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Abstract: Providing reliable detection of QRS complexes is key in automated analyses of electrocar-
diograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses
and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical
algorithms, deep learning (DL) architectures have demonstrated superior accuracy and high gen-
eralization capacity. Furthermore, they can be embedded on edge devices for real-time inference.
3D vectorcardiograms (VCG) provide a unifying framework for detecting R-peaks regardless of the
acquisition strategy or number of ECG leads. In this article, a DL architecture was demonstrated
to provide enhanced precision when trained and applied on 3D VCG, with no pre-processing nor
post-processing steps. Experiments were conducted on four different public databases. Using the pro-
posed approach, high F1-scores of 99.80% and 99.64% were achieved in leave-one-out cross-validation
and cross-database validation protocols, respectively. False detections, measured by a precision of
99.88% or more, were significantly reduced compared with recent state-of-the-art methods tested
on the same databases, without penalty in the number of missed peaks, measured by a recall of
99.39% or more. This approach can provide new applications for devices where precision, or positive
predictive value, is essential, for instance cardiac magnetic resonance imaging.

Keywords: 12-lead ECG; vectorcardiogram; R-peak detection; segmentation; deep learning; U-Net
architecture

1. Introduction

It is estimated that over 300 million resting ECG tests are performed every year [1],
to which exercise ECG tests, and a number of procedures involving ECG synchronization
must be added. Such procedures may be imaging the heart or ablating electrical pathways.
Over the last few decades, ECG has extensively been studied, focusing on detecting QRS
complexes, and classifying features [2]. In an ECG, P-waves indicate atrial depolarization,
QRS complexes correspond to ventricular depolarization and T-wave to ventricular repo-
larization (Figure 1). Automated analyses of ECG signals have been accelerated with the
public availability of electronic ECG databases [3].

In ECG, QRS complexes consist of short-time pulses that contain R-peaks with steep
slopes and high amplitudes. Algorithms to detect R-peaks and to measure heart rates
are ubiquitous in medicine, and automated analyses of ECG are increasingly common.
Automatically detecting R-peaks provides essential information to clinicians about the heart
activity status. Furthermore, R-peaks play a key role in the subsequent classification of
cardiac cycles and identification of abnormalities (e.g., arrhythmia), eventually supporting
computer-aided diagnoses [4–6].
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Figure 1. Illustrative schema of the ECG waveform components. P: atrial depolarization; QRS:
ventricular depolarization; T: ventricular repolarization.

In this article, our focus is the detection of R-peaks in multi-lead ECG recordings.
Arguably, the timings of R-peaks are shifted between leads; however, we aim to define
a single R-peak timing representative of the onset of ventricular systole. There has been
extensive research focusing on different ECG key features. Besides the detection of R-peaks,
the most common approach has been to segment QRS complexes from their onsets to their
offsets [6].

In good quality ECG recordings, classical algorithms can detect an R-peak with recall
and precision both over 99%. Teaching these algorithms new use cases featuring high
levels of noise or artifacts requires adapting their parameters or developing new ones,
whereas deep learning (DL) architectures can be tailored through the adaptation of their
training databases [7]. Compared with classical algorithms, DL architectures require large
amounts of annotated data and high computing resources, which are not available in all
circumstances. In the last decade, DL architectures have successfully been explored across
many sub-fields following early successes in computer vision and pattern recognition [8,9].
Many studies confirmed that DL architectures outperform classical algorithms for signal
analysis, image recognition, and object/pattern detection [10]. Many medical applications
have benefited from the development and progress in computing, data availability, and DL
to address a large variety of complex challenges [11]. Hence, DL architectures have recently
become interesting alternatives to classical ECG signal analysis methods [2,7,12]. Further-
more, DL architectures can automatically identify relationships in data independently
from handcrafted features [13]. DL is among the best techniques to detect patterns or to
classify objects degraded by different noise levels or types [14]. One of the advantages of
DL architectures in the analysis of ECG is that they can easily deal with single or multiple
lead ECG recordings [7].

While many R-peak detection techniques have had a strong focus on reducing the
number of missed detections (FN), our focus and motivation have been to avoid false
detections (FPs). Some diagnostic or therapeutic medical devices use R-peaks as systolic
triggers. One instance is cardiac magnetic resonance imaging (CMR): R-peaks trigger the
pulse sequence, leading to the acquisition of raw (K-space) data. FPs cause data corruption
leading to image artifacts. In noninvasive cardiac radioablations [15], R-peaks’ timings may
be used to trigger irradiations of an arrhythmogenic substrate. Reliable R-peak triggers
may enhance the precision of radiotherapy beams. Both cases require a low latency, leaving
little to no time for a decision-making step. In other imaging, interventional, or robotic
fields, high precision cardiac triggers may also be relevant.

2. Related Work

In this section, we review the main R-peak detection techniques. Classical algorithms
were initially designed with the advent of electronic recordings and computerized analysis.
More recently, DL architectures demonstrated groundbreaking performance in detecting
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R-peaks. This was further accelerated by the public availability of annotated ECG databases,
such as MIT-BIH arrhythmia [16,17], and organized challenges, such as CinC [18–22] and
CPSC [23–26]. Finally, hybrid approaches merging DL architectures, signal processing,
and structural analysis techniques (e.g., clustering algorithms) have emerged. Methods to
detect R-peaks can be categorized into: classical, DL, and hybrid.

2.1. Classical Approaches

Classical approaches are based on using various classical signal processing and struc-
tural analysis techniques. They usually feature pre-processing and decision-making steps.
Classical algorithms are often distinguished according to their pre-processing steps, while
the majority of the decision-making steps are either heuristic or based on machine learn-
ing (ML), such as support vector machine (SVM) [27] or decision tree algorithms [28],
and dependent on pre-processing results.

Pahlm and Sörnmo reviewed pre-1984 methods based on defining rules and signal
processing techniques for detecting QRS complexes in one-channel ECG recordings [29].
In 1985, Pan and Tompkins proposed the Pan–Tompkins (PT) algorithm based on using
differential thresholds and setting the slope, amplitude, and width of a moving window
for locating R-peaks [30]. Noise elimination, signal smoothing, and enhancing width
and QRS slope were introduced in a pre-processing step. A decision-making step was
used to determine whether or not a detection fits an R -peak. In 1986, Hamilton and
Tompkins measured the effects of several parameters (median, iterative, or mean peak
estimators) used in the decision-making step and proposed an optimized decision rule
to discriminate true R-peak events from false, noise-induced events [31]. In 2022, Khan
and Imtiaz introduced Pan-Tompkins++, an improved PT algorithm [32], by adding a filter
with a band-pass of 5–18 Hz followed by an N-point moving average filter and different
rules to adjust the thresholds based on the signal pattern particularities.

Kohler et al. classified QRS detection methods into several categories based on signal
derivatives and digital filters, wavelets, and additional approaches (e.g., hidden Markov
models [33]) [34].

Derivative-based algorithms define threshold levels from differentiator filters and
difference operation methods [35–39]. For instance, Gutiérrez-Rivas et al. computed a
dynamic threshold defined by a finite state machine (FSM) which depends on the sampling
frequency of ECG recordings [40]. Typical frequency components of QRS complexes range
from ~10 Hz to ~25 Hz. Many sophisticated digital filters have been explored, such as
MaMeMi [41] or quadratic [42]. Many linear and non-linear transform operators have been
applied in the pre-processing step, such as U3 [43], S [44], Hilbert [45], fast Fourier [46,47],
wavelet [48–50]. Traditional Fourier or wavelet transform based methods are not suitable for
all QRS morphologies: they are sensitive to intra- and inter-subject variations. To address
this issue, Zhou et al. proposed a sparse representation-based ECG signal enhancement
method that models ECG signals by a combination of inner structures and additive random
noise [51] and then used these structures during the training phase to extract original ECG
signals and to remove artifacts (e.g., wandering baseline). QRS complexes were identified
in enhanced ECG signals as structures having the larger kurtosis values. The Zhou et al.
algorithm yielded a high rate of FP [51]. Hossain et al. presented a complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) for QRS complexes and
P-waves detection without using conventional filtering techniques [52]. After carrying a
pre-processing step (e.g. baseline drift removal), two different signals are reconstructed by
the CEEMDAN method, one for QRS complexes and one for P-waves; the one matching
the signal dynamics is selected.

Many algorithms based on the Shannon energy envelope were proposed to detect R-
peaks with low delay and high accuracy and speed [53,54], provided that two key thresholds
are correctly set. A fast R-peak detection method requiring low resource consumption was
presented by Elgendi [55], using two moving averages which are calibrated by means of an
optimized knowledge base with two different parameters. For QRS detections, a weighted
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total variation (WTV) denoising technique was proposed in the pre-processing step [56].
A regularization parameter in WTV minimization and weights is required to adapt locally
the amount of applied smoothing and to select QRS complexes over P- and T-waves.

Several classical methods use multiple modalities, combining ECG with other channels,
such as blood pressure (BP), electroencephalography (EEG), electrooculography (EOG), elec-
tromyography (EMG) and others, to detect R-peaks. For instance, Johnson et al. proposed
a method based on defining a signal quality index derived from two different modalities:
R-peaks detected in the ECG using energy and R-peaks detected in the arterial BP wave-
form using length transform [57]. From noisy multi-modal recordings, Gierałtowski et al.
used more than two channels (ECG, BP, EEG, EOG, and EMG) for QRS detection [58].
Combining multiple channels requires adjusting rules accordingly. The performance of this
approach varies, especially in ECG recordings of short durations.

Liu et al. compared the performances of ten widely used QRS detection algorithms
in different cases [59]: PT [30], Hamilton-mean [31], Hamilton-median [31], RS slope [58],
sixth power algorithm [37], FSM [40], U3 transform [43], difference operation algorithm [38],
window-based peak energy detector [57,60,61], and optimized knowledge base [55]. To guar-
antee high performance, pre-processing and post-processing steps were usually required,
at an increased computing cost. Other reviews and benchmarks focused on pre-processing
and decision-making steps [62–64]. Van and Podmasteryev reviewed in detail four ML-
based algorithms [65], including artificial neural network (ANN) [66], k-nearest neighbor
(k-NN) algorithm [67], k-means [68], and SVM [69]. Performances of investigated ML
algorithms were shown to depend on the quality of their training datasets, which was an
essential drawback.

Few approaches were designed to work with multiple lead ECG recordings. Śmigiel et al.
used 6 classical detectors and a k-means clustering method after processing a 12-lead ECG
signal [70]. Chen et al. used the PT algorithm to detect R-peaks in each lead of the ECG
recordings of the LUDB database [71–73].

The main disadvantage of classical algorithms is that they depend on many empirical
parameters (e.g., self-adaptive threshold values) and lack robustness, particularly with low-
quality, noisy, or pathological signals, changes in sensors or different QRS morphologies.
PT for instance, one of the most widely used algorithm to detect R-peaks in commercial
cardiac monitoring devices, is sensitive to various sources of noise, including wandering
baseline, power-line interferences, muscle artifacts, and electrode contact noise. Moreover,
they are often unsuitable for ECG recordings of short durations.

2.2. DL-Based Approaches

Several DL architectures have been proposed for different tasks related to computer
vision and pattern recognition [8,9], including ECG analysis [2,4]. A DL architecture is
an ML algorithm based on a neural network (NN). It works by learning a correlation
between input features using a large amount of data. The larger the database, the better
the DL architecture can learn by optimizing its weights and perform the targeted task by
taking the most suitable decision. Commonly used DL architectures to detect R-peaks
are: convolutional neural network (CNN) [74], recurrent neural network (RNN) [75], long
short-term memory (LSTM) [76], and gated recurrent unit (GRU) [77].

CNN-based solutions represent the most used techniques for ECG analysis, and par-
ticularly for feature extraction tasks [2]. Šarlija et al. reported a 1D CNN-based architec-
ture exceeding 99% in recall and precision on unseen data from the MIT-BIH arrhythmia
database [78]. Oudkerk-Pool et al. reported 92.6% recall, 91% precision, and 91.8% F1-score
on 100 recordings from the PhysioNet/CinC challenge 2017 using a fully convolutional
dilated NN [20,79]. Tison et al. used a modified CNN (U-Net) architecture for automating
the classification of six types of ECG segments (P-wave, PR segment, QRS complex, ST
segment, T-wave, and TP segment) [80]. Using the MIT-BIH arrhythmia database and a
modified U-Net architecture, Oh et al. reported a high recall of 98.76% but a low precision
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of 29.55% [81]. Jimenez-Perez et al. used a U-Net architecture to analyze dual lead ECG
recordings from the QTDB database and achieved a recall of 99.94% [82–84].

Some novel DL-based methods combine variant CNN architectures with other DL
models. Liu et al. achieved high accuracy by using three variants of bidirectional long
short-term memory (BLSTM) architectures: with attention model, combined with U-Net,
and combined with U-Net++ [85]. Peimankar and Puthusserypady demonstrated a recall
of 97.95% and a precision of 95.68% on 105 recordings from QTDB by combining a CNN
architecture with a BLSTM model to detect onset, peak, and offset of different heartbeat
waveforms (P-waves, QRS complexes, and T-waves) [86]. Vijayarangan et al. proposed
a fused CNN-ResNet, called RPnet, an architecture combining the 1D U-Net model with
inception and residual modules, to extract R-peaks from noisy ECG [87]. This approach con-
tributed to alleviate the vanishing gradient issues of DL architectures. RPnet outperformed
three classical algorithms (Hamilton and Tompkins [31], Christov [35], and stationary
wavelet transform [50]), with an F 1-score of 98.37%, on the second CPSC database [24].
Duraj et al. showed high performance on LUDB by incorporating the residual and squeeze-
excitation blocks into the 1D U-Net architecture for extracting segments, such as P-waves,
QRS complexes, and T-waves, regardless of the lead [88]. Gabbouj et al. proposed a 1D self-
organized operational neural network (ONN), evaluated on second CPSC, and achieved
recall of 99.79%, precision of 98.42%, and F1-score of 99.10% [24,89]. However, during the
training phase, it featured a high complexity in the number of multiply–accumulate opera-
tions and the number of parameters compared with 1D CNN architectures.

Many DL architectures are computationally expensive and hence not well-adapted
to embedded devices. Furthermore, CNN and their variants, such as U-Net, are the most
common DL architectures for R-peak detection. Yet, many researchers stated that the best
accuracy was achieved by combining different DL architectures, at a cost of increasing
complexity [90]. Single ECG lead DL architectures already outperform classical algorithms,
but few use multiple leads. Increasingly available 12-lead ECG databases may increase the
precision and robustness of DL-based approaches.

2.3. Hybrid Approaches

To refine the performances of DL-based approaches, signal processing and structural
analysis techniques, such as clustering algorithms, ensemble learning methods, and heuris-
tic approaches, can be added into a post-processing step.

Sereda et al. introduced a pre-processing step (wandering baseline removal) [91].
Then, they used a 12 CNN set on LUDB to correct errors occurring in a single CNN. They
reported an F 1-score (over 95%) higher than when using a single CNN (94%). In multi-
lead ECG recordings, Moskalenko et al. proposed to process the DL output of each lead
independently and to average the resulting scores [92]. Their method demonstrated an F
1-score of 99.97%, outperforming other methods, such as the 12-lead set of Sereda et al. [91]
or the wavelet-based method of Kalyakulina et al. [12].

To validate detected R-peaks in a single ECG lead from the MIT-BIH arrhythmia and
third CPSC databases, Zahid et al. carried out a verification model based on a timing
criterion, considering the following hypothesis: if the predicted R-peak locations of two
beats fall within 300 ms, one is an F P [25,93].

In multi-lead ECG signals, Han et al. introduced a post-processing step based on an
adaptive dynamic threshold strategy and electrophysiology knowledge, after applying
a linear ensemble method averaging the outputs of two DL models [94]. They used
CNN and LSTM models, both based on the U-Net architecture. A pre-processing step
consisted of removing the wandering baseline and high frequency noise based on discrete
wavelet transforms and a third order Butterworth band-pass filter. They reported recall and
precision, ranging from 99.45% to 100%, on QTDB, LUDB, and CCDD databases [95–97].
Their strategy effectively reduced FN and FP; however, it did not correctly detect some
arrhythmic QRS complexes, such as left bundle branch blocks.
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Cascading several steps of variable complexities may require extensive computational
power, and make the application of hybrid approaches difficult in embedded devices.
Furthermore, introducing thresholds, heuristics, and rules in post-processing steps may
reduce their generalization capacity to other data and reduce their robustness, particularly
in the case of pathological QRS morphologies.

3. Proposed Approach

The originality of the proposed R-peak detection approach lies in adapting, training,
and testing a DL architecture using a 3D VCG instead of a single or multiple lead ECG,
without pre-processing or post-processing steps.

3.1. VCG Transformation

There is an inherent complexity in ECG signal analysis due to the plethora of con-
figurations of ECG recording electrodes. R-peaks can have positive or negative polarities
depending on the lead position, and often, the underlying cardiac pathology. In the 1950s,
researchers introduced 3D VCG as a simplified representation of the electrical activity of
the heart along three vectors (X, Y, and Z) [98].

Several mathematical transformations allow reconstructing a 3D VCG from a 12-lead
ECG [99] based on a matrix product:

V = E × M (1)

where V, E, and M denote a 3D VCG vector, a vector representing individual ECG leads,
and a transformation matrix, respectively.

Leads III, aVR, aVL, and aVF, obtained by trivial linear combinations of leads I and
II, can be eliminated. To convert a 12-lead ECG into a 3D VCG, a transformation was
performed according to Equation (1), where E represents the 8 independent ECG leads (I, II,
and V1 to V6) and M denotes the matrix obtained by Kors regression transformation [100]:

M =



0.38 −0.07 0.11
−0.07 0.93 −0.23
−0.13 0.06 −0.43

0.05 −0.02 −0.06
−0.01 −0.05 −0.14

0.14 0.06 −0.20
0.06 −0.17 −0.11
0.54 0.13 0.31


(2)

Comparing the Kors quasi-orthogonal transformation with three other VCG transfor-
mations (inverse Dower, Kors regression, and Frank’s orthogonal lead system), Kors et al.
reported the best results with the Kors regression transformation [100].

Figure 2 illustrates the Kors regression transformation in a recording from the INCART
database. In the figures below, all signals were scaled between −1 and 1. All annotated
R-peaks were highlighted using two yellow bars delineating a five-sample segment.
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(a) (b)

Figure 2. Kors regression transformation of a 12-lead ECG into a 3D VCG in a recording from the
INCART database: (a) 12-lead ECG; (b) 3D VCG.

3.2. DL Architecture

Normalized 3D VCG segments of durations ~4 s (2048 samples at 500 Hz) were fed
as input to the DL architecture. A short sample size was decided after initial experiments
showing no negative impact on precision. A power of two was required for the encod-
ing/decoding cascade of the DL model. The proposed approach can be performed in
any practical durations of ECG recordings, using shorter segments of ~1 s for instance.
R-peak times may be shifted between leads, and in the proposed approach, the timings
of lead II were used, together with an acceptance window of ±75 ms [59,93,101]. Neither
pre-processing nor post-processing steps were used. Hence, the proposed approach can
be generalized to low-quality, noisy, or pathological signals acquired from any sensors
providing three independent directions of ECG data.

R-peak detection was approached as a segmentation task using the U-Net model.
U-Net, used first for 2D medical image segmentation in 2015 by Ronneberger et al., is a DL
model following the encoder–decoder architecture and is reputed for its high accuracy and
reduced computational complexity [102].

The proposed DL architecture consists of convolutional layers (Conv1D), distributed
along two symmetric contracting and expanding paths, which focus on the encoding
and decoding processes, respectively. The contracting path focuses on extracting high
level abstraction features (context information involving local information) using the
convolution and pooling layers to reduce the input dimensionality. The expanding path
applies the opposite operations, often called deconvolution (Conv1DTranspose). It is
leveraged for precise localization by combining simultaneously global and contextual
information captured from the contracting path through skip connections. Indeed, it
restores the characteristics of the high level abstraction without information loss using
skip connection and up-sampling processes in order to achieve an accurate semantic
segmentation task. The bottleneck is the intermediate part between the contracting and
expanding paths that contains an encoded information of the input data representing the
latent space (relevant information to be able to reconstruct the input data).

Figure 3 illustrates the proposed DL architecture. A detailed description of its layers is
provided in Appendix A.
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Figure 3. Schema of the proposed DL architecture for R-peak detection.

The U-Net model used in this work is composed of multiple hidden layers to guaran-
tee an optimized learning of high-level feature representation of ECG data. It also features
a small number of trainable parameters (79,409) compared to other DL models (e.g., trans-
former [103]). The contracting path down-samples inputs through six convolutional layers
with a down-sampling factor of two. The convolutional layers had filters with the same
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padding. For every 2 consecutive layers, we set the kernel size to 9, 6, and 3 and the number
of filters to 16, 32, and 64. Each convolution layer of the last five is followed by a batch nor-
malization layer. A 1D MaxPooling layer was added after each batch normalization layer
to down-sample the 1D feature map by a factor of 2. The expanding path decompresses
the feature map back to its original size with a reverse configuration of the contracting
path. Only the first convolution layer of the expanding path has a dropout layer with a
drop rate of 25%. All convolution layers of the proposed DL architecture have LeakyReLU
activation functions (with a negative slope coefficient of 25%), except the last one which
has a Sigmoid activation to get 1D segmentation maps for R-peaks. We used a filter size
of 1 in the convolution operation of the last layer of the expanding path to output a 1D
segmentation map. The proposed DL architecture outputs the probability value for every
sample point, from which the R-peaks in ECG were centered in a five-sample segment
during the annotating process.

To overcome issues related to missed detections of R-peaks located on segments bor-
ders, a stride of ~2 s (1024 samples at 500 Hz) was used when extracting 3D VCG segments
of ~4 s. Thus, we computed average predictions from overlapping predictions for every
sample point of the original signal. Afterward, we filtered predictions by selecting those
that were above the probability threshold of 50%. Selected predictions were subsequently
adjusted to coincide with a local maximum. Finally, we retained R-peaks if at least five
sample points had the same local maximum.

The parameter settings of our DL architecture were first determined based on recently
published works [93], and empirically validated. Multiple experiments were carried out,
and the best parameters for our setup were retained.

4. Experiments

To evaluate the performance of the proposed approach, experiments were conducted
on 4 publicly available 12-lead ECG databases, using leave-one-out cross-validation and
cross-database validation protocols.

4.1. Experimental Corpora

In the context of ECG analyses, not all available databases provide expert-validated
annotations of R-peaks locations. Furthermore, public databases are often built using single
or dual lead ECG recordings, such as MIT-BIH arrhythmia [16,17], QTDB [83,84], and third
CPSC [25] databases.

PTB Diagnostic ECG [104], PTB-XL [105,106], INCART [21,107], first CPSC [23,108],
SPH [109], LUDB [72,73], CSE [110], CCDD [95–97], and Georgia [111] feature 12-lead ECG
recordings. However, the number of publicly available databases having both 12-lead
ECG recordings and expert-validated annotations is limited. To the best of our knowledge,
CCDD, LUDB, and INCART are the only publicly available databases with the 12 con-
ventional leads (I, II, III, AVR, AVL, AVF, and V1 to V6) and expert-validated R-peak
annotations. These 3 databases, more precisely, all recordings from LUDB and INCART,
and the first 251 recordings from the 943 publicly available recordings from CCDD were
used in our experiments. Another 103 recordings were pseudo-randomly extracted from
the remaining CCDD recordings to create an additional database (CCDD-Extra) which was
never seen in the training phase of our DL architecture.

1. Chinese Cardiovascular Disease Database (CCDD): is composed of 193,690 12-lead
ECG datasets collected and annotated by 2 cardiologists [95–97]. Only 943 complete
annotated recordings are publicly available. The positions of the QRS complexes,
onsets, peaks, offsets for P and T-waves were provided. Among the 943 recordings,
the first 251 recordings are usually selected by researchers in their experiments, since
the corresponding annotations were made following the same protocol [94]. Based
on the set segment size and stride, 753 windows with a total of 3973 R-peaks were
obtained and used in our experiments. To appropriately evaluate the proposed
approach and conduct an objective comparison with other methods, few adaptations
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of the annotations of QRS complexes were required. In the first and/or last cycles
of the recordings, a few QRS complexes were not annotated. We discarded them,
considering only annotated cycles. All samples located inside a QRS interval were
annotated, while the proposed approach required only one R-peak location. A k-
means algorithm was hence applied to extract one precise R-peak location per QRS
interval after setting the number of R-peaks. Figure 4 illustrates a 12-lead ECG
recording example of the CCDD database.

Figure 4. A 12-lead ECG recording example of the CCDD database.

2. Lobachevsky University Electrocardiography Database (LUDB): is composed of 200
12-lead ECG recordings with a duration of 10 s, and a sampling rate of 500 Hz,
recorded using a Schiller Cardiovit AT-101 cardiograph (Schiller AG, Baar, Switzer-
land) and released on the PhysioNet Website in 2020. It features a large variety of
QRS morphologies, from healthy volunteers to patients with different cardiovascular
diseases, some of them with pacemakers. All boundaries and peaks of P-waves, QRS
complexes and T-waves were manually annotated by cardiologists for each of 12 leads
independently. We considered the annotations of lead II in our experiments. Based
on the set segment size and stride, 400 windows with a total of 1831 R-peaks were
used. In the first and last cycles of the recordings, some R-peaks were not annotated.
We discarded them, considering annotated cycles only during the evaluation of the
proposed approach. Figure 5 illustrates a 12-lead ECG recording example of LUDB.

Figure 5. A 12-lead ECG recording example of the LUDB database.

3. St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database (IN-
CART): is a public 12-lead ECG database sampled at 257 Hz and released on the
PhysioNet Website in 2008. It comprises 75 half-hour recordings extracted from
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32 Holter recordings which were collected from patients undergoing tests for is-
chemia, coronary artery disease, conduction abnormalities, and arrhythmia. Based
on the set analysis window size and stride, 32,925 windows with a total of 175,907 R-
peaks were used in our experiments. Annotations were automatically produced by
using an algorithm that detected beat annotations from all 12 leads in the middle of
the QRS complexes, and then a few automatic annotations were corrected manually.
Hence, there are misaligned annotations in INCART. Figure 6 illustrates a 12-lead
ECG recording from INCART.

Figure 6. A 12-lead ECG recording from the INCART database.

4. CCDD-Extra: is a set of 103 recordings pseudo-randomly selected from the 692
(943 − 251) remaining recordings of the CCDD database. Annotations of these record-
ings followed the same protocol as CCDD (i.e. extracting the positions of R-peaks with
the k-means algorithm). Based on the set analysis window size and stride, 309 win-
dows with a total of 1616 R-peaks were used. Figure 7 illustrates a 12-lead ECG
recording example of the CCDD-Extra database. CCDD-Extra was used to evaluate
the performance of our DL architecture in a cross-database validation protocol.

Figure 7. A 12-lead ECG recording example of the CCDD-Extra database.

Table 1 summarizes the features of the four databases used in our experiments.
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Table 1. Key features of the four databases used in our experiments.

Database
Sampling
Frequency

(Hz)

Recording
Duration

No. of
Recordings

No. of
Analysis
Windows

No. of
R-Peaks

CCDD 500 ~10 s 251 753 3973
LUDB 500 10 s 200 400 1831
INCART 257 30 min 75 32,925 175,907
CCDD-Extra 500 ~10 s 103 309 1616

Total 629 34,387 183,327

4.2. Experimental Protocol

After converting the ECG recordings into 3D VCG, a set of thorough experiments were
conducted to evaluate and validate the proposed approach. They followed the experimental
protocols described below:

1. Leave-one-out cross-validation protocol: was applied to the CCDB, LUDB, and IN-
CART databases independently. One recording was extracted for the evaluation phase,
while the remaining recordings of the same database were used for the training phase.
For instance, in the case of the INCART database, 74 recordings were used to train our
DL architecture, and the 75th remaining one was used for evaluating its performance.
Then, an average of the 75 different evaluation experiments was computed.

2. Cross-database validation protocol: was carried out by evaluating the proposed
approach on a database different from those used in the training phase to demon-
strate its generalization capacity [112,113]. In our experiments, all 526 recordings
(251 + 200 + 75) of CCDB, LUDB, and INCART databases were used to train the DL
architecture, while the 103 recordings of CCDD-Extra were used for its evaluation.
A total of 34,078 windows and 181,711 R-peaks were used during the training phase.

For both protocols, the same hyperparameters, summarized in Table 2, were selected.
For stochastic optimization, an Adam optimizer was used with an initial learning rate of
0.001 and a batch size of 64. Weights were randomly initialized with the Xavier uniform
distribution. Training was stopped early only when no more improvement in the cross-
entropy loss value was recorded for at least 10 epochs (i.e. patience of 10).

Table 2. Selected hyperparameters for training the DL architecture.

Hyperparameter Value

Optimizer Adam
Loss function Binary cross entropy
Weight decay None
Learning rate 0.001
Number of epochs 500
Patience 10
Batch size 64

Python version 3.10 was used to implement the proposed approach, and Keras ver-
sion 2.9 was employed for training the DL architecture. Our experiments were carried out
on a physical computer equipped with 2.4 GHz Intel® Core™ i9-12900F having 32 GB of
RAM and a single NVIDIA® GeForce RTX™ 3060 with 12 GB of RAM. Google Colaboratory
servers were also used (Tesla T4 GPU with 16 GB of RAM). The training phase was pro-
cessed using CUDA kernels, while the testing phase was implemented with a single CPU.
Training on all data from CCDD, LUDB, and INCART took 7274 s on the computer (resp.
4297 s on Google Colaboratory servers). As an example, testing the proposed approach
on a ~13 s recording (6484 samples at 500 Hz) of CCDD-Extra took 1.15 s on the computer
(0.555 s on Google Colaboratory servers) to detect 13 R-peaks.
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Figure 8a–c show the loss curves obtained using the leave-one-out cross-validation pro-
tocol. Figure 8d shows the loss curve obtained using the cross-database validation protocol.

(a) (b)

(c) (d)

Figure 8. Loss curves obtained using the leave-one-out cross-validation protocol on the training data
from CCDD (a); LUDB (b); and INCART (c); loss curve obtained in the cross-database validation
protocol using all 526 recordings of the three databases (d).

All 4 learning curves in Figure 8 demonstrate a good fit as they decrease to a point of
stability (500 epochs for both CCDD and LUDB, 78 epochs for INCART, and 479 epochs for
the three databases). Moreover, the DL architecture trained on INCART shows superior
loss convergence properties (i.e. speed) compared to using CCDD or LUDB. This can be
explained by the fact that data in INCART were most representative to suitably train a DL
architecture: its statistical characteristics were correctly captured. Indeed, the number of
annotated R-peaks in INCART is ~44× (resp. ~96×) larger than in CCDD (resp. LUDB). Fur-
thermore, due to the data heterogeneity yielded by combining the three different databases
during training, the minimum loss value (0.00781) is higher in the cross-database validation
protocol compared to the loss values obtained in the leave-one-out cross-validation protocol
(Figure 8).

To validate the 3D VCG approach, the performances of individual lead-by-lead train-
ings of the DL architecture were assessed, first using representative ECG leads (I, II, and V1
to V6), and second, using individual 3D VCG vectors (X, Y, and Z). Multi-lead trainings
were performed using all 8 ECG leads (I, II, and V1 to V6) as input and the 3 best leads
from the first experiment.

4.3. Performance Evaluation Metrics

To quantify the performance of the proposed approach and compare it with other
methods, three standard performance evaluation metrics, defined below, were adopted [6].
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1. Recall (or sensitivity): evaluates the rate of defined R-peak annotations that are
correctly predicted.

Recall (%) =
TP

TP + FN
× 100 (3)

2. Precision (or positive predictive value): evaluates the rate of predicted R-peaks that
are correctly matched to defined annotations.

Precision (%) =
TP

TP + FP
× 100 (4)

3. F1-score: corresponds to a harmonic mean of recall and precision.

F1-score (%) =
2 × Precision × Recall

Precision + Recall
× 100 (5)

where TP, FN, and FP denote the number of true positives, false negatives, and false
positives, respectively. Since the maximum duration of QRS complexes is 150 ms, a toler-
ance of ±75 ms of the annotated R-peak location was considered when counting TP, FN,
and FP [59,93,101].

5. Results

The performance of the proposed approach was evaluated on 4 different public 12-lead
ECG databases.

5.1. Qualitative Results

Figures 9–12 illustrate the R-peaks detected using the proposed approach on recordings
from CCDD, LUDB, INCART, and CCDD-Extra, respectively. Detected R-peaks are marked
with red triangles.

Figure 9. Qualitative results: recording from the CCDD database showing the 3D VCG vectors (X, Y,
and Z) and R-peak detected by the proposed approach in the leave-one-out cross-validation protocol.
The first and last R-peaks were ignored since there were no annotations.
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Figure 10. Qualitative results: recording from the LUDB database showing the 3D VCG vectors (X, Y,
and Z) and R-peak detected by the proposed approach in the leave-one-out cross-validation protocol.
The first and last R-peaks were ignored since there were no annotations.

Figure 11. Qualitative results: recording from the INCART database showing the 3D VCG vectors (X,
Y, and Z) and R-peak detected by the proposed approach in the leave-one-out cross-validation protocol.

Figure 12. Qualitative results: recording from the CCDD-Extra database showing the 3D VCG vectors
(X, Y, and Z) and R-peak detected by the proposed approach in the cross-database validation protocol.

Visual inspection of the qualitative results revealed that the proposed approach for
detecting R-peaks is reliable and robust. First and/or last cardiac cycles were sometimes not
annotated in some ECG recordings and were discarded from the analysis, as can be seen in
Figures 9 and 10. Figure 11 demonstrates that the proposed approach succeeded in detecting
the R-peak located between 8 s and 9 s, despite a different QRS morphology compared with
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its predecessors and successors. In Figure 12, the proposed approach detected all R-peaks
from an ECG recording of the CCDD-Extra database, never seen during the training phase.
This reproducible result, along with quantitative results described below, confirmed that
the proposed approach has the capacity to be generalized.

To illustrate some failed detections, a recording from the INCART database shows
noice-induced FP in Figure 13. Another source of FP is pacemaker patients (LUDB).
However, these errors were limited as shown in the quantitative analysis. Missed detections
(FN) are mostly related to pathological QRS morphologies that are less often represented in
the training datasets. They were mostly seen in CCDD and INCART databases.

(a) (b)

Figure 13. Illustration of a false R-peak detection (FP) when applying the proposed approach on a
noisy recording from the INCART database: (a) 12-lead ECG; (b) 3D VCG.

5.2. Quantitative Results

Since a visual assessment of the effectiveness and robustness of a method is inherently
subjective, we evaluated the accuracy of the locations of detected R-peaks by computing
the three metrics described in Section 4.3. Numbers of TP, missed beats (FN), and false
detections (FP) are reproduced when relevant.

5.2.1. Quantitative Results on CCDD, LUDB, INCART, and CCDD-Extra Databases

In the leave-one-out cross-validation protocol, the proposed approach produced results
with recall ranging from 99.39% to 99.84% and precision ranging from 99.88% to 100.00%
(Table 3). In the cross-database validation protocol, the proposed approach produced
results with recall of 99.41% and precision of 99.89% (Table 4).

Table 3. Quantitative results on CCDD, LUDB, and INCART databases using the leave-one-out
cross-validation protocol.

Database TP FN FP Recall Precision F1-Score

CCDD 3946 27 0 99.39 100.00 99.69
LUDB 1827 4 2 99.75 99.88 99.80
INCART 175,631 276 16 99.84 99.99 99.91

Average 99.66 99.96 99.80

Table 4. Quantitative results on the CCDD-Extra database using the cross-database validation protocol.

Database TP FN FP Recall Precision F1-Score

CCDD-Extra 1606 10 2 99.41 99.89 99.64
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5.2.2. Training on 3D VCG vs. Single Lead, Single VCG Vector, Three Best Leads,
or Eight Leads

The DL architecture was trained on 3D VCG data and could also be trained on a
different number of leads, extracted or reconstructed from the 12-lead ECG recordings.
Four different experiments were carried out, using the leave-one-out cross-validation
protocol and the INCART database. Results are summarized in Table 5.

Table 5. Quantitative results on the INCART database using the leave-one-out cross-validation
protocol and different inputs (single lead, single VCG vector, or multiple leads); 03-leads: II, V2,
and V5; 08-leads: I, II, and V1 to V6.

Database Input TP FN FP Recall Precision F1-Score

INCART

Single lead

I 174,227 1680 606 99.12 99.72 99.40
II 175,516 391 46 99.77 99.97 99.87
V1 171,071 3990 30 97.42 99.98 98.57
V2 174,046 1861 33 98.95 99.98 99.44
V3 175,025 882 4604 99.48 99.09 99.10
V4 174,845 1062 4743 99.40 98.77 98.93
V5 175,241 666 26 99.62 99.99 99.79
V6 174,621 1286 2513 99.34 99.17 99.23

Single VCG vector
X 175,602 305 40 99.82 99.98 99.90
Y 175,457 450 36 99.74 99.98 99.86
Z 174,770 1137 38 99.39 99.98 99.68

Multiple leads 03-leads 175,514 393 9 99.77 100.00 99.88
08-leads 174,274 1633 25 99.14 99.99 99.55

3D VCG X, Y, and Z 175,631 276 16 99.84 99.99 99.91

In the first and second experiments, the DL architecture was trained on one lead/vector
at a time. Independent leads (I, II, and V1 to V6) and 3D VCG vectors (X, Y, and Z) were
used. The testing of the obtained models, following the leave-one-out cross-validation
protocol, consisted in 75 × (8 + 3) trainings and as many experiments.

None of the models trained on independent ECG leads (I, II, and V1 to V6) out-
performed recall or precision of the DL architecture trained on combined 3D VCG data.
In single lead training, recall and precision were highest with leads II, V2, and V5.

When using individual X, Y, and Z vectors for training, results were good, with recall
ranging from 99.39% to 99.82% and a precision of 99.98%. It was interesting to see that
models trained on the X, Y, and Z vectors were on par with the most effective individual
leads from the experiments above, with X and Y vectors providing slightly better results.
The 3D VCG trained model outperformed any of the models trained on individual X, Y,
and Z vectors.

A third experiment, called the 03-leads experiment, consisted of training the DL
architecture with leads II, V2, and V5 combined. These leads were chosen because they
provided the best results in the first experiment. The 03-leads experiment demonstrated a
lower number of FP than the 3D VCG trained model (9 vs. 16). However, a larger number
of FN were observed (393 vs. 276). Comparing the performances of the 03-leads experiment
with those of the 3D VCG trained model, recall was 99.77% vs. 99.84%, and precision
100.00% vs. 99.99%.

A fourth experiment, called the 08-leads experiment, consisted of training the DL
architecture with the combination of all 8 independent leads. The 08-leads experiment
demonstrated a larger number of FP (25 vs. 16), and the number of FN were 6× higher
(1633 vs. 276). Comparing the performances of the 08-leads experiment with those of
the 3D VCG trained model, recall was 99.14% vs. 99.84%, and precision was 99.99% in
both cases.
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5.2.3. Comparison with the PT Algorithm

To compare our results with the PT algorithm, we selected an open-source imple-
mentation from [114]. Results from PT were compared with the results of the proposed
approach in the leave-one-out cross-validation protocol (Table 6).

Table 6. Comparison of the performances of the proposed approach with the PT algorithm (single
lead) with the leave-one-out cross-validation protocol.

Database Method Lead TP FN FP Recall Precision F1-Score

CCDD PT algorithm

I 3930 43 60 98.99 98.72 98.58
II 3956 17 40 99.61 99.20 99.33
V1 3926 47 52 99.01 98.95 98.72
V2 3967 6 40 99.85 99.09 99.41
V3 3966 7 65 99.86 98.71 99.16
V4 3944 29 52 99.21 98.98 98.94
V5 3954 19 15 99.53 99.61 99.53
V6 3971 2 5 99.95 99.86 99.91

Average 99.50 99.14 99.20

Proposed approach 3946 27 0 99.39 100.00 99.69

LUDB PT algorithm

I 1812 19 168 99.16 91.70 95.00
II 1817 14 153 99.34 92.36 95.42
V1 1816 15 160 99.09 92.23 95.28
V2 1817 14 148 99.21 92.45 95.42
V3 1829 2 192 99.89 91.54 95.11
V4 1827 4 138 99.78 92.98 96.04
V5 1819 12 132 99.33 92.88 95.84
V6 1806 25 144 98.81 92.37 95.31

Average 99.33 92.31 95.43

Proposed approach 1827 4 2 99.75 99.88 99.80

INCART PT algorithm

I 167,264 8643 11,581 95.77 93.83 94.65
II 171,920 3987 2660 97.92 98.40 98.02
V1 173,863 2044 1333 98.89 99.34 99.04
V2 174,373 1534 954 99.15 99.46 99.27
V3 171,817 4090 1117 97.85 98.48 97.91
V4 169,830 6077 1210 96.80 98.56 97.26
V5 172,818 3089 776 98.38 99.48 98.82
V6 170,312 5595 844 97.10 98.62 97.58

Average 97.73 98.27 97.82

Proposed approach 175,631 276 16 99.84 99.99 99.91

Regarding missed detections (FN) and recall, the PT algorithm performance was
superior to the proposed approach in several leads (II, V2, V3, V5, and V6) for CCDD, in one
lead (V3) for LUDB, and was inferior in all leads for INCART. Regarding false detections
(or FP) and precision, the PT algorithm performance was inferior to the proposed approach,
regardless of the chosen lead. Average PT values of recall were comparable or inferior to
the proposed approach (97.73% to 99.50% vs. 99.39% to 99.84%). Average PT values of
precision were always inferior to the proposed approach (92.31% to 99.14% vs. 99.88% to
100.00%).

Results from PT were also compared with the results of the proposed approach in
the cross-database validation protocol (Table 7). This is more fitting than the previous
comparison as in both cases, the algorithms used to analyze the data were not previously
exposed to them. The PT algorithm outperformed the proposed approach in recall in all
leads except V6 (99.84% vs. 99.41%). However, its precision was inferior, regardless of the
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chosen lead (98.42% vs. 99.89%). The two best leads for precision were leads II and V4
(98.96%), exhibiting 16 FP vs. 2 for the proposed approach.

Table 7. Comparison of the performances of the proposed approach with the PT algorithm (single
lead) with the cross-database validation protocol (i.e. after training on CCDD, LUDB and INCART
databases).

Database Method Lead TP FN FP Recall Precision F1-Score

CCDD-Extra PT algorithm

I 1616 0 68 100.00 97.08 98.30
II 1615 1 16 99.96 98.96 99.44
V1 1615 1 19 99.96 98.77 99.34
V2 1615 1 18 99.96 98,84 99.38
V3 1614 2 41 99.91 98.06 98.83
V4 1615 1 16 99.96 98.96 99.44
V5 1616 0 17 100.00 98.90 99.43
V6 1599 17 20 98.99 97.75 98.35
Average 99.84 98.42 99.06

Proposed approach 1606 10 2 99.41 99.89 99.64

5.2.4. Comparison with Other Methods

In the literature, few R-peak detection methods were evaluated using the same
databases. We selected recent methods to compare their performances with ours [71,94,115].

In CCDD, the hybrid method from Han et al. [94] outperformed the proposed approach
in recall (99.99% vs. 99.39%), but its precision was inferior (99.45% vs. 100.00%) (Table 8).

Table 8. Comparison of the performances of the proposed approach with a state-of-the-art method in
the CCDD database.

Database Method Recall Precision F1-Score

CCDD
Han et al. [94] 99.99 99.45 99.71
Proposed approach 99.39 100.00 99.69

In LUDB, the classical algorithm from Chen et al. [71] outperformed the proposed
approach in recall (100.00% vs. 99.75%) and was equivalent in precision (99.86% vs. 99.88%)
(Table 9).

Table 9. Comparison of the performances of the proposed approach with a state-of-the-art method in
the LUDB database.

Database Method Recall Precision F1-Score

LUDB Chen et al. [71] 100.00 99.86 99.92
Proposed approach 99.75 99.88 99.80

In INCART, the performance of the classical algorithm from Schmidt et al. [115] was
inferior to the proposed approach both in recall (99.43% vs. 99.84%) and in precision
(99.91% vs. 99.99%) (Table 10).

Table 10. Comparison of the performances of the proposed approach with a state-of-the-art method
in the INCART database.

Database Method Recall Precision F1-Score

INCART Schmidt et al. [115] 99.43 99.91 99.66
Proposed approach 99.84 99.99 99.91



Sensors 2023, 23, 2288 20 of 29

6. Discussion

This work proposes a DL-based approach to detect R-peaks. The novelty of the
proposed approach consists in using reconstructed 3D vectorcardiogram (VCG) leads [100]
as input instead of single or multiple ECG lead(s). A 3D VCG is obtained by a linear
combination of multiple ECG leads. It reduces the computational complexity (i.e. memory
and time requirements) both for training and inference compared to using all available
leads. Using a 3D VCG as input during the training phase of a DL architecture has the
advantage that both strong temporal correlation features and fine morphological features
are extracted. Indeed, a 3D VCG provides a calibrated maximal QRS vector within a specific
timing. In contrast, when using multiple ECG leads, each scalar lead has its own sensitivity
and timing for the R-peak maximum, which could bias data and subsequently results [116].

The proposed approach has an enhanced precision compared to other methods.
The number of false detections (FP) was low without the use of any post-processing
step. The number of missed beats (FN) yielded a recall on par with or better than published
classical algorithms, DL architectures, or hybrid approaches. Without any post-processing
step, the proposed approach outperformed the PT algorithm in precision, dividing the
number of FP by a factor eight or more. Reducing FP has an important implication when
synchronizing diagnostic or therapeutic devices which rely on a systolic trigger, and as-
sume the heart to be in a given phase to perform certain tasks. In CMR, triggering data
acquisition by a false detection could lead to severe imaging artifacts impairing proper
image interpretation [117,118].

The proposed approach could have applications in automated measurements of clini-
cal features [119]. For instance, heart rates and heart rate variability measurements were
computed based on R-peak detections, using the leave-one-out cross-validation protocol in
the INCART database [120]. The obtained values are almost identical to values obtained
from ground truth annotations (see Table 11). This is further evidence of the clinical validity
of the proposed approach.

Table 11. Heart rates and heart rate variability measurements derived from R-peak detections
using the leave-one-out cross-validation protocol in INCART: AVG-HR: average heart rate; SD-HR:
standard deviation of heart rates; RMSSD (ms): square root of the mean sum of squares of differences
between adjacent RR intervals.

AVG-HR (Beats/min) SD-HR (Beats/min) RMSSD (ms)

Ground truth 82.18 17.45 200.84
Proposed approach 82.07 18.35 201.63

The proposed approach was thoroughly evaluated on multiple 12-lead ECG databases
in leave-one-out cross-validation and cross-database validation protocols. The cross-
database validation protocol, exposing the proposed approach to data never seen in the
training phase, demonstrated a tiny drop in performance: recall dropped from 99.66% to
99.41% and precision from 99.96% to 99.89%. This shows the robustness of our approach,
acquired from training on a large number of ECG cycles (181,711). However, the databases
used for training were unbalanced. The INCART database features a larger number of
ECG cycles (175,907) than LUDB (1831) or CCDD (3973); it also has less patients: 75 vs. 200
(LUDB) or 251 (CCDD). More balanced ECG databases may further improve the results
and robustness of the trained model. It could also provide more insights to fine-tune the
model hyperparameters. The CCDD-Extra database used in the cross-database validation
protocol was not completely independent from the CCDD database used for training. It
was acquired using the same technique as CCDD, yet consisted of different patients. Testing
the proposed approach on ECG databases acquired with different parameters may provide
additional insights on its accuracy.

The hybrid method from Han et al. [94] and the classical algorithm from Chen et al. [71]
outperformed the proposed approach. They used pre-processing or post-processing steps.
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Han et al. applied a post-processing step based on electrophysiology knowledge, after com-
bining CNN and LSTM to detect QRS complexes [94]. It reduced the number of missed
and false detections at the cost of an increased complexity. Chen et al. applied several
pre-processing steps, including an adaptive PT algorithm, to determine the ranges and
locations of QRS complexes in each lead and to remove false QRS locations taking other
leads into account [71]. The recall of the proposed approach was comparable but slightly
inferior to these two methods; however, its precision exceeded theirs.

Qualitatively examining the results, we observed that missed beats (FN) were mostly
attributed to extrasystoles. This can be explained by the insufficient statistical represen-
tations of such QRS morphologies in the training databases. Zahid et al. identified this
behavior and used a data augmentation strategy, generating additional extrasystole seg-
ments to address issues related to limited training examples [93]. False detections (FP),
although extremely rare, usually happened in situations of noise, artifacts, or pacemaker
pulses. They could be dealt with in a post-processing step, which could also reduce the
number of FN. However, avoiding any post-processing is an advantage, especially for
applications requiring a low latency (e.g., CMR).

Our hypothesis was to use a 3D VCG reconstruction scheme to avoid the arbitrary
decision of selecting which lead(s) to use. A 3D VCG can be reconstructed from many ECG
acquisition schemes and provides increased robustness to a large variety of changes, such
as errors in positioning electrodes, artifacts, acquisition protocols, and devices. Results
show that a 3D VCG is an optimal strategy in our application. The experiments resulted
in one unexpected outcome that 3D VCG is even better than using all eight independent
leads from the full ECG signal. A possible, although partial, explanation is that the noise or
artifacts from individual leads are smoothed out in a 3D VCG. Another one is the weighting
of individual leads: in a 3D VCG, the precordial leads are captured in the Z vector with a
weight of 2/3, whereas in the 08-leads experiment, their weight is 6/8. Scaling down on
the number of dimensions is an advantage to reduce training and testing complexity. A 3D
VCG seems to provide a good compromise and avoids the arbitrary decision to pick the
best lead(s). It can potentially improve the automaticity of detecting R-peaks in a variety of
use cases.

Another hypothesis was to define a single QRS label (or timing) representative of
the onset of ventricular systole. We used the expert-validated annotations from lead II as
the gold standard. This choice may have had a negative impact on the accuracy of the
PT algorithm in other ECG leads. It could also have reduced the performance of the DL
architecture after training on other ECG leads. Finally, it may explain why 3D VCG vectors
X and Y have the highest accuracy. To enhance the performance of our DL model, a refined
timing of R-peaks could be modeled on a lead-by-lead basis.

To demonstrate both robustness and generalization capacity of the proposed approach
in detecting premature ventricular contraction or supra-ventricular premature beats, we
evaluated its performances on the testing set of the MIT-BIH arrhythmia database (DS2)
after training it using lead II data from INCART only and compared them with other
state-of-the-art R-peak detection methods (Table 12).

The DL architecture used in this work, a modified U-Net, has the potential to run
with low latency [93]. It could be implemented on a powerful computer or on a GPU-
capable edge device, and run in quasi real-time. Since it does not require CPU intensive
pre-processing nor post-processing steps, it could be applicable in a number of use cases.
Furthermore, adapting the training database, and thus the trained model, could provide
similar accuracy in various use cases. One example of use cases is CMR, where the ECG
signal suffers from a magneto-hydrodynamic artifact [121,122]. This artifact could be added
to the training datasets. Other use cases featuring high noise could also be addressed by
adding similar noise features to the training datasets. A performance evaluation of the
impact of adding synthetic noise using a signal to noise ratio metric could be developed to
assess the robustness of the proposed approach [123].
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Table 12. Performances of some state-of-the-art R-peak detection methods using the MIT-BIH
arrhythmia database compared with our DL architecture. Top three lines: classical algorithms; bottom
three lines: DL-based architectures; Proposed approach*: our DL architecture trained using only lead
II data from INCART.

Database Method No. of R-Peaks Recall Precision F1-Score

MIT-BIH arrhythmia

Pan-Tompkins [30] 109,985 90.95 99.56 95.06
Pan-Tompkins++ [32] N/R 99.47 99.60 99.54
Hamilton and Tompkins [31] 109,267 99.69 99.77 99.72
Habib et al. [112] N/R 97.61 91.93 94.68
Zahid et al. [93] 109,475 99.85 99.82 99.83
Šarlija et al. [78] 49,712 99.81 99.93 99.86
Proposed approach* 49,712 99.74 99.15 99.44

7. Conclusions and Further Work

In this article, we propose a novel approach for detecting R-peaks based on training
a DL architecture with 3D VCG data, without pre-processing nor post-processing steps.
R-peak detection was approached as a segmentation task using the U-Net architecture
which was fed with normalized 3D VCG segments of durations ~4 s (2048 samples at
500 Hz). The proposed approach can be performed in ECG recordings of any practical
durations (e.g., from tens of minutes down to a few seconds) and is robust to low-quality,
noisy, or pathological signals acquired from different sensors. It is also robust to various
QRS morphologies.

Using the proposed approach, high performances were achieved in leave-one-out
cross-validation and cross-database validation protocols. Furthermore, false detections
(FP) and missed beats (FN) were significantly reduced compared to recent state-of-the-
art methods or the PT algorithm. This approach could be adapted for several use cases
and seems relevant to synchronize medical devices with R-peaks with a low latency.

In future work, we intend to embed the proposed approach on different hardware
backends (e.g., Raspberry Pi, Jetson Nano, . . . ), and to investigate some optimization tools
(e.g., TensorRT, Triton inference server, . . . ) for real-time inference on edge platforms.
Furthermore, data augmentation strategies could enhance the performance of the proposed
approach in some high noise use cases.
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FP False positive
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LUDB Lobachevsky university electrocardiography database
ML Machine learning
NN Neural network
ONN Operational neural network
PLSV Linear regression-based transformation for deriving the P-waves
QLSV Linear regression-based transformation for deriving the QRS complexes
RNN Recurrent neural network
SVM Support vector machine
TP True positive
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