigh fading, when m = 1 [21];
• Lighter-than-Rayleigh fading, when m > 1 (including the uniform distribution on the

unit circle [42], i.e., m→ ∞);
• Hyper-Rayleigh [63,64] (heavier than Rayleigh) fading, when m < 1 (including the

one-sided Gaussian distribution [21], i.e., m→ 1
2 ).

Thus, for the subsequent analysis, when the Nakagami parameter is varied, those
three particular cases are addressed specifically.

2.3. Signal Processing Model

Since a multiuser system is assumed, to improve the signal-to-noise-plus-interference
ratio on the receiving side, specific decoding algorithms of the received signal are usually
utilized. Hence, it is important to mention the way the user streams are processed. In this
paper, a zero-forcing algorithm was used, for which the output instantaneous SNR for the
kth user (i.e., γk) was defined as:

γk =
γ̄[

(H†H)
−1
]

k,k

, (6)

where γ̄ is the average input SNR for the kth substream, [·]k,k is the kth element on the main
diagonal, and (·)†, (·)−1 are the Hermitian conjugation and matrix inversion operators.

2.4. Capacity’s Higher-Order Statistics

As mentioned earlier, the main objective of the present research was to study the
capacity reliability of the MIMO system, which is the special case of a more general
methodology, i.e., the capacity’s higher-order analysis [7,8].

Within such a framework, the channel capacity’s (normalized to unit bandwidth) nth
order moment is defined as:

Cn
Σ = E{Cn

Σ} =
Ns

∑
k=1

E{logn
2 (1 + γk)}, (7)

where γk is the signal-to-noise-plus-interference ratio for the kth substream, and Ns is
the number of active substreams. Assuming the applied processing (see Section 2.3), one
obtains:

Cn
Σ =

Ns

∑
k=1

ˆ ∞

0
logn

2 (1 + x)wγk (x)dx, (8)

where wγk (x) is the probability density function of the kth substream SNR after ZF post-
processing.

The ergodic capacity CΣ (being the first-order moment, i.e., n = 1) was used in this
work as a metric, which helped to quantify the performance of the assumed system.

For a deeper analysis of the MIMO system functioning, CΣ can be supplemented
by the second-order moment (the amount of dispersion (AoD)) and its complement (the
reliability of the capacity (R)):

R=1−AoD, (9)

AoD=Var{CΣ}
E{CΣ}

=
E
{

C2
Σ
}
− (E{CΣ})2

E{CΣ}
. (10)

The amount of dispersion describes the normalized spread of the channel capacity’s
stochastic variations, thus it quantifies the distortion in the ergodic capacity per one-bit



Sensors 2023, 23, 2289 7 of 22

information transfer [11], whereas the capacity reliability is a complementary metric that
defines its stability.

From a practical point of view, it is valuable to attain the maximum achievable capacity
of the communication channel, simultaneously providing its minimum distortion. Hence,
the evaluation of AoD and CR is a substantial element of the link quality estimation
and prediction.

3. Derived Analytical Results

As mentioned earlier, there are several possible approaches to the problem of a closed-
form MIMO system’s capacity description. Since the non-Gaussianity of fading channel
statistics prevented us from conducting a closed-form analysis even in the case of ZF pro-
cessing (see [47]), the approach based on some type of approximation was assumed herein.

3.1. Preliminary Results

At this stage, we relied on the results of a thorough numerical analysis (presented
in [55]) that was carried out for numerous fading scenarios and various channel/system
parameters. It was demonstrated that for a wide range of parameters, the probability
distribution of the per-stream signal-to-noise-plus-interference ratio γk could be efficiently
approximated with a gamma distribution. To achieve that, a numerical simulation was
performed for the MIMO system and fading channel described in Section 2. Several classes
of approximating distributions were assumed, including gamma, χ2, Rayleigh, Rician,
etc. The approximation quality was assessed by two criteria: Kolmogorov–Smirnov and
Pearson’s χ2. The approximation parameters were estimated via a maximum-likelihood
procedure. The resultant approximation was assumed reasonable if both statistical tests
were jointly passed with a confidence level greater than 95%. It was found out (see [55]) that
the most suitable one was the two-parametric gamma distribution (which corresponded to
the existing results [53,54]). Moreover, for a ZF processing, the first parameter (the shape
parameter) could be set to unity (e.g., γk ∼ Γ(1, β̂k)), thus resulting in a single unknown
parameter βk, which depended on the system/channel characteristics, but could be easily
estimated via the simple averaging of the measured SNR [49].

3.2. Capacity’s Higher-Order Statistics Derivation
3.2.1. Moment-Generating Function Derivation

Based on the proposed approximation (i.e., γk ∼ Γ(1, β̂k)), the moment-generating
function of the sum-rate capacity can be derived. To calculate it, one can notice the
monotonicity of the functional relation Ck = log2(1 + γk) between γk and Ck (that is,
the instantaneous capacity per stream) and apply the classical transformation of random
variables:

wCk (x) = wγk ( f−1(x)) ·
∣∣∣∣d f−1(x)

dx

∣∣∣∣, (11)

where f−1(·) is the inverse monotonic transform, i.e., f−1(x) = γk = 2x − 1. Finally, we
obtain:

wCk (x) = 2x ln 2wγk (2
x − 1) =

2x ln 2
β̂k

e
1

β̂k e
− 2x

β̂k , (12)

which is clearly a probability density function of the Gompertz–Makeham distribution [65,66],

i.e., Ck
d∼GM

(
ln 2, 1

β̂k

)
.

Using the definition of the MGF (that is,MCk (s) = E{esCk}), one gets:

MCk (s) =

∞̂

0

wCk (x)exsdx = β̂−1
k eβ̂−1

k E− s
ln 2

(
β̂−1

k

)
, (13)
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where E(·) is the exponential integral [67]. So the moment-generating function of the
sum-rate capacity CΣ can be evaluated as:

MCΣ(s)=
NR

∏
k=1
MCk (s) =

NR

∏
k=1

β̂−1
k eβ̂−1

k E− s
ln 2

(
β̂−1

k

)
(14a)

=

(
NR

∏
k=1

β̂
− s

ln 2
k

)
NR

∏
k=1

U
(
− s

ln 2
,− s

ln 2
,

1
β̂k

)
(14b)

=

(
NR

∏
k=1

1
β̂k

)
NR

∏
k=1

U
(

1, 2 +
s

ln 2
,

1
β̂k

)
, (14c)

where U(·) is the Tricomi confluent hypergeometric function [67]; the second line (14b) and
the third line (14c) are due to the connection of the exponential integral with U(·) and the
argument shifting property of the Tricomi function (see [67], Equation (13.6.6):

z1−aezEa(z)=U(a, a, z), (15)

U(a, a, z)=z1−aU(1, 2− a, z). (16)

For the subsequent derivations, Equation (14c) was used. It should be noted that
if the probability density function is sought, (14c) can be inverted via Gil-Pelaez’s for-
mula [68] (see, for example, ref. [69,70]), or by using the Laplace transform inversion
approach [69]. Although such inversion cannot be performed analytically, there is a wide
range of approaches to perform it numerically with high accuracy [71].

3.2.2. Ergodic Capacity Derivation

The obtained expression for the sum-rate capacity MGF (14c) helps to calculate the
ergodic capacity of the system by taking a derivative at s = 0, i.e.,

CΣ =
dMCΣ(s)

ds

∣∣∣∣
s=0

. (17)

The application of the general Leibniz’s differentiation rule yields:

dMCΣ(s)
ds

=

(
NR

∏
k=1

1
β̂k

)
NR

∑
j=1

(
d
ds

U

(
1, 2 +

s
ln 2

,
1
β̂ j

))
NR

∏
k=1
k 6=j

U
(

1, 2 +
s

ln 2
,

1
β̂k

)
(18a)

=

(
NR

∏
k=1

1
β̂k

)
NR

∏
k=1

U
(

1, 2 +
s

ln 2
,

1
β̂k

) NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

) (18b)

=MCΣ(s)
NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

) . (18c)

Taking the derivative of the Tricomi function with respect to the parameter s, we get:

d
ds

U
(

1, 2 +
s

ln 2
,

1
β̂k

)
=

β̂k
ln 2

e
1

β̂k G 3,0
2,3

(
1− s

ln 2 , 1− s
ln 2

1,− s
ln 2 ,− s

ln 2

∣∣∣∣ 1
β̂k

)
, (19)



Sensors 2023, 23, 2289 9 of 22

where G 3,0
2,3 (·) is the Meijer G-function [67]. It can be noticed that

MCΣ(0)=1, (20)

U
(

1, 2, β̂−1
k

)
=β̂k, (21)

G 3,0
2,3

(
1, 1

1, 0, 0

∣∣∣∣ 1
β̂k

)
=G 2,0

1,2

(
1

0, 0

∣∣∣∣ 1
β̂k

)
= Γ

(
0,

1
β̂k

)
, (22)

where Γ(·) is the upper incomplete gamma-function [67], and the third equality holds true
due to Equation (16.19.3) in [67].

Finally, the derived closed-form expression for the ergodic capacity can be formu-
lated as:

CΣ =
1

ln 2

NR

∑
k=1

e
1

β̂k Γ
(

0,
1
β̂k

)
. (23)

3.2.3. Second-Order Capacity Statistics: The Amount of Dispersion, Capacity Reliability

Since the main focus of this research is the MIMO systems’ capacity reliability analysis,
according to its definition (9) and (10), the second-order capacity statistics is necessary:

C2
Σ =

d2MCΣ(s)
ds2

∣∣∣∣∣
s=0

. (24)

To this extent, one can make use of (18c):

d2MCΣ(s)
ds2 =

d
ds

MCΣ(s)
NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

)
 (25a)

=
dMCΣ(s)

ds

NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

) +
d
ds

 NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

) .

 (25b)

First, note that

dMCΣ(s)
ds

=CΣ, (26)

NR

∑
k=1

d
ds U

(
1, 2 + s

ln 2 , 1
β̂k

)
U
(

1, 2 + s
ln 2 , 1

β̂k

)
∣∣∣∣∣∣∣
s=0

=CΣ. (27)

The second term in (25b) evaluated at s = 0 can be simplified using (19), (21) and (22)
and

d2

d2s
U
(

1, 2 +
s

ln 2
,

1
β̂k

)∣∣∣∣
s=0

=
2β̂k

ln2 2
e

1
β̂k G 3,0

2,3

(
1, 1

0, 0, 0

∣∣∣∣ 1
β̂k

)
. (28)

Finally, the second raw moment of the capacity of the assumed MU-MIMO system is
given by

C2
Σ =

(
CΣ
)2

+
NR

∑
k=1

e
1

β̂k

ln2 2

[
2G 3,0

2,3

(
1, 1

0, 0, 0

∣∣∣∣ 1
β̂k

)
− e

1
β̂k Γ2

(
0,

1
β̂k

)]
. (29)
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This helps to evaluate the amount of dispersion:

AoD =

NR

∑
k=1

e
1

β̂k

[
2G 3,0

2,3

(
1, 1

0, 0, 0

∣∣∣∣ 1
β̂k

)
− e

1
β̂k Γ2

(
0,

1
β̂k

)]

ln 2
NR

∑
k=1

e
1

β̂k Γ
(

0,
1
β̂k

) . (30)

A further simplification can be obtained by reducing the Meijer G-function to a simpler
one, thus yielding the final closed-form expression for the capacity reliability, that was used
for our further analysis:

R = 1−
(

ln 2
NR

∑
k=1

e
1

β̂k Γ
(

0,
1
β̂k

))−1 NR

∑
k=1

e
1

β̂k

[
2
β̂k

3F3

(
1, 1, 1; 2, 2, 2;− 1

β̂k

)
+

+ ln2(β̂k
)
− 2Ce ln

(
β̂k
)
+Ce +

π2

6
− e

1
β̂k Γ2

(
0,

1
β̂k

)]
, (31)

where Ce is the Euler–Mascheroni constant [67], and 3F3(·) is the generalized univariate
hypergeometric function [67].

3.2.4. Further Generalization: nth Order Capacity Statistics

To derive the generalized expression, first, let us rewrite Equation (18c) in a compact
form:

dMCΣ(s)
ds

=MCΣ(s)g(s), (32)

where g(s) denotes the sum of logarithmic derivatives of Tricomi functions.
In case of such a notation, the nth order capacity statistics is expressed as

Cn
Σ =

dnMCΣ(s)
dsn

∣∣∣∣
s=0

=
dn−1

dsn−1

(
MCΣ(s)g(s)

)∣∣∣∣
s=0

(33a)

=
n−1

∑
j=0

(
n− 1

j

)
djMCΣ(s)

dsj

∣∣∣∣∣
s=0

dn−j−1g(s)
dsn−j−1

∣∣∣∣
s=0

(33b)

=
n−1

∑
j=0

(
n− 1

j

)
Cj

Σ
dn−j−1g(s)

dsn−j−1

∣∣∣∣
s=0

, (33c)

where the second line is obtained via the general Leibniz rule, and (··) is the binomial
coefficient [67].

Using the result from [72] (see Chapter I, page 40) the rth order logarithmic derivative
of a Tricomi function can be rewritten as the following r + 1-order determinant:

drg(s)
dsr ∝

dr

dsr

( dU(·)
ds

U(·)

)
=

(−1)r

Ur+1(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U′(·) U(·) 0 . . . 0
U′′(·) U′(·) U(·) . . . 0
U′′′(·) U′′(·) 2U′(·) . . . 0

. . . . . . . . .
. . . . . .

U(r)(·) U(r−1)(·) (r−1
1 )U(r−2)(·) . . . U(·)

U(r+1)(·) U(r)(·) (r
1)U

(r−1)(·) . . . ( r
r−1)U

′(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (34)

where a shorthand notation U(·)(·) is used instead of the derivative of the Tricomi function
U
(

1, 2 + s
ln 2 , 1

β̂k

)
.
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It was shown that (34) can be efficiently reorganized (see Equation (1.5) in [73]),
and thus the derivative of g(s) in (33c) can be reformulated in terms of a determinant of a
Heisenberg matrix W (size (n− j)× (n− j)):

dn−j−1g(s)
dsn−j−1 =

(−1)n−j−1

Un−j
(

1, 2 + s
ln 2 , 1

fîk

) ∣∣∣W(n−j)×(n−j)(s)
∣∣∣, (35)

which is composed of a column matrix P(n−j)×1(s) and a rectangular matrix Q(n−j)×(n−j−1)(s)

(i.e.,
(

P(n−j)×1(s), Q(n−j)×(n−j−1)(s)
)

) with elements:

Pr,1(s) =
dr

dsr U
(

1, 2 +
s

ln 2
,

1
β̂k

)
1 ≤ r ≤ (n− j), (36)

Qr,l(s) =


(

r− 1
l − 1

)
dr−l

dsr−l U
(

1, 2 +
s

ln 2
,

1
β̂k

)
if (r− l) ≥ 0, 1 ≤ r ≤ (n− j),

0 if (r− l) < 0, 1 ≤ l ≤ (n− j− 1).
(37)

To finalize the result, one can notice that the derivatives of the Tricomi function in (36)
and (37) can be obtained in a closed form:

dr

dsr U
(

1, 2 +
s

ln 2
,

1
β̂k

)
=

r!β̂ke
1

β̂k

lnr 2
G r+2,0

r+1,r+2

(
1− s

ln 2 , . . . 1− s
ln 2

1,− s
ln 2 , . . .− s

ln 2

∣∣∣∣ 1
β̂k

)
. (38)

Since their values at s = 0 are sought, the formula for lowering the order of the Meijer
G-function can be efficiently used (see Equation (8.2.2.8) in [74]), yielding:

dr

dsr U
(

1, 2 +
s

ln 2
,

1
β̂k

)∣∣∣∣
s=0

=
r!β̂ke

1
β̂k

lnr 2
G r+1,0

r,r+1

(
1, . . . 1
0, . . . 0

∣∣∣∣ 1
β̂k

)
. (39)

The resultant closed-form expression for the nth order capacity statistics is given by:

Cn
Σ =

n−1

∑
j=0

(
n− 1

j

)
(−1)n−j−1Cj

Σ

NR

∑
k=1

|W(0)|
β̂

n−j
k

, (40)

where the elements of the matrix W(0) are evaluated according to expressions (36), (37)
and (39).

To the best of the authors’ knowledge, the closed-form capacity’s higher-order statistics
analysis is absent in the current technical literature, and the results derived in Section 3.2
are novel and have not been reported previously.

4. Simulation and Results

To verify the correctness of the derived expressions and perform a higher-order capac-
ity analysis, a numeric simulation was carried out.

The simulation was executed in accordance with the general theory described in
Section 2 (see Section 2.1 for the system model description, Section 2.2 for the channel
model, Section 2.3 for the correlation model and Section 2.4 for the signal processing model).

The assumed system and channel parameter values are presented in Table 1.
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Table 1. System and channel parameters assumed for the simulation.

Parameter Parameter Value

System size (Tx, Rx) 2× 2 . . . 32× 32
Decoding algorithm of the received signal Zero-Forcing
Number of active users (i.e., active substreams, Ns) 2. . . 8
One–step correlation coefficient (ρ) 0 . . . 0.5
Fading parameter (m) 0.5 . . . 5
Average input signal-to-noise ratio for k substreams (γ̄, dB) 0 . . . 50

To this extent, several important notes should be pointed out:

• The one-step correlation coefficient was chosen in such a way (i.e., not exceeding
0.5) as to comply with the existing results for the bordered correlation matrices
(see [55]), where the maximum possible ρ (that yielded physically meaningful re-
sults, i.e., positive-definite system correlation matrices) was 0.5 (see [75]).

• The Ns was chosen in such a way as to cover the case when all the users are active
(maximum number of active eigenstreams).

• The mean power of the received signal in the communication channel (Ω) was set to
unity, since it could be efficiently recalculated into the average signal-to-noise ratio,
which was swept by the range of 0 . . . 50 dB.

• The fading parameter m was upper-bounded by m = 5 since numerous research works
have demonstrated that this value can be assumed as “almost asymptotic”, which
leads to the fact that its increase does not induce significant changes in the result.

• The parameter m was set in such a way as to account for hyper-Rayleigh fading (i.e.,
0.5 ≤ m < 1), Rayleigh (m = 1) and lighter-than-Rayleigh fading (m > 1).

Furthermore, the section is divided into the two following parts: capacity analysis
and capacity reliability analysis. In Figures 1–3, the results obtained with the help of the
derived expressions (depicted with solid and dashed lines) are appended with the ones
obtained via a Monte Carlo simulation (depicted by markers). For the reliability analysis
in Section 4.2, the plots of the capacity reliability (obtained via numeric simulation) are
supplied with a second vertical axis (see Figures 2–8) depicting the capacity itself, thus
delivering a joint study of the first- and second-order statistics.
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Figure 1. Ergodic capacity CΣ of the 8× 8 MIMO system for various m and correlation coefficients.



Sensors 2023, 23, 2289 13 of 22

4.1. Simulation Results for the Ergodic Capacity

Considering the MIMO system’s ergodic capacity C (see Figure 1) as a function of the
one-step correlation coefficient ρ (for various channel parameters, i.e., Ω, m), one can see
that its increase reduced C, meaning that it degraded the communication quality.

The Nakagami parameter m had little overall effect on the dependencies under consid-
eration. A sensible discrepancy between the curves (with the same ρ and different m’s) was
observed at ρ ≤ 0.3 and γ ≥ 24 dB. It can be seen that the derived expression for C (see
(23)) had an excellent agreement with the simulation.

For small average signal-to-noise ratios (e.g., γ ≤ 10 dB), the channel parameters’
impact was vanishing. This generally means that in the low-SNR regime, there is no
pronounced difference in the system performance between the hyper-Rayleigh and lighter-
than-Rayleigh fading.

4.2. Simulation Results for the Capacity Reliability

As mentioned earlier, the main focus of the proposed research was on capacity re-
liability. To broaden and deepen the system’s functioning analysis and strengthen the
derived conclusions, the second- and first-order capacity statistics were studied jointly by
combining the graphs forR (i.e., capacity reliability) and CΣ (i.e., the total ergodic capacity
across all streams) in one plot (see Figures 2–8).

The classical studies (ignoring the higher-order statistics) usually conclude that the
increase of γ leads to the increase of CΣ (see red lines in Figure 2). Nevertheless, for the
same range of average SNR,R exhibits a pronounced minimum (see black lines in Figure 2),
which implies the increase of the fluctuation range of instantaneous capacities. Thus, from a
practical perspective, it is advised to avoid functioning in the vicinity of this extremum.
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Figure 2. The jointR–CΣ performance of the 8× 8 for a variable γ.
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Figure 3. CΣ (subfigure (a)) and R (subfigure (b)) for variable γ and different MIMO system size
N × N: solid lines depict the case of ρ = 0.1, dashed lines depict the case of ρ = 0.5.
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Figure 4. The joint R–CΣ performance of the 8 × 8 and 2 × 2 MIMO systems for various m’s
and different γ’s.

For example (see Figure 2), considering as an illustration the jointR–CΣ analysis of
the 8× 8 MIMO system with the received fluctuating signal average power Ω = 1 and
various one-step correlation coefficients ρ, several conclusions can be drawn:

• As expected, CΣ increased monotonically over the entire interval of γ.
• The increase of the correlation coefficient decreased CΣ.
• The extremum of the capacity reliability was attained at around 20 dB. The specific

value of γ for CΣmin depended on ρ.
• For γ ≤ 20 dB,Rmonotonically decreased, which negatively affected CΣ.
• The overall dependence of R from ρ for γ < 20 dB and γ > 20 dB was strictly

the opposite. This meant that in the lower-SNR range, the increase of the antenna
correlation actually improved the reliability; for the higher SNR, the increase of ρ
impairedR.

An illustrative example, depicted in Figure 2, demonstrated the existence of a pro-
nounced minimum of the capacity reliability and thus the necessity of a jointR–CΣ analysis,
although it can be argued whether this effect could not have been removed by increas-
ing the number of antenna elements (i.e., MIMO system size). Previously, for a SIMO
system with a shadowed fading channel (described with a κ–µ shadowed model) [15], it
was demonstrated that the increase of the transmitting/receiving antenna arrays did not
eliminate the decrease ofR for certain values of γ̄.

To study that effect for the assumed problem, a numeric analysis and a simulation
were performed. For this, the MIMO system size was extended to 32 elements (see Figure 3),
and the fading parameters were set to m = 1, Ω = 1. The results were obtained with the
help of the derived expressions (23) and (31) for a low ρ = 0.1 and moderate ρ = 0.5
correlation, depicted with solid and dashed lines, respectively. They were appended with
the results obtained via the Monte Carlo simulation (depicted with markers).

The performed analysis made it possible to conclude that the increase of N, as it was
expected, improved CΣ (see Figure 3a)), and the increase of ρ impaired this effect (although
at a different level, i.e., the greater the MIMO size, the stronger the impact of ρ). At the same
time, it was interesting that N did not affect the minimum value of the capacity reliability
Rmin but monotonically shifted the average SNR γ̄Rmin (whereRmin was attained) to the
high-SNR region, which makes the joint R–CΣ analysis even more relevant for modern
communication systems. Thus, since for given fading parameters, theR(γ̄) curve’s form
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was independent of N, in the subsequent analysis, only the situations with N ≤ 8 was
assumed. Those cases corresponded to the existing communications standards.

Comparing the performance of 8× 8 and 2× 2 MIMO systems for a variable m (see
Figure 4), it could be noted that the ordering of the curves varied depending on the average
signal-to-noise ratio. This was confirmed by the presence of the above-mentioned extremum
that existed at 20 dB in terms of reliabilityR in Figure 2.
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Figure 5. The joint R–CΣ performance of the 8 × 8 and 2 × 2 MIMO systems for various m’s,
γ = 20 dB, and different ρ’s.

It is worth mentioning that the reduction of the system size to 2× 2 for certain signal-
to-noise ratios led to the increase of the reliability. This meant that, in practice, R of the
2× 2 system turned out to be higher than the one for the 8× 8 system. This confirmed
the importance of the higher-order statistics evaluation and illustrated that with certain
channel parameters, increasing the number of antenna elements involved was impractical.

At the same time, the increase of the value of m did not induce sufficient changes in
CΣ if m ≥ 1 for any number of elements, and R if m ≥ 1.5 for the eight-element system.
Therefore, for the 8× 8 MIMO system, the values of m ≥ 1.5 could be considered asymptotic.
At the same time, the lower-dimensional system exhibited a nontrivial behavior with a
pronounced maximum of the capacity reliability around m = 2.

It should be mentioned that the information about the aforementioned asymptotic
behavior is beneficial. In practice, the channel parameters’ inference has to be done on-
the-fly, and the knowledge that the estimated value is in the asymptotic region can be
used to reduce the inference-procedure complexity, leveraging the computational resources
without loss of accuracy.

Analyzing the joint behavior ofR–CΣ for different one-step correlation coefficients ρ
(see Figure 5), one can observe that:

• For a small-dimensional system (e.g., 2× 2), for any correlation coefficient, there was
a noticeable extremum (maximum) of the capacity reliability. For a high-dimensional
MIMO system (e.g., 8× 8),R was a monotonically increasing function of m.

• The impact of the system correlation onR was negligible for NT = NR ≥ 6.
• For the system size of 2 × 2 and the correlation coefficient ρ = 0.5, the ergodic

capacity CΣ = 8.08 bits/s/Hz at m = 2, and CΣ = 6.73 bits/s/Hz at m = 0.5.
That is, 1.35 bits/s/Hz or a 16.7% loss (due to fading) of the maximum possible
capacity. For the system size of 8× 8 and the same correlation coefficient (i.e., ρ = 0.5),



Sensors 2023, 23, 2289 17 of 22

the ergodic capacity CΣ = 15.48 bits/s/Hz at m = 2, and CΣ = 14.59 bit/s/Hz at
m = 0.5, which meany that the loss equaled 0.89 bits/s/Hz or 5.75%.

• When considering the 2× 2 system, the maximum ergodic capacity was attained
at m = 2. The decrease of the one-step correlation coefficient from 0.5 (maximally
correlated system) to 0 (completely uncorrelated) increased the ergodic capacity from
CΣ = 8.08 bit/s/Hz to CΣ = 10.09 bit/s/Hz, which equaled 2.01 bits/s/Hz or
19.92% of the maximum capacity. For the 8× 8 MIMO system, functioning under
the same conditions, a complete decorrelation increased CΣ from 15.48 bits/s/Hz to
25.50 bits/s/Hz (i.e., 10.02 bits/s/Hz or 29.30% of the maximum capacity).
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Figure 6. The joint R–CΣ performance of the 6 × 6 and 4 × 4 MIMO systems for various m’s,
γ = 20 dB, and different ρ’s.

Thus, it can be concluded that for the small system sizes, the fading parameter m (in
case of hyper-Rayleigh fading, i.e., m ≤ 1) dominated the capacity reliability and signifi-
cantly worsened the communication quality.
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Figure 7. The jointR–CΣ performance of the variable-size MIMO system and different ρ’s.
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Figure 8. The jointR–CΣ performance of the variable-size MIMO system and different γ’s.

Comparing those results with the ones obtained for the intermediate number of
antenna elements (see Figure 6), similar dependencies were observed (as for the 8× 8 and
2× 2 systems), but the effects were less pronounced. It is important to note that there was
no extremum and theR–CΣ plots were monotonic.

Proceeding with the joint R–CΣ analysis for the variable system size (see Figures 7
and 8), one can see the opposite behavior for the two extreme fading conditions. Increasing
the number of antenna elements decreased the capacity reliability for the case of the light
fading (i.e., m = 2.5), and sufficiently increased it for the hyper-Rayleigh case (m = 0.5).
At the same time, the capacity itself increased almost linearly, justifying the supposition
that the joint first- and second-order analysis yielded much more information about the
system performance than the simple capacity analysis.

Moreover, expanding the size of the antenna system reduced the impact of correlation
for lighter-than-Rayleigh fading and increased it for heavy fading. For the large system
sizes, the effect of the fading was leveled (see Figure 7).

A similar analysis, applied to the varying γ (see Figure 8), led to analogous conclusions
except for the case of light fading (m = 2.5) and a small SNR (γ = 10 dB). In that scenario,
the capacity reliabilityR behaved the same as in the case of heavy fading (m = 0.5). This
was explained by the presence of an extremum in γ for small system sizes (see Figure 2).

5. Conclusions

The presented research studied the problem of higher-order capacity description
of the MU-MIMO system functioning in the presence of generalized multipath fading
subjected to the complex Nakagami-m distribution. It was proposed to describe such a
system with the help of a joint capacity/capacity reliability analysis, which was carried out
under the assumptions of an existing correlation between the antenna elements, and zero-
forcing postprocessing used for the user signal detection. Within the proposed framework,
the closed-form expressions were derived for (a) the single-stream and sum-rate capacity
moment-generating functions, (b) the zero-forcing multi-user MIMO ergodic capacity,
(c) the capacity reliability and the amount of dispersion and (d) the general-order capacity
statistics. A numerical verification of the derived expressions was performed, and it
demonstrated an excellent correspondence with the simulation. A thorough joint analysis
of the system performance was performed for all possible channel and system parameters
and different fading scenarios: hyper-Rayleigh and lighter-than-Rayleigh fading. Several
peculiarities of the system performance were observed and discussed. The performed
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research demonstrated the existence of a pronounced extremum of the capacity reliability
for small-sized MIMO systems with respect to the fading Nakagami-m parameter, and the
opposing behavior (depending on the system size) for heavy and light fading conditions.
Specific values of the parameter, which were asymptotic for the ergodic capacity and
capacity reliability, were identified.
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