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Abstract: A pavement’s roughness seriously affects its service life and driving comfort. Consid-
ering the complexity and low accuracy of the current recognition algorithms for the roughness
grade of pavements, this paper proposes a real-time pavement roughness recognition method with
a lightweight residual convolutional network and time-series acceleration. Firstly, a random in-
put pavement model is established by the white noise method, and the pavement roughness of a
1/4 vehicle vibration model is simulated to obtain the vehicle vibration response data. Then, the
residual convolutional network is used to learn the deep-level information of the sample signal.
The residual convolutional neural network recognizes the pavement roughness grade quickly and
accurately. The experimental results show that the residual convolutional neural network has a robust
feature-capturing ability for vehicle vibration signals, and the classification features can be obtained
quickly. The accuracy of pavement roughness classification is as high as 98.7%, which significantly
improves the accuracy and reduces the computational effort of the recognition algorithm, and is
suitable for pavement roughness grade classification.

Keywords: pavement roughness; 1/4 vehicle vibration model; white noise method: residual convolutional
network

1. Introduction

Pavement roughness is a significant factor for vehicle travel, which has a direct
impact on both vehicle smoothness and occupant comfort, as well as the quality and
service life of the road [1,2]. In order to use vehicles better and ensure road traffic safety,
pavement roughness recognition has theoretical research value and practical application
significance [3].

Currently, the methods for determining pavement roughness grades are measurement
and reverse analysis. Measurement methods include direct measurement and non-contact
measurement. The direct method uses a measuring instrument to measure the pavement
roughness directly [4]. However, the direct measurement method is used less frequently
today because it cannot provide real-time vehicle measurements. The non-contact mea-
surement method uses light detection and ranging (LIDAR), thermal imaging (TI), and
vehicle-mounted cameras to directly extract pavement information to recognize different
pavement grades [5–7]. Although the direct measurement method acquires a wide range
of pavements, it is more costly. The inverse analysis method refers to the installation
of acceleration sensors, displacement sensors, etc., on the moving vehicle to recognize
the road roughness by acquiring the vehicle vibration response to different road surfaces
and combining the algorithm to reverse it [8,9]. Since the acceleration sensors are easy
to deploy and low-cost, and can complete the data acquisition and transmission with
high accuracy, many scholars have tried to use the inverse analysis method to achieve
pavement roughness detection. In 2008, Ngwangwa et al. used the displacement obtained
from the simulation of a two-degrees-of-freedom model of a 1/4 car as the input of a
backpropagation (BP) neural network to achieve the recognition of the road roughness
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grade [10,11]. Hossain et al. focused on predicting the international roughness index (IRI)
of rigid pavements using an artificial neural network (ANN) model that uses climate and
traffic parameters as inputs [12,13]. Ziari et al. analyzed the capability of the support-vector
machine (SVM) method to predict the pavement’s future condition [14]. Xiulai Wang et al.
proposed an extreme learning machine (ELM) to identify roads based on the simulation of
road roughness signals [15]. These methods establish the relationship between the vehicle
response and pavement roughness through neural networks, which eliminate both the
work of human calibration and the work of deriving an inverse model between the vehicle
response and pavement roughness. As long as the vehicle response and pavement rough-
ness are available, the relationship between them can be established through training. After
the training is completed, the road roughness can be identified from the vehicle response.

In recent years, deep learning networks have been proposed that are more convenient
and give more accurate predictions than traditional methods. The recurrent neural network
(RNN) is a kind of neural network for the modeling and prediction of sequence data,
which can use the output of a neuron at a certain moment as the iteration input, and this
also greatly improves the training performance because the parameters in the network
structure are shared [16]. Due to the problem of gradient disappearance and gradient
explosion in the RNN, the improved recurrent neural network known as long short-term
memory (LSTM) was proposed, which can enable long-term information preservation
and successfully solve the defect problem of RNN, and this has become the most popular
RNN improvement method at present [17]. In addition, a variant of LSTM—the gated
recurrent unit (GRU)—has a simpler structure than the LSTM network and can also solve
the long-range dependency problem of the RNN network [18]. Guanqun Liang proposed
a real-time recognition method for the pavement roughness grade based on LSTM and
serial acceleration, which significantly reduces the computational effort of the recognition
algorithm and can achieve real-time recognition [19]. Junjun Xue also proposed a recogni-
tion algorithm for the pavement roughness grade based on the GRU and vehicle vibration
response [20].

As another critical model of supervised deep learning networks, convolutional neural
networks (CNNs)—such as AlexNet—have received much attention from researchers for
their dramatic improvement in recognition accuracy at the ImageNet image recognition
challenge in 2012 [21]. As research tends to improve the performance by increasing the
depth of CNNs, it has been found that the performance degrades as the depth of the
network increases. Then, Kaiming He et al. proposed ResNet based on the creation of
residuals to solve this problem. When the residuals module in a layer of the network is
challenging to train, and no new information is learned, the residuals module only performs
constant mapping, which does not lead to the phenomenon of network performance
degradation [22]. The excellent performance of CNN models in extracting features has led to
remarkable achievements such as image classification, face detection, and natural language
processing. Based on a 2D-CNN, Jong-Hyun Jeong proposed a deep learning IRI estimation
method to use anonymous vehicles and their responses measured by smartphones as road
roughness sensors [23]. Since the vibration signal is one-dimensional in the time domain,
the conventional CNN may lose some feature information of the original vibration signal.
In addition, the signal transformation process often relies on expert experience, which may
result in losing the original features [24]. Therefore, 2D-CNNs used for image processing
may not be suitable for 1D signal processing. Thus, one-dimensional convolutional neural
networks (1D-CNNs) are proposed to process this problem. The 1D-CNNs are similar to
2D-CNNs, in that the input are one-dimensional data and the outputs after convolution
and pooling operations are also one-dimensional, and the vibration signal can be directly
input into 1D-CNNs without complex signal processing [25,26]. A 1D-CNN has fewer
parameters than two-dimensional convolutional neural networks, which can reduce the
dependence of two-dimensional convolutional neural networks on large-scale datasets [27].

In summary, in this paper, a lightweight one-dimensional residual convolutional
neural network (1D-RCNN) for pavement roughness category diagnosis is proposed by
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combining a one-dimensional convolutional neural network with a residual network based
on vehicle response and pavement roughness simulation. We establish a complete process,
including test data preprocessing, neural network model training, and testing. The main
contributions are as follows:

• The 1D-RCNN uses a one-dimensional convolutional kernel as the basic computational
unit, which can directly use sensor signals as inputs and be applied to pavement
roughness category recognition, simplifying the model processing process.

• The residual learning mechanism introduced in the 1D-RCNN improves the training
process, and the end-to-end training method improves the network feature extraction
capability after introducing residual learning.

• The 1D-RCNN is a lightweight network that requires only a small amount of data to
train the classifier and perform pattern recognition, which is not very demanding in
terms of data volume.

The remaining sections contain the following contents: Section 2 introduces the one-
dimensional convolutional neural network's principle and architecture and describes the
residual learning mechanism. Section 3 introduces the principle of establishing vehicle
vibration response simulation under different grades of pavement input based on a two-
degrees-of-freedom 1/4 vehicle vibration model and a random input pavement model.
Finally, a lightweight 1D-RCNN model for the pavement roughness grade categorization is
established based on the deep learning principle and vibration response signal simulation.
Section 4 constructs the vehicle vibration response datasets under different grades of
pavement roughness and trains the 1D-RCNN model based on the constructed datasets.
Section 5 details the effect of the 1D-RCNN on pavement roughness category recognition
and compares the results with four typical classification models. Finally, Section 6 presents
several essential conclusions of this research.

2. One-Dimensional Residual Convolutional Neural Network
2.1. One-Dimensional Convolutional Neural Network

The convolutional neural network (CNN) is a special type of deep neural network. In
1984, Fukushima et al. proposed the concept of a neurocognitive machine based on the
perceptual domain, which is regarded as the beginning of the formal appearance of the
convolutional neural network [28]. The 1D convolutional neural network mainly consists
of a 1D convolutional layer, a 1D pooling layer, a fully connected layer, and a classifier, as
shown in Figure 1.
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Convolution layer: for a 1D input signal X ∈ RL, the convolutional layer of a 1D convo-
lutional neural network uses K convolutional kernels of width w; ωi ∈ Rw (i = 1, 2, · · · , K)
is a one-dimensional convolution operation, and its output is as follows:

out_puti = f
(
∑ X�ωi + bi

)
i = 1, · · · , K (1)

where � is the convolution operation of the convolution kernel with the input, f is the
nonlinear activation function, bi is the bias of each channel, and K is the number of channels
after the output.

Pooling layer: usually, the maximum pooling method for the data T∈RK*L is chosen,
and the output after pooling is

Pi(n) = max
06n6 L

S

{Ti(nW, (n + 1)W)} i = 1, · · · , K (2)

where Ti ∈ RL is the i-th feature tensor, W is the size of the pooling window, and S is the
step size.

Fully connected layer: the parameters are the weights ω and deviations b, f is a
nonlinear activation function, and for an input P∈Rm, the output of the fully connected
layer is

δ = f (ωP + b) (3)

Classifier layer: softmax is used to obtain the label distribution of the input data:

Q
(

δi
)
=

eδi

∑ keδk (4)

2.2. Residual Learning Network

The deeper the structure of the convolutional neural network, the higher the degree
of expression and the better the fitting ability of the network. However, as the number of
network layers increases, problems such as gradient explosion and gradient dispersion
inevitably arise. In 2015, He et al. proposed a deep residual network model (ResNet),
the essence of which is to introduce a residual module using a jump-connected network
structure to superimpose shallow and deep features [22]. This effectively avoids the loss of
shallow features during network training and solves the phenomenon that the network
performance of the deep convolutional neural network decreases as the number of layers
increases. The residual module is defined as follows:

y = F(x, {Wi}) + x (5)

where x and y are the inputs and outputs of the module, F denotes the residual mapping to
be learned, and Wi denotes the module parameters.

As shown in Figure 2, the residual learning module is no longer a potential mapping
H(X) to the input of the layer, but a residual mapping F(X) = H(X) − X. The connection in
the figure that maps the input X to the output of the module is called a jump connection,
and this connection can better propagate the gradient to solve the training problem of deep
convolutional neural networks while improving the network performance, as shown in
Inception-V4, Res-Next, etc., which all use residual learning to improve the performance
of the network. The results demonstrate that the residual learning module outperforms
the baseline CNN in terms of accuracy and speed. Without the residual learning module,
the CNN is limited in its ability to capture complex patterns in the data, resulting in lower
accuracy and slower convergence.
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Figure 2. Schematic diagram of the residual module.

3. Vehicle Vibration Response under Different Roughness Grades
3.1. Two-Degrees-of-Freedom 1/4 Vehicle Vibration Modeling

The two-degrees-of-freedom 1/4 vehicle model is a simple structure that is easy to
analyze and is widely used in studying the vertical dynamics of suspensions, as shown in
Figure 3.
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Based on Newton's second law, the kinetic differential equation is obtained as follows:

ms
..
xs + cs

( .
xs −

.
xu
)
+ ks(xs − xu)− u = 0 (6)

mu
..
xu − cs

( .
xs −

.
xu
)
− ks(xs − xu) + kt(xu − xr) + u = 0 (7)

where ms, mu, ks, cs, kt, zs, zu, zr, u are the body mass, wheel mass, suspension stiffness,
suspension damping, tire stiffness, body droop displacement, wheel droop displacement,
road input displacement, and controlled suspension damping force, respectively.

3.2. Random Pavement Excitation Input Model

Usually, the pavement roughness function is defined by the change in the horizontal
relative height of the pavement, the reference surface, and the road direction. The pavement
roughness function is random, often considered to have a mean value of zero, and obeys a
normal distribution, and the power spectral density can be used to express its characteristics.
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The international standard ISO 8608:2016 uses the power spectral density as a criterion for
classifying pavement grades, which is expressed as follows [29]:

Gq(n) = Gq(n0)

(
n
n0

)−ω

(8)

where n is the spatial frequency, ω is the frequency index, n0 is the reference spatial
frequency, and Gq(n0) is the pavement roughness coefficient.

The standard is based on the Gq(n0) geometric mean and the upper and lower limits
of the standardized pavement classification, and Table 1 shows the range of values for
category A-F pavements.

Table 1. Classification of pavement grades based on Gq(n).

Grade A B C D E F

Upper limit 8 32 128 512 2048 8192
Geometric mean 16 64 256 1024 4096 16,138

Lower limit 32 128 512 2048 8192 32,768

The filtered white noise method is used to generate the time-domain model of the
pavement. The filtered white noise method is a method in which the ideal unit white noise
is used as the input and transformed into excitation as the output after the first-order filter
changes, and its expression is as follows:

.
zg(t) = −2πn1vzg(t) + 2πn0

√
Gq(n0)vw(t) (9)

where zg(t) is the pavement excitation, n1 is the cutoff spatial frequency under pavement
unevenness, v is the vehicle speed, and w(t) is the ideal unit of white noise with a mean
value of 0 and a power spectral density of 1.

3.3. Establishing the Recognition Model of the Pavement Roughness Grade

A pavement roughness recognition algorithm can be constructed using the above-
mentioned deep network to capture strong features from vehicle acceleration responses.
Its primary process is shown in Figure 4, which is divided into the network training and
testing phases.
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Deep learning requires a large amount of data for network training, and experimental
data do not easily contain many complete working conditions, so simulated acceleration
signals can be used as the source of the training dataset in the network training phase
based on a 1/4 vehicle suspension model [30,31]. In the simulation scheme to obtain the
training dataset, white noise filtering is first used to generate road excitation with different
roughness grades. Then, the vehicle body’s vertical acceleration of pavements of different
grades is calculated using the transmission features of the suspension. Secondly, in the
simulation scheme for obtaining the dataset, acceleration sensors and data acquisition
systems are assumed to be installed in the vehicle body to collect the vertical acceleration
while driving on the road with different pavement roughness grades. Finally, a 10-second-
long acceleration signal segment is simulated as one sample, and the above steps are
repeated to merge the sampled data to form the dataset.

In the training phase of the network, the 1D-RCNN network must be built (Figure 5)
in the first step. Since the sequence acceleration data are directly used as inputs, layer 1
of the network is the vibration signal input layer, and each sample point in the sequence
signal is input to the next layer individually. Layer 2 is the convolutional layer, where each
unit is connected to the original input layer unit, and the feature extraction of the input
information is initially realized through the convolutional layer. Layer 3 is the ResNet
module, and the residual learning module is one core module of the whole network. The
model further captures the deeper features of the upper layer’s input information and
obtains the final feature information. Layer 4 is a fully connected layer, which takes the
output of the previous layer of the network and performs linear operations to obtain
the scores of different categories. Layer 5 is the softmax layer, which determines the
probabilities of different categories and selects the largest one as the classification result.
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The trained network can be applied for real-time road classification in the practical
use phase. Acceleration sensors and data acquisition systems are installed on the vehicle
body to collect the vertical acceleration of vehicle body while the vehicle is in motion. After
intercepting the 10 s acceleration signal fragment and normalizing it, the results of pavement
roughness classification can be quickly obtained by feeding it into a trained network.

4. Constructing Vibration Response Datasets and Training Models
4.1. Constructing the Datasets of the Vehicle Vibration Response

Simulation experiments were conducted using the 1/4 vehicle vibration model and
the random pavement model to generate the vehicle vibration response under different
pavement roughness grades. The pavement roughness simulation experiments were
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conducted under six pavement grades: A, B, C, D, E, and F. The simulation was with a
vehicle speed of 3 m/s, a simulation time of 10 s, and a sampling frequency of 100 Hz
(Table 2), and the vehicle response signals were obtained under all pavement grades
(Figure 6). The constructed vehicle vibration response dataset contained 1800 samples and
300 samples for each pavement category. Then, the dataset was randomly divided into two
groups: 70% for model training and 30% for model testing.

Table 2. Vehicle model parameters.

Vehicle Parameters Values Vehicle Parameters Values

Mass/kg 300 Wheel mass/kg 30
Suspension stiffness/(N.m−1) 10,000 Tire stiffness/(N.m−1) 180,000

Suspension damping/(N.s.m−1) 1500

Figure 6. Acceleration response for different pavement roughness grades: (a) grades A–C; (b) grades D–F.

4.2. 1D-RCNN Model Training

The experimental environment included the Python language and PyTorch deep
learning framework, along with the hardware environment of an Intel(R) Core(TM) i7-
10710U CPU processor. Before conducting the experiments, the simulation dataset was
normalized in order to improve the convergence speed and recognition accuracy of the
pavement grade classifier. In this experiment, the Adam optimization algorithm and
cross-entropy loss function were used to train the model and optimize the model fitting
effect. After setting the initial parameters, the acceleration vibration signals with the
corresponding pavement roughness category labels were input into the network to start
the training. In the training processing, the hyperparameters (number of iterations set to
50, learning rate set to 0.001) were adjusted to achieve a high classification accuracy.

Figure 7 shows the loss function curve of the 1D-RCNN model during the training
process. The loss function curve of the training set shows a decreasing trend, and the value
of the loss function converges to 0 as the number of iterations increases. Meanwhile, the
loss function of the testing dataset also shows a decreasing trend, so the changing trend of
the loss function of the two datasets is consistent, indicating that the 1D-RCNN model does
not result in overfitting and that the training effect is good. After training, the 1D-RCNN
model determines the mapping relationship between the pavement roughness grade and
the vehicle vibration response and establishes the recognition model.
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5. D-RCNN Model Validation and Analysis
5.1. Analysis of Results

The most basic classification metric for deep learning network performance evaluation
is accuracy—the ratio of the number of samples correctly classified by the classifier to the
total number of samples for a given test dataset. In addition to accuracy, the three standard
metrics also used to evaluate the performance of deep learning networks are precision p,
recall r, and the F1-score, which are defined as follows:

ACC =
∑ TPi + TNi

∑ TPi + TNi + FPi + FNi
(10)

p =
TPi

TPi + FPi
(11)

r =
TPi

TPi + FNi
(12)

F1 =
2pr

p + r
(13)

where TP is true positive, which means that the actual is true and the prediction is also true;
FP is false positive, which means that the actual is false and the prediction is true; FN is
false negative, which means that the actual is true but the prediction is false; and i is the
index of different categories.

According to Equations (10)–(13) the 1D-RCNN model evaluation was derived based
on the training and test sets, and the results are shown in Table 3. According to the
evaluation indices, the accuracy and recall are higher and approximately in the same
pavement grade, and the F1-score is also high. The accuracy and recall rates are high for
different pavement grades, indicating consistently better effects for different pavement
grades. The average F1-score of 98.3% proves that the network can accurately classify
different pavement roughness grades.

To further analyze the effectiveness of the 1D-RCNN model for classifying different
types of pavements, the confusion matrix of the model for classifying six types of pavements
was drawn, and the results are shown in Figure 8. The confusion matrix analysis shows
that the trained network has a high accuracy rate for each type of pavement dataset. In the
vast majority of cases, the predicted category is consistent with the actual category. The few
incorrectly predicted pavement roughness classes are within ±1 of the actual class, with an
error rate of no more than 3.3%.
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Table 3. Evaluation results of the training and test sets (unit: %).

Pavement
Grade

Training Dataset Testing Dataset

p r F1 p r F1

A 100 98.6 99.3 100 98.9 99.4
B 98.6 100 99.3 97.8 100 98.9
C 100 99.1 99.5 100 96.8 98.4
D 99.0 100 99.5 97.8 96.7 97.2
E 100 100 100 96.7 97.8 97.2
F 100 100 100 97.8 100 98.9

ACC 99.6 98.4
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To exhibit the feature extraction effect of 1D-RCNN, uniform manifold approxima-
tion and projection (UMAP) is used to downscale and visualize the extracted features.
Figure 9a–d represent the output after the first convolutional pooling, the output after the
second convolutional pooling, the output after the third convolutional pooling, and the fully
connected layer output, respectively. It can be seen that, after three layers of convolutional
pooling of the output features, feature data with the same labels gradually increase the
similarity of the output features in two dimensions with the convolutional layer progression.
Moreover, after the convolutional pooling feature selection stage, the data with different
labels achieve significant classification results in the fully connected layer.

5.2. Comparison of Classification Model Recognition Results

In order to validate the proposed method, five typical models in sequence data classi-
fication were studied, and the one-dimensional convolutional network (1D-CNN), GRU
(gated recurrent unit), long short-term memory (LSTM) network, and recurrent neural
network (RNN) were used as the comparison models. The accuracy, precision, recall, and
F1-score on the same test set were used as evaluation indices to analyze the above five
models, and the comparison results are shown in Table 4. From the F1-score of each type of
model, a more intuitive F1-score bar plot can be drawn, as shown in Figure 10.
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Figure 9. The 1D-RCNN layer output’s UMAP downscaling visualization: (a) first convolutional
layer, (b) second convolutional layer, (c) third convolutional layer, (d) fully connected layer.

Table 4. Test results of five typical deep learning classification models (unit: %).

Pavement
Grade

1D-RCNN 1D-CNN GRU LSTM RNN

p r F1 p r F1 p r F1 p r F1 p r F1

A 100 98.9 99.4 100 97.8 98.9 96.7 87.9 92.1 95.6 89.6 92.5 71.1 74.4 72.7
B 97.8 100 98.9 97.8 98.9 98.3 83.3 89.3 86.2 84.4 90.5 87.4 36.7 50.0 42.3
C 100 96.8 98.4 98.9 88.1 93.2 93.3 93.3 93.3 95.6 92.5 94.0 73.3 54.5 62.6
D 97.8 96.7 97.2 83.3 82.4 82.9 95.6 98.9 97.2 94.4 98.8 96.6 65.6 62.1 63.8
E 96.7 97.8 97.2 63.3 75.0 68.7 96.7 96.7 96.7 94.4 95.5 95.0 55.6 45.9 50.3
F 97.8 100 98.9 81.1 80.2 80.7 97.8 97.8 97.8 97.8 95.7 96.7 45.6 65.1 53.6

ACC 98.4 87.1 93.9 93.7 58.7
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From the experimental results, it can be seen that the 1D-RCNN model outperforms
the other models in all evaluation metrics, achieving an accuracy of 98.4%. In addition, the
GRU model's accuracy is slightly lower than that of the LSTM model. However, both are
much higher than that of the 1D-CNN and RNN models. The GRU, LSTM, and 1D-CNN
models used for pavement roughness classification achieve better results, but all are lower
than 1D-RCNN. The performance difference between the 1D-RCNN and RNN models is
significant, and the RNN models are generally effective overall. The findings of [19,20] also
show that the recognition accuracy of LSTM and GRU is lower than that of the proposed
1D-RCNN, which is consistent with the results of the above analysis. The 1D-RCNN model
structure uses a multilayer neural network model constructed by a 1D-CNN, which is
much smaller than the common CNN models such as ResNet, VGGNet, and DenseNet in
terms of computational network size and complexity. Additionally, due to its smaller scale
and lower computational complexity, the sample amount required for training the model is
much less than that of conventional CNN networks, and even less than the sample amount
required by conventional machine learning algorithms [32].

5.3. Engineering Applications

In order to further validate the practical application based on the 1D-RCNN deep
learning algorithm in pavement roughness grade recognition, a road section of the I90
highway in Cleveland, Ohio, in 2005 was used as the test object. Two test locations with
different roughness grades were selected for testing, where the pavement roughness grade
at location 1 (90West after 197) was D, and the pavement roughness grade at location 2
(90West exit 187) was B (see Figure 11a). For this study, the vertical acceleration was
measured by an ICP (integrated-circuit piezoelectric) accelerometer. The acceleration signal
can be displayed in real time on a laptop. Vertical acceleration measurement system details
can be found in [33]. The acceleration acquisition system acquired the acceleration vibration
signals at positions 1 and 2, as shown in Figure 11b.
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Figure 11. In situ vehicle vibration testing of the field pavement: (a) geographical location of the in
situ testing; (b) field acquisition of raw vibration signals.

In the process of using the 1D-RCNN model to classify the field pavement detection,
the trained weight parameters are first loaded into the 1D-RCNN model, and then the
acceleration vibration signals collected at location 1 and location 2 are used as input data.
The 1D-RCNN model and the output can extract the signal features of different categories.
The output results at positions 1 and 2 were [−23.6449, −10.0262, 1.0111, 2.3127, −2.4176,
−9.0892] and [−5.7164, 1.4103, −1.1854, −6.6368, −6.3494, −7.3417], respectively. Based
on the output, the index corresponding to the maximum at location 1 is 3, while the index
corresponding to the maximum at location 2 is 1. The pavement roughness classes at
the measurement points are class D and class B, respectively, corresponding to the actual
pavement roughness classes. From the present-day photos of the pavement, there are
obvious repair traces at location 1 compared to the pavement at location 2, which also
verifies that the model established in this paper can effectively identify the grades of
pavements with different roughness.

6. Conclusions

This paper proposes a lightweight 1D-RCNN model for pavement roughness recogni-
tion by combining a one-dimensional convolutional depth network with a residual module.
The trained network was tested, and the results show that recognizing the pavement
roughness grade from the acceleration signal is effective and feasible. Its accuracy is over
98%, and the performance evaluation indices are all high. From the above study, the main
conclusions are as follows:

1. The input is a sequence acceleration signal and does not need a frequency domain to
transform, such as a Fourier transform, with no feature extraction. Instead, it directly
inputs the original signal to train a deep neural network end-to-end, simplifying the
model processing.

2. The proposed 1D-RCNN is based on the mass acceleration of the vehicle body in the
vertical direction as the input signal, which is a single-channel input with a simple
sensor arrangement and low hardware cost.

3. The 1D-RCNN uses a multilayer one-dimensional convolutional kernel and a residual
learning mechanism to effectively extract the key features of the vibration signal,
thereby improving the performance of the recognizer.

4. The proposed lightweight 1D-RCNN is more practical than conventional deep learn-
ing algorithms that do not require a large amount of labeled data. Moreover, the good
feature learning capability makes it widely applicable for vibration signal recognition.

Since all of the training datasets used in this paper are composed of the simulation
data of the vehicle vibration response, which still have some differences with in situ
vehicle vibration signals, future work on some field-collected vehicle vibration signals as
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training data may be appropriate in order to further improve the applicability of the model.
Meanwhile, due to the low cost and easy installation of acceleration sensors, data can be
acquired with high accuracy, and even the current smartphones come with acceleration
sensors. Furthermore, the means of transportation can be a car, truck, or bicycle, so the
proposed method can be easily transferred to other carriers for application. Thus, the
proposed 1D-RCNN still has some room for improvement. Further research should focus
on developing more sophisticated deep learning models that can accurately recognize
pavement roughness grades from various road conditions. Additionally, the research could
include developing more efficient and reliable methods for collecting pavement roughness
grade data, as well as applying deep learning to the analysis of such data.
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5. Žuraulis, V.; Surblys, V.; Šabanovič, E. Technological measures of forefront road identification for vehicle comfort and safety

improvement. Transport 2019, 34, 363–372. [CrossRef]
6. De Blasiis, M.R.; Di Benedetto, A.; Fiani, M.; Garozzo, M. Assessing of the road pavement roughness by means of LiDAR

technology. Coatings 2020, 11, 17. [CrossRef]
7. Douangphachanh, V.; Oneyama, H. A study on the use of smartphones for road roughness condition estimation. J. East. Asia Soc.

Transp. 2013, 10, 1551–1564. [CrossRef]
8. Harikrishnan, P.; Gopi, V.P. Vehicle vibration signal processing for road surface monitoring. IEEE Sens. J. 2017, 17, 5192–5197.

[CrossRef]
9. Yun, L.; Zhen-dong, Q. Review of road roughness and vehicle vibration model. J. Highw. Transp. Res. Dev. 2008, 1, 312–329.
10. Ngwangwa, H.M.; Heyns, P.S.; Labuschagne, F.; Kululanga, G.K. Overview of the neural network based technique for monitoring

of road condition via reconstructed road profiles. In Proceedings of the 27th Southern African Transport Conference (SATC 2008),
CSIR International Convention Centre, Pretoria, South Africa, 7–11 July 2008; pp. 312–329.

11. Ngwangwa, H.M.; Heyns, P.S.; Labuschagne, F.; Kululanga, G.K. Reconstruction of road defects and road roughness classification
using vehicle responses with artificial neural networks simulation. J. Terramech. 2010, 47, 97–111. [CrossRef]

12. Hossain, M.; Gopisetti, L.S.P.; Miah, M. Artificial neural network modelling to predict international roughness index of rigid
pavements. Int. J. Pavement Res. Technol. 2020, 13, 229–239. [CrossRef]

13. Park, Y.S.; Jeon, J.H.; Kang, Y.J. ISO 8608-based pavement roughness classification with artificial neural networks using suspension
vibration measurements. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Seoul,
Korea, 23–26 August 2020; pp. 5651–5661.

14. Ziari, H.; Maghrebi, M.; Ayoubinejad, J.; Waller, S.T. Prediction of pavement performance: Application of support vector
regression with different kernels. Transp. Res. Rec. 2016, 2589, 135–145. [CrossRef]

15. Wang, X.; Cheng, Z.; Ma, N. Road recognition based on vehicle vibration signal and comfortable speed strategy formulation
using ISA algorithm. Sensors 2022, 22, 6682. [CrossRef] [PubMed]

http://doi.org/10.3846/16484142.2014.984330
http://doi.org/10.1016/j.ymssp.2019.106370
http://doi.org/10.1007/s11356-021-12936-4
http://www.ncbi.nlm.nih.gov/pubmed/33687632
http://doi.org/10.1080/00423110701485050
http://doi.org/10.3846/transport.2019.10372
http://doi.org/10.3390/coatings11010017
http://doi.org/10.1186/1687-1499-2014-114
http://doi.org/10.1109/JSEN.2017.2719865
http://doi.org/10.1016/j.jterra.2009.08.007
http://doi.org/10.1007/s42947-020-0178-x
http://doi.org/10.3141/2589-15
http://doi.org/10.3390/s22176682
http://www.ncbi.nlm.nih.gov/pubmed/36081140


Sensors 2023, 23, 2271 15 of 15

16. Mandic, D.; Chambers, J. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability; Wiley Publisher:
Hoboken, NJ, USA, 2001.

17. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef] [PubMed]

18. Khalil, K.; Eldash, O.; Kumar, A.; Bayoumi, M. Economic LSTM approach for recurrent neural networks. IEEE Trans. Circuits Syst.
Express Briefs 2019, 66, 1885–1889. [CrossRef]

19. Liang, G.; Zhao, T.; Wang, Y.; Wei, Y. Road unevenness identification based on LSTM network. Automot. Eng. 2021, 43, 509–517.
[CrossRef]

20. Xue, J.; Chen, S. Research on Road Roughness Level Recognition Based on Deep Learning. Mech. Electr. Eng. Technol. 2021, 50,
66–69. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Jeong, J.H.; Jo, H.; Ditzler, G. Convolutional neural networks for pavement roughness assessment using calibration-free vehicle
dynamics. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1209–1229. [CrossRef]

24. Xu, J.; Yu, X. Detection of concrete structural defects using impact echo based on deep networks. J. Test. Eval. 2020, 49, 109–120.
[CrossRef]

25. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using
one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [CrossRef]

26. Xu, J.; Zhang, J.; Shen, Z. Recognition method of internal concrete structure defects based on 1D-CNN. J. Intell. Fuzzy Syst. 2022, 1–12.
[CrossRef]

27. Wu, B.; Yuan, S.; Li, P.; Jing, Z.; Huang, S.; Zhao, Y. Radar emitter signal recognition based on one-dimensional convolutional
neural network with attention mechanism. Sensors 2020, 20, 6350. [CrossRef]

28. Fukushima, K.; Miyake, S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.
In Proceedings of the Competition and cooperation in neural nets, Kyoto, Japan, 15–19 February 1982; pp. 267–285.
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