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Abstract: Mobile crowdsensing (MCS) has been an emerging sensing paradigm in recent years, which
uses a sensing platform for real-time processing to support various services for the Internet of Things
(IoT) and promote the development of IoT. As an important component of MCS, how to design task
assignment algorithms to cope with the coexistence of multiple concurrent heterogeneous tasks in
group-oriented social relationships while satisfying the impact of users’ preferences on heterogeneous
multitask assignment and solving the preference matching problem under heterogeneous tasks, is
one of the most pressing issues. In this paper, a new algorithm, group-oriented adjustable bidding
task assignment (GO-ABTA), is considered to solve the group-oriented bilateral preference-matching
problem. First, the initial leaders and their collaborative groups in the social network are selected
by group-oriented collaboration, and then the preference assignment of task requesters and users is
modeled as a stable preference-matching problem. Then, a tunable bidding task assignment process
is completed based on preference matching under budget constraints. Finally, the individual reason-
ableness, stability, and convergence of the proposed algorithm are demonstrated. The effectiveness of
the proposed algorithm and its superiority to other algorithms are verified by simulation results.

Keywords: mobile crowdsensing; heterogeneous multitasking; group-oriented; preference matching

1. Introduction

In recent years, the popularity and rapid development of smart devices (cell phones,
tablets, sports bracelets, etc.) and the breakthroughs achieved by smart hardware have
led to the integration of numerous powerful perceptrons in end devices, such as AI chips,
cameras, microphones, etc. [1]. The Internet of Things (IoT) connects devices and equip-
ment through sensing technology to achieve a leap forward in interconnecting things and
objects [2], driving the development of mobile crowdsensing (MCS) under a large-scale
sensing network [3]. As the development of MCS advances, researchers have come to
acknowledge that it can significantly enhance the current approach of processes such as
environmental monitoring and sensing [4,5]. Thus, investigating MCS technology is im-
perative. Essentially, MCS is a new mobile computing paradigm that combines IoT and
perception technologies: from the perception point of view, the mobile crowdsensing net-
work divides the perception task into several subtasks, which are then assigned to a large
number of mobile users in the perception area for perception completion [6]. These mobile
entities can be human beings utilizing intelligent devices, as demonstrated in this paper, or
drones, or a coordination between human beings and drones for perception purposes [7].

The framework of a mobile group intelligence sensing system mainly contains three
parts: task requester, user and sensing platform. The platform or allocator assigns the
sensing tasks to the participating users for completion, and the data collection is usually
uploaded by the users back to the platform and the allocator, who does the integration
analysis and statistical processing after collecting the data [8–11]. Despite the numerous
benefits of MCS, the following must be considered to build a sustainable mobile group
intelligence sensing system: task assignment, incentive mechanisms, and user privacy
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and security [12,13]. Current research mainly focuses on either a single objective or the
integration of multiple objectives, such as combining incentive mechanisms with privacy
protection [14]. This paper particularly concentrates on task allocation.

In mobile group intelligence perception, the conflicting goals of task requesters to
maximize the quality of task completion within budget constraints and participants to
receive as many rewards as possible lead to a mismatch between task requesters and users
and affect their motivation. Most existing studies only consider optimizing system-level
goals, ignoring the needs and preferences of individual users. However, in a real mobile
crowdsensing environment, maximizing only the perceived quality [15], social welfare [16],
minimizing task cost [17] etc., users are not willing to give up their preferences to maximize
the system utility. Therefore, task assignment without considering user preferences can lead
to user dissatisfaction and affect future user engagement [18]. In addition, most existing
studies only focus on recruiting a sufficient number of independent individual users to
complete the task or simply clustering independent users based on task preferences [19],
without taking into account the relationships among users during the recruitment process,
which can impose high communication costs on the task [20]. However, in real-world
mobile crowdsensing environments, users are not independent individuals but groups
connected through social relationships, and users are more willing to cooperate with
social partners, especially in tasks that require privacy sharing. In addition, closer social
ties will accomplish collaborative tasks more effectively without incurring significant
communication costs [21–25].

To solve the task assignment problem in group social scenarios where users have pref-
erences, a heterogeneous task assignment mechanism under group grouping is described
based on stable matching, and user recruitment is accomplished for the MCS system using
many-to-many bilateral matching. The main contributions of this paper are summarized
as follows.

• The concept of influence increase is introduced to describe the selection of grouping in
the group social relations of the MCS system. When the grouping of users is completed,
the influence increase will result in a more even distribution of affected users, thus
increasing the diversity of users involved in the task.

• In order to reduce the cost of user selection, a collaborative group selection algorithm
based on leader initialization is proposed to make the cost under user grouping
significantly reduced based on group social user relationships.

• The task assignment problem in MCS systems is described as a bilateral matching
problem with social relationships among users. To solve the problem, we propose a
group-oriented adjustable bidding task assignment algorithm (GO-ABTA algorithm),
which can transform the problem of preferences possessed by users into a distributed
many-to-many resource trading problem. In addition, the algorithm ensures the
individual rationality of both task and user and achieves the maximum utility of the
system. The stability and convergence of the proposed algorithm, as well as its higher
effectiveness compared to existing algorithms, are demonstrated through simulation
experiments with real datasets, which improve the quality of task services.

The structure and sections of this paper are organized as follows. Section 2 describes
the related work, Section 3 presents the system model and problem description, and
Sections 4 and 5 explain the proposed algorithm, respectively. Section 6 analyzes the
experimental tests and results, and finally, a conclusion is presented in Section 7.

2. Related Works

The success of task assignment requires the involvement of a large number of users
and aims at achieving a good trade-off between task quality and task cost. Inspired by the
success of social networks (e.g., Facebook, WeChat, Twitter, etc.) in recent years, several
studies [26–30] have proposed task assignment mechanisms that recruit users with the help
of social networks. A novel task allocation algorithm is proposed in [26] that distributes
sensory tasks fairly to users while using the Social Internet of Things (SIoT) to assess the
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reputation level of each member of the network. A dynamic task allocation algorithm
for social recruiters was proposed in [27] to encourage users on the MCS platform to
spread tasks through social networks and use social networks to recruit employees to
complete tasks when the number of users is insufficient, while expanding the workforce.
Location-based social networks (LBSNs) to obtain crowdfunding data are used in [28]
to study the task allocation problem under influence maximization in LBSNs. A social
network-based task allocation algorithm for mobile crowdfunding is considered in [29],
rewarding users for providing perceptual data and their invitational behavior in mobile
user social networks to select users with high perceptual power. Influence propagation
on social networks to aid MCS user recruitment is used in [30], where task allocation
is targeted to maximize coverage. A subset of users is first selected as the initial task
participants, and then users who are influential and able to complete the task are recruited
as staff. Most of the above research has focused on the assumption that at least one full
candidate group provides enough candidate users to choose from (inconsistent with the
real world), without considering the problem of collaborative multigroup task cooperation
under the construction of compatible user groups with a large number of reachable users
in social networks.

Recently, several works [31–34] used preference matching to solve the matching
problem between task requesters and users, and stable matching theory was used in [31] to
obtain satisfactory matches between users and task requesters, with two different stability
conditions for user happiness defined. Finally, three efficient and stable task assignment
algorithms are proposed and their stability under four different MCS scenarios is discussed.
A distributed many-to-many matching model under task budget constraints was described
in [32] by being constructed to describe the interaction between a perceptual task and a
smartphone user. Then, a stable matching algorithm is designed to assign tasks to users
and determine their rewards. Finally, the proposed algorithm is shown to have several
desirable properties, including individual plausibility, stability and convergence. The
impact of user preferences and the space-time characteristics of the task on the long-term
utility of the employee is considered in [33] and a dynamic planning-based task allocation
algorithm is proposed to ensure user satisfaction with the task. A task allocation algorithm
based on stable matching under budget constraints is presented in [34], and rigorous
theoretical analysis and simulation validation are given. Most of the above works focus
on the assignment of homogeneous tasks and do not consider the preference-matching
problem in the case of heterogeneous tasks.

Therefore, there is an urgent need to study the problem of finding a heterogeneous
task assignment that satisfies both the perceived quality preferences of task requesters
and the profit preferences of workers under the coordination of different groups in order
to accomplish task assignment under group wisdom perception. The intrinsic goal is
to find a match such that each of the users is satisfied with their preference assignment,
while reducing the communication cost among all recruited users. Therefore, in this paper,
we design a stable heterogeneous task assignment algorithm based on stable matching
under budget constraints to solve the heterogeneous task assignment problem under group
socialization by considering users’ preferences and intergroup cooperation.

3. System Model

This section describes a scene in which an MCS platform publishes multiple heteroge-
neous tasks. The compliance used in this paper is summarized in Table 1. The platform
contains N heterogeneous tasks and M users, and assumes the presence of perceptual
resources of type L in the system, i.e., L = {1, 2, . . . , L}. The set of heterogeneous tasks
is denoted as T = {t1, t2, . . . , tN}, S = {s1, s2, . . . , sM} denotes the set of users involved
in the task, and it is assumed that user si has at most r0 type of perceptual resources and
user si has perceptual resources denoted as r(si) = {1, 2, . . . , r0}, r0 < L. Therefore, it is
important to recruit a sufficient number of users to participate in the perception task in
order to complete the perception task. However, task requesters usually have a limited
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budget, which limits the number of recruited participants to represent the task’s budget
Bktk, i.e., the bids (benefits) of all users who complete the task tk, not exceeding the budget
Bk. In order for users to obtain nonnegative utility, users si cannot be paid less than their
perceived cost. Therefore, each task requires different perceptual resources, e.g., an envi-
ronmental awareness task requires air pollutant concentration, while a traffic monitoring
task requires the speed and location of a car, and the set of perceptual resources required
for the task is denoted by r(tk)tk.

Table 1. Symbols of model parameters.

Symbols Description

T Task Settings
S User Group Settings
L Perceptual Resource Set
rsi User’s perceived resources si
Bk Mission budget tk
rtk Task tk Required Perceptual Resources
Gk Group k in the population
sk Group leader in the group Gk
T Sk A subset of the executable tasks in the group k
OGk Intra-group exchange costs for the k group in the population
IGk Intergroup exchange costs for the k group in the population
WG Communication costs between collaborative groups

q The perceived quality provided by the user performing the task
c Perceived costs incurred by users when performing tasks
p Pay for tasks performed by users
λ Equipment factor

pmax Maximum reward for users from the task
Uk

T Utility of the assignment tk
δi Bid reduction rate
IS
iK Communication costs between the user si and the group leader sk

Q∗ Completion of tasks by users in task collaboration groups
pm Sellers bid at m, relative to the task.
wm A group of buyers will send a bid package in round m.
SN Non-directional social networks

j Perceived quality provided by the user during the execution of the task sitk
F∗ The set of neighbor nodes of the current group leader
ΛS The current cost effectiveness of the user
CS The social cost of the user

As users under group socialization, the study of interuser relationships in quasi-static
scenarios can be obtained from the social network of the undirected social graph, where
the social relationships between users are represented in the undirected social network
SN = (U, E), where each edge Eij, represents a user si, with a user sj, with social relation-
ships. Moreover, when users historically perform perceptual tasks, social relations between
users can be obtained through cooperative relationships, and the communication cost
between users can be calculated as a monotonically increasing function of communication
distance [35–37]. The communication cost between users affects not only the quality of
task cooperation but also the choice of intergroup cooperation; therefore, the intragroup
communication cost is defined as the communication cost between the group leader and
all group members. Based on the above, different social relationships are organized into
different groups Gk (group leader is sk) and each group can perform a subtask, intragroup
communication cost is defined as T Sk O

G
k and intergroup communication cost is defined as

IGk . The sum of intergroup communication costs for collaborating on a task is defined as:

WG = ∑
Gk∈G

IGk (1)
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In general, different perceptual tasks running on different smart terminals will obtain
different perceptual quality due to the variability of smart terminals in hardware configura-
tion or perceptual location. The perception cost j is represented by the perceptual resources
q(i, j, k) provided by the user si while performing the perceptual task tk, and the perceptual
resources provided by the smart terminal for the task denoted by r(i, k) = r(si) ∩ r(tk),
then q(i, k) = ∑j∈r(i,k) q(i, j, k) denotes all the perceptual qualities provided by the user
si while performing the perceptual task tk. The perceptual quality can be quantified by
the coverage of the target area, the time to complete the task, etc. For each smart terminal,
users may incur different perceptual costs when engaging in different tasks due to the
diversity of tasks and the heterogeneity of resource requirements. Using c(i, j, k) to denote
the perceived resource cost j contributed by the user si in performing the perceived task,
then tkc(i, k) = ∑j∈r(i,k) c(i, j, k) denotes the total cost tk corresponding to the user si in
performing the task. In addition, p(i, k) represents the reward obtained by the user si for
participating in the task, while tk pmax(i, k) represents the maximum benefit obtained by
the user si from the task tk. The above information is known only to the user and not to
other users. In this case, the fairness of the competition is ensured and the privacy of both
buyers and sellers is protected to some extent.

The system model takes into account that each user can participate in multiple hetero-
geneous tasks, as shown in Figure 1.
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In addition, an open competition system is considered that allows each user to dy-
namically adjust the perceived bid after each failed task assignment to compete for more
tasks. To capture the interaction between task requestors and users, the model constructs
a distributed many-to-many resource transaction model in which task requestors act as
buyers of resources and users as sellers of resources. For simplicity, buyers and sellers are
used to exchange with tasks or task requesters and users or smart terminals, respectively.
After the buyer initiates a demand, the interaction between the buyer and the seller is
sequential, as described below.

(1) In each round, each user, as a seller, sends a bid package to interested buyers, which
includes the bid and the perceived quality of the executed task.

(2) After the buyers collect the bid packages from the sellers, each buyer selects the local
best of the temporarily accepted sellers within its budget constraint. Then, the buyer
sends its local decision to the selected seller and rejects the other sellers.
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(3) Upon receipt of the buyer’s decision, if the seller is rejected by the buyer, the seller
will decide in the next round of trading whether to lower its offer (b). If the seller is
accepted by the buyer, its offer remains unchanged in the next round of trading.

(4) Continue the above process until all sellers’ bid packages are accepted by their inter-
ested buyers, or all sellers are no longer able to lower their bids.

Based on the above distributed interaction model, the buyer eventually negotiates and
completes the transaction with the corresponding seller.

Before the problem is formed, the following variables are first defined.
w(si): The seller’s purchaser si, where w(si) ∈ T .
w(tk): Purchasers of tk are recruited by users of w(tk) ∈ S .
p(i, k): Buyer tk to Seller si, also expressed as Seller si from Buyer tk.
r(i, k): Perceptual resources provided by Seller si to Buyer tk, where r(i, k) ∈ r(si).
Use Pi = {p(i, k) | ∀tk ∈ T } for the revenue earned by the seller si for participating

in the task, then P = ∪si∈SPi for the revenue earned by all sellers, and P−i = P\Pi for the
total revenue earned by all sellers except si sellers.

Defining the utility of buyers and sellers, for each buyer tk ∈ T , the perceived quality
is mainly maximized by the recruited sellers w(tk), however, due to budget constraints, the
utility of buyers tk, can be defined as Uk

T :

Uk
T = ∑

si∈w(tk)
∑

j∈r(i,k)
q(i, j, k) (2)

Thus, the goal of tk is:

P1 : max
w(tk)

Uk
T(tk, w(tk), P)

s.t. C1 : ∑
si∈w(tk)

p(i, k) ≤ Bk
(3)

where Equation (3) indicates that the total revenue of the sellers recruited by the buyer
should not exceed the buyer’s budget, which ensures the buyer’s personal reasonableness.
Once a user si participates in a task tk, the perceptual data required for the task is collected
and uploaded tk. It is assumed that each task has a specific AoI [38] (area of interest, AoI),
i.e., the area where the task collects perceptual data. The quality of the perceptual data
required for the user si, to provide the task tk, is related to the distance from the user to
the task and the performance of the device. It is assumed that the quality of the user in the
region to complete the task is only related to the performance of the smart device, while
the quality of the data outside the AoI region is lower than that of the person in the region
and decreases with increasing distance. Specifically, for any si ∈ S and tk ∈ T , if user si is
involved in the task tk and user si is involved in the task tk, then the perceived quality of
q(i, j, k) provided by j is defined as:

q(i, j, k) =


λi, Di,k ≤ Dk

λi −
Di,k−Dk

Dmax−Dk
, Dk < Di,k ≤ Dmax

0, Di,k > Dmax

(4)

Since each smart device has different sensing and computing capabilities, not all
participants can provide the same level of perceptual quality. λi is the smart device
coefficient, which is related to the performance of the device. Di, k is the Euclidean distance
between the user and the task, Dk is the radius of the AoI region, and Dmax is the farthest
distance to perform the task.

For each seller si ∈ S , the goal is to maximize the net revenue earned by participating
in the task, i.e., the total bids ultimately earned minus the total perceived cost. The user si,
whose utility is denoted by Ui

S, is represented as follows.
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Ui
S = ∑

tk∈w(si)

(p(i, k)− c(i, k)) (5)

Thus, the goal of si is:

P2 : max
w(si)

Ui
S(si, w(si), Pi)

s.t. C2 : c(i, k) ≤ p(i, k) ≤ pmax(i, k)
C3 : w(si) ⊆ T

C4 : ∑
j∈r(i, k)

j ≤ r(si)

(6)

The goal is governed by three equations, where the seller’s cost is lower than the
seller’s bid and lower than the initial bid, which ensures the individual rationality of the
user. The user can only participate in the tasks that exist in the system, indicating that
the sum of perceptual resources provided by the user should not exceed the perceptual
resources they have.

When buyers collect bidding packs, each buyer chooses the temporarily accepted
seller under a budget constraint, which is the local optimum. This problem can be de-
scribed as the 0–1 backpack problem, which is a typical NP − hard, the capacity of the
backpack is the budget of the task tkBk, and suppose the task tk recruits n users, then
the bid of n users is pk = (p(1, k), p(2, k), . . . , p(n, k)), the perceived quality of n users
is qk = (q(1, k), . . . , q(m, k)), and the user’s choice is determined by the n metavariable
x = (x1, x2, . . . , xn), xi ∈ {0, 1}, 1 ≤ i ≤ n, where xi = 1 denotes the selection of this
seller and xi = 0 denotes the rejection of this seller.

Thus, the 0–1 backpack problem can be expressed as:

P3 : max
x

n
∑

i=1
q(i, k)xi

s.t. C5 :
n
∑

i=1
p(i, k)xi ≤ Bk

C6 : xi ∈ {0, 1}, 1 ≤ i ≤ n

(7)

The essence of solving the 0–1 backpack problem is by solving the variable (x1, x2, . . . , xn),
while the decision of the variable xi is whether to select a user or not. The 0–1 backpack problem
can be solved using dynamic programming (DP). On top of that, it is necessary to ensure that
the current user base on the social network can satisfy the requirements of each perceptual task
at minimal cost.

min∑
G

(
OG + WG

)
(8)

Definition 1. Mobile crowdsensing task assignment is a mapping between S and T , where W
represents the result of matching users and tasks: the following conditions are satisfied.

1© For any purchase of tk ∈ T , w(tk) ∈ S or w(tk) = ∅.
2© For any sale at si ∈ S , w(si) ∈ T or w(si) = ∅.
3© For any buyer and seller of < si, tk >, tk ∈ w(si), when and only when si ∈ w(tk).
4© For any seller of si ∈ S , if w(si) 6= ∅, w(si) = tk, then tk ∈ w(si), and p(i, k) ≥ c(i, k).
5© For any tk ∈ T , if w(tk) 6= ∅, then ∑

si∈w(tk)
p(i, k) ≤ Bk.

Condition 3© indicates that in a match, the task and the user are mutually matched; condition 4©
indicates that in a feasible match, the user is paid no less than his perceived cost for completing
the task, i.e., the user’s personal rationality is satisfied; and condition 5© indicates that in a feasible
match, the total payoff for the task does not exceed his budget.

In a practical MCS system, task requesters and users are usually rational individuals and
thus may discontinue tasks if better options are available to improve their utility. In this case, an
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effective task assignment mechanism should satisfy certain desirable properties, including individual
rationality, fairness, non-wastefulness, and stability [39], defined as follows.

Definition 2. A match between a buyer tk and a seller si is reasonable if

1© Each seller si, at w(si), to achieve a nonnegative utility, i.e., a nonnegative net profit, when
the user’s revenue is Pi

Ui
S(si, w(si), Pi) ≥ 0 (9)

2© Each buyer tk, at w(tk), to P, to achieve nonnegative utility, i.e., to match the seller.

Uk
T(tk, w(tk), P) ≥ 0 (10)

Personal reasonableness ensures that users are not unwilling to perform the tasks assigned to
them; personal reasonableness is a fundamental property of resource transactions, but it is different
from the maximum utility that the seller wishes to obtain. For example, obtaining nonnegative
utility ensures the seller’s personal reasonableness, while achieving maximum utility as defined in
Equation (6) is the seller’s goal.

To define fairness, this paper introduces the concept of blocking pairs.

Definition 3. Given a match W and a payment P, a seller si and a set of buyersM form a blocking
pair < si, M > if there exists a gain P̃i and the following conditions are satisfied.

1© The seller si, when the user is paid P̃i, prefers the buyer w(si) than the buyer setM, when the
payoff is Pi. That is, the following expression is satisfied.

Ui
S

(
si, M, P̃i

)
> Ui

S(si, w(si), Pi) (11)

2© Each buyer in the setM wants to include sellers in the set of matching sellers si under the
payment P̃i ∪ P−i instead of matching sellers under the payment P, even though it must evict
some sellers to make room for sellers si under the budget constraint. That is, for any buyer
tk ∈ M, there exists a set of sellers w′(tk), w′(tk) ∈ w(tk) to be evicted, resulting in

Uk
T

(
tk, w(tk)\w′(tk) ∪ {si}, P̃i ∪ P−i

)
> Uk

T(tk, w(tk), P) (12)

Blocking a match makes the matching result unstable because a seller si, can be more profitable
by matching the buyer setM, instead of the current match set w(si). An arbitrary buyer tk ∈ M,
can improve its perceived quality by evicting other seller sets, or it can improve its perceived quality
by recruiting a seller si.

Definition 4. Given a match W and a payment P, a seller si and a buyer setM form a wasted pair
< si, M > if P̃i exists and the following conditions are satisfied.

1© The seller si, when the user is paid P̃i, prefers the buyer w(si) than the buyer setM, when the
payoff is sPi. That is, the following expression is satisfied.

Ui
S

(
si, M, P̃i

)
> Ui

S(si, w(si), Pi) (13)

2© Each buyer in the setM wants to include the seller si in the set of matching sellers under
the payment P̃i ∪ P−i instead of matching the current matching seller under the payment
P, but does not need to evict any seller. That is, for any buyer tk ∈ M that meets the
following conditions

Uk
T

(
tk, w(tk) ∪ {si}, P̃i ∪ P−i

)
> Uk

T(tk, w(tk), P) (14)
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The waste pair makes task assignment results unstable because the buyer tk, can recruit another
seller si, within its budget constraints, to increase its utility, and this recruitment can also benefit
the seller si.

4. Grouping Mechanism

This section describes the grouping mechanism, including group leader initialization
and group selection.

Since different social relationships have uncertainty for leaders to choose their neigh-
bors, and different social and communication costs of users in the group will lead to
different cost–benefits of the group, in order to improve the effectiveness of leader selection,
we select users who share as much information as possible with other users in the group so-
cial network in terms of both the sensitivity of users in the social network and the diversity
of social network leaders. Moreover, selecting users who are more evenly distributed in the
group social network will also result in a more even distribution of affected users, avoiding
double counting the same communication and increasing the diversity of affected users.

Using the group leader initialization [40] algorithm, the group leader with the largest
increase in influence is iteratively selected and the increase in influence of the candidates
added to the set of group leaders is denoted as ∆Φ.

∆Φ(sk) = Φ(F∗ ∪ {Fk})−Φ(F∗) (15)

where the influence degree of active users is defined as Φ(si) and the increase in influence
degree of candidate users added to the leader set L is denoted as ∆Φ, where F∗ denotes
the set of neighborhood points of all users in the leader set L obtained in the previous
iteration. New users are continuously added by the group leader initialization algorithm
until the number of group leaders reaches a predefined threshold K or the unselected users
can no longer increase their influence. Group leaders are iteratively selected and added to
L. Specifically, the maximum increase in current influence is calculated and if the current
user is able to increase influence, i.e., ∆Φ(sk) > 0, it is added to L and removed from U.
The neighbor nodes of this group leader are added to F∗ with a predefined threshold of K
minus one; otherwise, the user is removed from S.

The specific implementation steps of the algorithm are shown in the following Algo-
rithms 1 and 2.

Algorithm 1: Initial leader selector Group leader initialization

Input: T ,S , F, K
Output: a set of L ⊂ S , |L|≤ K
Step 1: Initialization.
1. L− 0, F∗ − 0;
Step 2.
2. While K 6= 0 and S 6= 0; do
3: k∗ = arg max

sk∈S\L
∆Φ(sk)

4: if ∆Φ(sk) > 0, then
5: L− L ∪ {sk∗}
6: S − S\{sk∗}
7: F∗ − F∗ ∪ {Fk∗}
8: K = K − 1
9: else
10: S − S\{Sk∗}
11: end if
12:end while
13:return to the leader set. L
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Algorithm 2: Collaborative group selection

Input. T ,
{

rj

∣∣∣tj ∈ T
}

, Fk, cS , IS

Output: a group of users Gk
Step 1: Initialization.
1: Gk −∅, Q∗ −∅
Step 2.
2: Gk − Gk ∪ sk
3: for tj ∈ T ∩Qk do
4: rj − rj − 1
5: if rj = 0, then
6: Q∗−Q∗ ∪ tj

7: T −T \
{

tj

}
8: end if
9: end for
10:while T 6= ∅; and Fk 6= ∅; do
11: for si ∈ Fk do
12: if Qi

s ∩ T = ∅, then
13: Fk−Fk\{si}
14: else
15: calculate ΛS

i
16: end if
17: end for
18: si ∈ Fk18: For all ΛS

i , sort in a non-decreasing way.
19: si∗— has the least number of users ΛS

i
20: Gk−Gk ∪ si∗

21: Fk−Fk\si∗

22: for tj ∈ T ∩Qi∗ do
23: rj−rj − 1
24: if rj = 0, then
25: Q∗−Q∗ ∪ tj

26: T −T \
{

tj

}
27: end if
28: end
29: end while
30: return the user group: Gk

The selected group leader needs to find dependent neighbors in the intragroup social
network to form a group to complete heterogeneous multitasks in order to achieve good
cooperation among users and minimize the communication cost between the group leader
and neighbors. First, the group leader sk, selected by the group leader initialization
algorithm, is added to Gk to calculate the current uncompleted tasks and remove the tasks
from T that already satisfy the demand. The unsuitable users are filtered out at, and FkΛS

is computed for the qualified users.

ΛS
i =

αCS
i + (1− α)IS

iK∣∣QS
i −Q∗

∣∣ (16)

where the cost-effectiveness of the user is defined as the average cost of covering the
outstanding tasks, ΛS

i is the current cost-effectiveness of the user si, where CS
i denotes the

social cost of the user and si IS
iK denotes the communication cost between the user si and the

group leader. skQ∗ denotes all perceived tasks completed by the user in the task cooperative
group,

∣∣QS
i −Q∗

∣∣ denotes the number of incomplete task sets in the task cooperative group,
and the parameter α ∈ [0, 1] denotes the trade-off between the social cost of the user and
the communication cost between the user and the group leader Fk The users in ΛS are
sorted in nondescending order. The smallest user is selected and added to Gk, and removed
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from Fk. When there are no more outstanding tasks or no more neighbors to choose from,
the algorithm returns to the user group Gk.

5. Heterogeneous Multitasking Algorithm

In this section, we focus on designing an adjustable bid task allocation (ABTA) algo-
rithm and analyze it theoretically.

ABTA algorithm for heterogeneous multitask assignment.
Each user in an MCS system has different characteristics. In other words, they need

different ways of remuneration due to their different perceived resources. Traditional DA
algorithms [41] can produce stable matches for the universal admission problem, but the
algorithm becomes unstable for the heterogeneous and heterogeneous multitask assignment
problem in MCS. In addition, users allow each seller to gradually adjust their bids to the
buyer in order to win in the competition. In this case, buyers’ and sellers’ preferences are
not fixed in each round. In addition, the number of sellers accepted by each buyer is not
predetermined due to the buyer’s budget constraints. To solve these problems, we will
introduce a task assignment algorithm based on stable matching. Unlike the traditional DA
algorithm, sellers have “one chance to choose” and sellers can submit bids multiple times
and resubmit the updated bids to previously rejected buyers.

This section uses δi to denote the seller’s si reduction rate. In other words, each seller
si, as long as the utility is nonnegative, can reduce its bid by δi after each rejection by the
buyer. Assume that pm(i, k)si, representing the seller, has p1(i, k) = pmax(i, k), initially set
locally by the seller si, relative to the first round tk of the task m. Since users select the tasks
they participate in locally, they are not aware of other people’s bids and all interactions
take place between local sellers and buyers. In this way, each seller is unaware of everyone
else and each buyer is only aware of the bid packages they are interested in. This chapter
uses wm(si) to denote the set of buyers to whom si will send bid packages in the m round,
and wm(tk) to denote the set of sellers to whom tk will temporarily accept in the m round.
The ABTA algorithm operates as follows.

In the first m round, each seller si, selects a buyer in wm(si) and first calculates c(i, k)
and then based on wm(si) = {tk|pm(i, k) ≥ c(i, k), ∀tk ∈ T }r(i, k). Then, the calculation
is calculated based on q(i, k)r(i, k) and finally si sends a bid package to each buyer in
tkwm(si), where the bid package is the user’s bid pm(i, k) and perceived quality q(i, k).

After collecting the sellers’ bid packages, the buyer tk, selects the appropriate subset
of sellers wm(tk), and solves for the best overall perceived quality using the DP algorithm
under the budget constraint, i.e., maximizing their utility. Then, the buyer tk, temporarily
accepts the appropriate sellers wm(tk), and rejects the other sellers.

Upon receipt of buyer’s tk ∈ wm(si) decision, seller si has the following two options.
If si is rejected by tk and the current paid pm(i, k) is not less than its cost c(i, k), then the

bid for tk will be reduced in the next round, i.e., pm+1(i, k) = max{pm(i, k)− δi, c(i, k)}.
If si is accepted by tk, or if the current payment pm(i, k) is equal to c(i, k), the bid for

ti remains the same, i.e., pm+1(i, k) = pm(i, k).
Use f lagi = 0 to indicate that the seller’s si bid in this round is the same as the previous

round, and vice versa to indicate a different bid. If all users have the same bid as in the
m round, the transfer will be terminated at the end of the round, using m ∑

si∈S
f lagi = 0 to

indicate that the transaction is terminated.
If there are changed bids after the m round, i.e., pm+1(i, k) 6= pm(i, k), the above

process continues in the next round m + 1. The detailed steps of the task assignment
algorithm with adjustable bids are described below. The specific implementation steps of
the algorithm are shown in the following Algorithm 3.
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Algorithm 3: Stable task assignment algorithm with adjustable bids

Step 1: Initialization
1: m = 1, ∀si ∈ S , tk ∈ T , pm(i, k) = pmax(i, k), f lagi = 1
Step 2: Buyer and seller’s transaction phase
2: while ∑

si∈S
f lagi > 0 does

3: for si ∈ S do
4: first calculate r(i, k) = r(si) ∩ r(tk), then calculate c(i, k) and q(i, k) from r(i, k), then calculate
wm(si) = {tk | pm(i, k) ≥ c(i, k), ∀tk ∈ T }
5: if wm(si) 6= ∅, then
6: for ∀tk ∈ wm(si) do
7: the user si, sends the solicitation packages pm(i, k) and q(i, k) to the task. tk
8: end for
9: end if
10: end for
11: for tk ∈ T do
12: tk after collecting the bid packets sent by sellers, use wm(tk) to indicate the set of sellers for the
bid packets received at tk use the DP algorithm to select the sellers from wm(tk) and reject the
unselected sellers
13: end for
14: for ∀tk ∈ T , si ∈ wm(tk) do
15: if si, is rejected by tk and pm(i, k) > c(i, k), then
16: pm+1(i, k) = max{pm(i, k)− δi, c(i, k)}
17: else, if tk, or pm(i, k) = c(i, k) receives si, then
18: pm+1(i, k) = pm(i, k)
19: end if
20: f lagi = 0
21: if pm+1(i, k) 6= pm(i, k), then
22: f lagi = 1
23: end if
24: end for
25: m = m + 1
26: end while

According to the ABTA algorithm, after a finite number of rounds, the seller’s bid
will be accepted or reduced to cost by the buyer, which is the termination condition of the
ABTA algorithm. Thus, the algorithm eventually converges in finite time. both buyers and
sellers in the ABTA algorithm are individually rational. For each seller si, since it sends bid
packages only to buyers whose perceived cost does not exceed the bid price and whose
final payment must not be lower than the cost. Therefore, the seller utility achieved by
the proposed algorithm is nonnegative. Second, for each buyer tk, it will accept a set of
sellers within its budget in order to maximize its utility Uk

T(tk, w(tk), P) in each round.
Since the buyer cannot select any user during the matching process, the utility at this point
Uk

T(tk, ∅, P) = 0, the buyer’s final utility will not be less than 0. In summary, the algorithm
achieves individual rationality for both buyers and sellers.

In this paper, we use a counterfactual to prove the fairness of the algorithm. Given
the final matching result W, assume that the seller si, when the seller si forms a blocking
pair (si,M) with the buyer setM, then the seller P̃i has a gain. Then the following two
conditions must exist.

Ui
S

(
si, M, P̃i

)
> Ui

S(si, w(si), Pi) (17)

Uk
T

(
tk, w(tk)\w′(tk) ∪ {si}, P̃i ∪ P−i

)
> Uk

T(tk, w(tk), P) (18)

w′(tk) is the subset of sellers that tk excludes from w(tk), and since seller si was not
recruited by tk in the ABTA algorithm, its bid at si must equal its cost in the last round
of at k∗c(i, k). In addition, the buyer tk must prefer the seller in w(tk) to the other sellers.
Mathematically, the following result can be obtained.
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p(i, k) = pk∗(i, k) = c(i, k) (19)

Uk
T(tk, w(tk), P) > Uk

T
(
tk, w(tk)\w′(tk) ∪ {si}, P

)
(20)

If the buyer tk, accepts the seller si ‘s bid p̃(i, k), then there must be:

p̃(i, k) ≥ c(i, k) = p(i, k) (21)

Therefore, it is possible to obtain.

Uk
T
(
tk, w(tk)\w′(tk) ∪ {si}, P

)
≥ Uk

T

(
tk, w(tk)\w′′ (tk) ∪ {si}, P̃i ∪ P−i

)
(22)

where w′′ (tk) ⊆ w′(tk), can be obtained:

Uk
T(tk, w(tk), P) > Uk

T

(
tk, w(tk)\w′′ (tk) ∪ {si}, P̃i ∪ P−i

)
(23)

Therefore, the matching implemented using this algorithm does not form blocking
pairs, and the fairness of the algorithm is proven.

6. Simulation Results and Performance Analysis
6.1. Experimental Settings

In this section, the performance of the proposed algorithm is evaluated by simulating
a scenario of an MCS system using a real dataset [42,43] and by simulating candidate users
and their social relationships involved in a perception task using the Gowalla dataset. In
this case, a perception task can be defined as sensing traffic information or air pollution
levels in a specific area, and mobile users can participate in multiple tasks in a certain area.
The values of the simulation parameters are summarized in Table 2. The location of the
sensing task is randomly generated from a location close to the mobile smart terminal, and
the mobile smart terminal si can participate in the task tk as long as the distance between si
and tk does not exceed a threshold value Dmax. The distance of the task from the current
location of the smart terminal user is recorded and the execution cost c(i, j, k) is set based
on the perceived quality criteria provided by the user for each task [5, 10]. The initial
maximum bid set for each seller is [15, 20], which is higher than the task execution cost, to
ensure the individual reasonableness of the seller. To ensure that enough multiple users are
recruited for each task, the budget for each task is set at [175, 275]. The specific parameters
are listed below, and all methods were performed on MATLAB 2019a.

Table 2. Main simulation parameters.

Parameters Value Description

L 5–30 Types of perceived resources in MCS
r0 3–5 Types of perceptual resources owned by the terminal

c(i, j, k) 5–10 Cost of user participation in tasks sitk
Bk 175–275 Mission budget tk

pmax(i, k) 15–20 The user si, participated in the highest bid for the task tk
λi 6–10 Equipment factor

6.2. Performance Indicators

For each simulation, examples from the dataset were selected for simulation and the
following indicators were compared and analyzed.

1. Reward/Cost. This indicator ensures nonnegative personal utility for the user by
comparing the reward under matched outcomes to the cost of performing the task.

2. Budget/Total Payment. This indicator ensures that task personalization is not a
negative utility by comparing the task budget and its total payment to the user under
the task matching outcome.
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3. System Utility (Task Service Quality) with different number of users: this indicator
evaluates the performance of the number of users in each algorithm in optimizing
the system utility, which is verified by the gap between the algorithm and the system
optimal solution.

4. System Utility (Task Service Quality) with different number of tasks: this indicator
evaluates the performance of the number of tasks in each algorithm in terms of
optimizing the system utility, which is verified by the gap between the algorithm and
the system optimal solution.

6.3. Baseline Approaches

For comparison purposes, three comparison algorithms are introduced, namely the al-
gorithm for optimal system efficiency, the ASTA algorithm, and the greedy task assignment
(GTA) algorithm.

System Utility-Optimal algorithm: find a match that maximizes the quality of service
for the buyer. In this simulation, the system utility-optimal task assignment problem is
transformed into a 0–1 integer linear programming problem and solved using MATLAB.

ASTA [44] (approximate alliance stable task allocation, ASTA) algorithm: approximate
the alliance stable task allocation algorithm that considers a system model similar to this
paper and where the buyer has heterogeneous resource requirements.

GTA [45] greedy algorithm. A bipartite graph is built based on a list of user and
task preferences. The GTA algorithm always chooses the match with the highest weight
value under budget constraints in the best way and updates the budget of the task for each
selection until all edges are matched.

In the ASTA algorithm, the worker makes a matching request to the task in the order
of the preference list, and the requested task either accepts the worker directly as the budget
allows, or optimizes the current matching result by solving the 0–1 backpack problem. The
GTA algorithm, on the other hand, has the longest running time, which is consistent with
its time complexity being the highest among the three algorithms. Within all the algorithms,
our proposed algorithm has the highest percentage of stable matching pairs, and the GTA
algorithm does not take into account the stability of matching.

6.4. Complexity Analysis

The grouping mechanism of the GOABTA algorithm is based on leader initializa-
tion, and since the computation of the while-loop is at most O(S), its time complexity is
O
(
|S|2

)
.In Collaborative group selection, the computational overhead of computing the

current outstanding task is at most O
(
max

{∣∣QS
i

∣∣ : si ∈ Gk
})

, and the total complexity of
the for loop is at most O(|S|· log|S|) for each Fk ⊆ S, since there are Fk users connected
by leader sk. The task assignment algorithm converges in finite time, and the termination
condition of the algorithm is reached only after finite rounds of transactions in which the
seller’s bid will be accepted by the buyer or reduced to cost. Thus, the algorithm eventually
converges in finite time and achieves individual rationality for both buyers and sellers.

6.5. Result Analysis
6.5.1. Personal Rational Analysis

The performance of the proposed algorithm is evaluated in terms of achieving per-
sonalization of users and tasks. In the simulation, the sellers si, i.e., δi = 1, the number
of sellers M = 600 (for selecting users in group social relations), the number of buyers
N = 10, and the reduction rate of sellers is set to 1. The final matching result gives the
final payoff of the users and their cost to perform the task. As shown in Figure 2, each user
ends up with a payoff no less than the cost of completing the task, ensuring a nonnegative
utility for each seller. In addition, the final task matching results give the budget for the
task and the total cost paid to the users, and as can be seen in Figure 3, the total cost paid
to the buyers at the end of the algorithm does not exceed their budget, thus achieving a
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nonnegative utility for each buyer. That is, the proposed task allocation algorithm ensures
the individual rationality of both buyers and sellers.
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As can be seen in Figures 2 and 3, the GO-ABTA algorithm always ensures the indi-
vidual rationality of users and tasks during the matching process. During the matching
process, the total payment for the task is always lower than the task budget (the minimum
payment for completing the task), and the trend of the total payment curve is the same
as the trend of the task budget curve. In grouped social relations, the user’s payment is
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always higher than the cost of performing the task (only the selected user performs the task
in the grouping mechanism), and the trend of the payment curve is the same as the trend
of the task execution cost curve.

6.5.2. System Utility Analysis

The performance of the proposed algorithm in optimizing the system utility is ana-
lyzed. In the simulation, the number of buyers is fixed at 15, while the number of sellers
varies from 350 to 950, as shown in Figure 4, and it can be seen that the algorithm in this
paper has the smallest gap with the optimal solution of the system. The stability of the sys-
tem cannot be guaranteed because the optimal solution of the system efficiency only aims
at maximizing the utility of buyers and ignores the individual tasks and users’ preferences.
In the simulation, the number of sellers is fixed at 1200, while the number of buyers varies
from 5 to 30, as shown in Figure 5, which shows that the gap between the algorithm in
this paper and the system optimal solution is minimized. The simulation results also show
that the algorithm outperforms the ASTA algorithm and the GTA algorithm. In addition, it
can be seen from the figure that when the number of sellers increases, the utility of buyers
increases in all four cases. This is because the more sellers there are, the more buyers can
recruit enough sellers to obtain higher utility.

Figures 4 and 5 show the advantages of the GO-ABTA algorithm for different numbers
of users and tasks. In Figure 4, it is clear that the GO-ABTA algorithm outperforms the
GTA algorithm and the ASTA algorithm (the gap between the optimal solution and the
system is the smallest), and the task utility increases for all four curves as the number of
users increases. From Figure 5, it can be seen that the GO-ABTA algorithm is closest to the
gap between the optimal solution and the system, and the task utility under all four curves
improves significantly as the number of tasks increases. the main reasons for the best
performance of the GO-ABTA algorithm are: (1) the GO-ABTA algorithm achieves buyer
and seller after a limited round of transactions, and the seller’s offer is accepted or reduced
to cost by the buyer, achieving individual rationality; (2) as the number of tasks and users
increases, the grouping of users under group social relations brings more budget and more
users to choose from, thus increasing the number of interaction rounds and enabling tasks
to recruit more compatible users and achieve higher utility.
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Therefore, it can be concluded that the GO-ABTA algorithm is superior to the GTA
and ASTA algorithms and is closest to the system optimal solution.

7. Conclusions

With the rapid development of mobile internet and smart devices, mobile crowd-
sensing has become a widely used data collection method in smart cities, and reasonable
task assignment is always essential in mobile crowdsensing. In this paper, an adjustable
bidding task assignment method is used to describe the assignment of perceptual tasks in
MCS systems. To address the problem of optimizing only the performance of the global
system in real mobile groupwise perception scenarios while ignoring user preferences and
affecting future user participation, the heterogeneous task assignment problem is further
investigated in conjunction with user preferences. In addition, the interaction between task
requesters and users is described as a many-to-many matching problem under group social
relations by a distributed many-to-many resource transaction model. First, the group selec-
tion of users is performed through the grouping mechanism of group leader initialization
and group selection, and then the task assignment process is described based on stable
matching to complete a stable heterogeneous task assignment algorithm under budget
constraints. The simulation results verify the individual rationality, stability and conver-
gence of the GO-ABTA algorithm and compare the effectiveness and superiority with other
algorithms. In the future, we will still focus on the direction of task assignment algorithms
in complex heterogeneous resource scenarios. We will extend GOABTA through game
theory and preference matching to improve task-aware quality, ensure platform revenue
and increase user revenue. The research in this paper can be reviewed as a reference for
MCS-related research.
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