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Abstract: The synthetic aperture radar (SAR) image ship detection system needs to adapt to an
increasingly complicated actual environment, and the requirements for the stability of the detection
system continue to increase. Adversarial attacks deliberately add subtle interference to input samples
and cause models to have high confidence in output errors. There are potential risks in a system, and
input data that contain confrontation samples can be easily used by malicious people to attack the
system. For a safe and stable model, attack algorithms need to be studied. The goal of traditional
attack algorithms is to destroy models. When defending against attack samples, a system does not
consider the generalization ability of the model. Therefore, this paper introduces an attack algorithm
which can improve the generalization of models by based on the attributes of Gaussian noise, which
is widespread in actual SAR systems. The attack data generated by this method have a strong effect
on SAR ship detection models and can greatly reduce the accuracy of ship recognition models. While
defending against attacks, filtering attack data can effectively improve the model defence capabilities.
Defence training greatly improves the anti-attack capacity, and the generalization capacity of the
model is improved accordingly.
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1. Introduction

Synthetic aperture radar (SAR) [1,2] is a high-resolution imaging radar developed with
digital processing technology. It has good all-weather capabilities and perspective and has
been widely used in military reconnaissance surveying and mapping. Many researchers
had studied the application of remote sensing in the ocean [3–5] for sensing the marine
environment, marine and coastal environment detection. SAR was widely used in marine
monitoring: oil spill monitoring [6] and marine biodiversity observation [7]. Ships are
necessary equipment for marine development, energy transportation, national defence
construction and other activities. The most important marine activity component is ship
monitoring. SAR can penetrate clouds and fog with unique advantages and is not limited
by meteorological conditions. It is very suitable for data sources for ship detection.

A ground SAR detection system operates in space tracks. Researchers have developed
high-performance deep learning algorithms and frameworks. They are widely used in SAR
ship detection systems to solve practical problems. Although satellite communication has a
high technical level, it is still vulnerable to security threats, which may seriously affect the
judgement of the signal receiver. While the detection accuracy is important, we are more
concerned with the relevant security risks of models. Neural networks have reached human
performance on independent identically distributed testing machines [8–10]. However, it
is difficult to distinguish an image that contains weak naked noise that the eyes cannot
detect. This noisy image data, which have serious impacts on automatic detection systems,
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cause a detected object to deviate from the real object or a significant offset in the detection
of anchor frames. Confrontation data [11] are slightly modified images. The purpose of
the modification is to interfere with the result of a machine learning analyser. The model
parameters can be modified by modifying the attack data without modifying the program.
This attack will have a serious impact on a model, and it is very easy to cause misdetections,
missed reports or false reports. SAR image ship-detection systems need to adapt to an
increasingly complicated actual environment, and the requirements for the stability of
detection systems continue to increase. The focus of this research is to ensure the stability
of a system, prevent the system from being disturbed by external noise, and prevent a
decrease in accuracy of a detection system when there is minor interference.

This article answers the following questions:

1. What is the impact of protecting SAR ship models from attacks?
2. How can stronger confrontation data be generated?
3. Which attack form has the greatest impact on a SAR ship detection model?
4. How does these model samples help the model improve the accuracy in the defence?

The structure of the paper is as follows: The second part introduces related work, and
the third part studies the expansive adaptive gradient as well as its derivative formula. The
fourth part evaluates the gradient expansion attack model. The fifth part is the conclusion.

2. Related Work
2.1. Adversarial Attack

The use of machine learning in smart networks brings potential security threats. The
purpose of maliciously injected fake training data is to destroy the learning model. Due
to the development of neural network adversarial attacks, researchers have conducted
much research on offensive attacks. According to the degree of model consistency, they
can be divided into black box attacks and white box attacks. Black box attacks [12,13] can
only launch confrontation attacks by querying the output classification results of an input
sample. White box attacks [14,15] use information, such as model structures, parameters
and other information, to conduct confrontation attacks. Common attack methods include
gradient information algorithms and interpreted algorithms based on neural networks.
The target data set of a SAR image ship model is also easily affected by sample attacks.
Wang et al. [16] applied the Momentum Iterative Fast Gradient Sign Method (MI-FGSM)
and ADVGAN algorithms to SAR data sets to generate confrontation samples and conduct
SAR image classification attacks. The experimental results show that confrontation samples
are destructive for SAR image models.

2.2. Gradient-Based Attack Methods

In machine learning algorithms, when minimizing the loss function, a minimum loss
function and the corresponding parameter values can be found through gradient decline.
Conversely, to maximize the loss function, it can be found through gradient expansion. By
disturbing a vector, it can be superimposed on a sample to form an attack sample. Through
an attack, the output results are as large as possible with the deviation in the input.

In this section, we briefly introduce several gradient-based attack methods. A white-
box attack is based on gradient-based optimization and restrained optimization. Among
them, several types of gradient optimization have a greater impact.

The Fast Gradient Sign Method (FGSM) [13] is a basic method for white box at-
tacks. This method quickly guides the model to find the direction in which the loss
function increases:

x′ = x+ ∈ ·sign(∇x J( f (x), y)) (1)

The Basic Iterative Method (BIM) [17] is one of many extensions of FGSM. A confronta-
tional example generated by BIM is defined as follows:

x′i+1 = x′i + α·sign
(
∇x J

(
f
(
x′i
)
, y
))

(2)
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where x′0 = x, α = ε/T, and T denotes the number of iterations.
TIM [18] uses Gaussian nuclear volume stairs and can be combined with MIM:

gi+1 = µ·gi +
W∗∇x J

(
f
(
x′i
)
, y
)

‖W∗∇x J
(

f
(
x′i
)
, y
)
‖1

(3)

x′i+1 ← Clipε

{
x′i + α·sign(gi+1)

}
(4)

where W is the Gaussian kernel and * indicates the convolutional operator.
Dong et al. [19] proposed Momentum Iterative Fast Gradient Sign Method (MI-FGSM)

and Nesterov Iterative Fast Gradient Sign Method (NI-FGSM). MI-FGSM integrates mo-
mentum into iterative attacks, thereby providing a higher transitability for confrontation
examples. NI-FGSM improves the transplantability of confrontation examples. A Nesterov
accelerated gradient can be integrated into an iterative gradient [20] basic attack to obtain a
robust attack model.

This simple method is used to illustrate the success rate of using iteration methods
in subsequent work. To generate malicious data that may be classified by a model, more
iterative updates are needed. The calculation time and the number of iterations are linear,
so more time is needed to create stronger attacks.

Later, the predictable perturbation attack (PPA) algorithm was used to add restricted
indicators as the gradient rises.

2.3. Adversarial Defence

Studies have shown that deep learning networks have obvious weaknesses when
processing data that contain noise. The disturbances contained in these pictures are in-
tentional, very small, and cannot be perceived by human beings. This noise is difficult to
detect by human eyes, but it has a serious impact on the test results. To solve this problem,
researchers have designed many defence methods that focus on using good models trained
on large data sets to correct adversarial examples. These methods include the adversarial
training method [21–23], gradient regularization method [24] and method based on input
transformations [25–27].

For example, in [28], the DeepFool algorithm was proposed to effectively calculate the
disturbance cause by a deceptive deep network, thereby reliably quantifying the robustness
of classifiers. A large number of experiments show that this method is better than existing
methods in calculating improving a classifier’s robustness.

2.4. SAR Image Noise

SAR image noise is mainly of two types: additive noise and multiplication noise. This
article focuses on the impact of additive noise on a SAR ship detection system. Additive
noise usually uses zero average white noise as a model [29]. In the subsequent sections,
we use the noise model that is the closest to the actual noise distribution, that is, normal
distribution noise with a mean value of 0, to protect against attack noise.

3. Materials and Methods
3.1. Defending SAR Ship Data (NAA)

After a ship’s information is utilized, if the system is attacked, the hidden hazard
information will bypass the defence model to attack the system, which will cause the ship’s
detection model to fail and affect the test results.

There are three general approaches to defend against attacks during the model training
phase: adjusting the training data, adjusting the labels, and adjusting the input features.
It is more difficult for an attacker to attack model labels and input features. Adjusting
the training data is the most obvious and most effective attack-response method. Hence,
this article proposes a ship detection data attack model. Through these methods, the
original distribution of the training data is attacked by injecting confrontation samples and
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adjusting, modifying or deleting training data. The adjusted data will cause the model to
misjudge the detection results to achieve an attack effect.

The framework of this article consists of two parts: sensitive directional estimation
and disturbance selection.

3.2. Sensitive Directional Estimation

Sensitive directional estimation refers to the opponent’s sensitivity to changes in the
altered features of each input feature through the data stream around sample X.

3.3. Disturbance Signal Selection

Interference selection refers to the use of the characteristics of the information of a ship
to select “interference” σ signals to obtain the most effective confrontation results. At the
beginning of each new iteration, the modified sample σ + X replaces the original pure input
sample X until the disturbance sample meets the opposition target conditions. Therefore,
the goal is to determine a suitable disturbance. The total interference added to the original
sample is as small as possible to achieve the goal of attacking the model while not being
detected by the human eye.

The specific design ideas are as follows:
X is the input sample, and f is the model trained in this article. The goal of the

opponent is to generate a confrontation sample X̂ = σ + X. In this process, a disturbance σ
and input sample X are added. If the norm ||·|| describes the differences between the
points in the input domain, creating a confrontation sample in model f can be formally
turned into the following optimization problem:

X′ = X + argmin{|(|ϕ|)| : f (ϕ + X) 6= f (X)} (5)

There are two reasons why f (σ + X) 6= f (X). First, this nonequality allows the
classification category error to be obtained, and it makes it possible for large-scale offsets to
be performed in the detection box. ϕ is shifted in the direction of the highest sensitivity of
X and can obtain the best disturbance effect on the basis of minimal disturbances. The noise
adaptive attack algorithm is used in this article to determine the most suitable disturbance
amount. In the early stage of the algorithm, an effective supervision sample needs to be
found with the rise in the gradient.

The traditional AdaGrad method uses historical gradients. In this article, an attenua-
tion coefficient is added at the cumulative square gradient stage to control how much of the
historically submitted information is obtained. The gradient accumulation is transformed
into the moving average of the decaying exponential parameter to optimize the degree of
gradient utilization.

Suppose the initial parameter is τ; the training concentration contains a small batch
of m samples

{
x(1), . . . , x(m)

}
, and the corresponding target is y(i). The gradient is calcu-

lated as:
Vt = ∑T

T−τ
g2

τ (6)

ηt = α·mt/
√

Vt (7)

where α is the initial learning rate, mt = φ(g1, g2, . . . , gt) is used to calculate the first-order
momentum of the historical gradients, and g1 represents the first-order gradient.

The gradient optimization method of the adaptive learning rate is adopted here. It
makes the parameter learning rate self-adaptive, performs large updates on nonfrequent
parameters, and performs smaller updates on frequent parameters. Therefore, it is very
suitable for processing sparse data. AdaGrad is more robust than SGD.

It is a second-order gradient summation for all moments, and it is improved later
in this paper using a recent second-order gradient sum. The neural network is under
nonconvex conditions, so the latter method will perform better in this experiment.
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3.4. Attack Noise

The adaptive noise attack algorithm used in this paper adds a large amount of noise
to the data, and this noise is normally distributed. The disturbance value ∆x is added to
the FGSM algorithm to improve the gradient expansion mode. The disturbance value must
be as small as possible. The loss function after disturbance value training is larger than
that used by the gradient decrease method. At present, the model loss function is set to
L. The θ value generated during gradient expansion is determined. It is necessary to find
∆x to attack the model and decrease its performance; then, the L value is increased. The
gradient expands on X because only one attack sample does not have an obvious impact,
so repeated iteration is needed. After completing this process, the model input sample is X̂,
and the iteration leads to f

(
X̂
)
6= f (X).

The expression is as follows:

X′t = Xt−1 + lr ∗ ∂L
∂xt−1

(8)

where lr denotes to the learning rate and ∂L/∂x is the gradient of the loss function. After
this step, the attack sample X̂ can be better supervised. The iteration process is optimized
with AdaGrad.

Then, η ∼ n (µ, ∆) to sample multiple noise types from the normal distribution,
where µ = 0. This sampling method guarantees that the input sample x′ and the original
sample x after noise is added satisfy E[|X′ − X|]→ 0 . Then, the performance of ∆x is
controlled by controlling the size of hyperparameter δ. Because the normal distribution of
the selected sample is 0, the value of the noise to be distributed in the data sample after
noise superposition is still stable. Then, ε needs to be constrained to ensure that the level of
the formal difference in the normal distribution satisfies ‖ x− x ‖p6 ε. The added noise
may not negatively impact the model, and much noise should be sampled and screened.
The mathematical expression and its explanation are as follows:

η ∼ N(0, δ) (9)

This formula indicates that the N-group variance is a normal distribution of δ averaged
to 0. The square difference δ is adjusted according to the desired impact on ε. The highest
noise ηt that can maximize the loss function L( f (x + ∆x), y) is selected. Its mathematical
expression is:

ηt = argmax
η∈H
∈ L

(
f (It−1 + η), yt) (10)

where η is the choice of disturbance noise that can maximize the value of L.

It = Ht−1 + ϕ
(
X′ − (Ht−1 + αηt)

)
(11)

where It−1 refers to the attack sample of t− 1, and the algorithm continues attack training.
In addition, x̂− (It−1 + αηt) represents the difference in the vector dimensions of the other
effective attack samples. The setting of super parameter ϕ implies the presence of smaller
supervision, which can preserve the noise features to the maximum extent. However, this
also signals a reduction in the ability to attack, so multiple iterations are needed to find
effective attack data. After the selection is completed, the average value of X′ and the noise
need to be determined for our method.

Therefore, this article expands the gradient, and it performs multiple iterations to
obtain effective noise to achieve the purpose of the model. In addition, a Gaussian distribu-
tion with a mean of 0 is selected to control the level of the noise disturbance. The Gaussian
distribution based on the dynamics of ε is used to generate candidate interference σ0. The
samples select the X′ value with the highest loss function value and supervise the model
with that function.
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Finally, the minimum noise can be obtained by combining the two steps in the
above method.

As shown in Figure 1, with the blue arrow η and after confirming the effective attack
sample x̂, a new attack sample is created. The candidate disturbance is obtained after t
secondary iterations.
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Figure 1. The η attack generation process.

4. Results

SAR ship data are extremely scarce because they are difficult to collect and interpret.
For the public data set used in [30–34], the data scale is far smaller than that of the current
popular deep learning data set. There are many data differences: the sizes of the images
are different, the polarization methods are different, and the difference in the resolutions
is large. In this article, SSDD [35–41] data sets with complete scenes and many data
samples are used as the experimental data sets. In the following experiments, to control the
variables and exclude the interference factors that affect the results, we choose to compare
the algorithms on the same data set.

We previously designed a statistical adaptation loss function based on attention and
SAR ship data enhancement. Based on this model, we conduct related experiments on the
confrontation attack model.

Experimental procedure:
To test the generalized performance of the model, the overall data are divided into

three parts, i.e., α%, 20% and (100-20-α)% subsets, where α ∈ (20,60). These three subsets
are the training data, testing data, and verification data, respectively. In the experiment, to
ensure balanced training data and verification data, α = 50.

Moreover, 20% of the data are the regular test data of the model.
The attack samples are selected and added to the α% training data. The mixed α%

training data are entered into the model, and the model performs defensive training.
(100-20-α)% of the data are always unchanged, as is the case when verifying the

performance of third-party data test models. The reason for this is that it is difficult to find
third-party data with similar distributions, sizes and target sizes in the available data sets
to use as appropriate verification data. Therefore, using some data in their original format
as verification data is a way to adapt to the environment.

The first four sets of data in Figure 2 show that the attack effect directly leads to model
misses and misunderstandings. In Figure 2, although the target is still in the enclosure,
the detection box has shifted sharply. The detection box shift is also a manifestation of the
decline in the accuracy of the detection model after the attack.
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Figure 2. Comparison of the detection effect before and after the attack (The (a,c,e,g,i,k,m) panels
show the detection effects of the models before the attacks. The (b,d,f,h,j,l,n) panels show the
detection effects of the models after the attacks.).
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5. Data Analysis
5.1. Attack Experiment

Table 1 shows the attack effects of different attack methods.

Table 1. Comparison of the effects of different attack methods.

Attack Precision Recall Success Rate mAP

Original 97.02 97.62 0 97.88

Random Noise 93.12 93.36 6.2 93.58

FGSM 18.65 19.12 79.23 19.21

AdvGAN 16.53 17.12 80.18 17.32

SI-NI 15.52 15.68 82.69 16.12

TIM 14.32 14.65 84.76 14.87

NAA 11.27 11.83 82.5 11.86

To evaluate object detection models, the mean average precision (mAP) [41] is used.
The mAP of the original data is 97.88 when there is no attack. The attack effect of random
noise on the model is not obvious, but the mAP is slightly reduced, by 4.3%.

When our NAA method is used, the checking rate and recall rate are the lowest.
Compared with the several other attack methods in the table, our attack method is better.
Moreover, the disturbance rate is the lowest, and the results prove that the data after
interference are very close to the original image. The success rate of the NAA offense is
high, and the generalization performance is the best. Even when the attack power of NAA
is not the highest, the performance of the model after the defence procedures are applied is
very high.

It can be seen that FGSM is infinitely iterated and damaged. Compared with FGSM,
NAA is weak. The success rate of our NAA model is slightly higher than that of several
other attack methods. All the attacks cannot be seen with the naked eye. Our purpose is to
explore the impact of attack noise on a model when the disturbance rate is very low. The
high and low significance of the disturbance rate indicator is not significant, and the naked
eye cannot distinguish the images when the disturbance rate is low. This attack method can
be used improve the defence performance of detection models so that the overall defence
success rate will not decrease significantly.

5.2. Defensive Experiment

Creating simple attack models is not our goal. Our goal is to find a way to resist these
attacks. Therefore, a series of defensive experiments are conducted.

The previously mentioned defence experiments are used to show effectiveness of
a defence model in combating attack data when they are masked in the training data.
The defence effect obtained by the training model is shown in Table 2. Compared with
the results in Table 1, it can be seen that the accuracy of the detection model after the
defence procedure has improved significantly. The attack samples generated by the NAA
method are significant. These samples are better than other attack samples for model
defence training.

Table 2. Defence effect comparison of different attack methods.

Attack Precision Recall mAP

FGSM 95.28 95.72 95.94

SI-NI 95.87 96.28 96.42

NAA 96.21 96.71 96.82
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We are very interested in exploring the performance of the model before and after
defence training. To understand the real situation, we performed a set of comparative
experiments. Using the data division method mentioned earlier, the overall data are divided
into three parts, α%, 20% and (100-20-α)%, where α ∈ (20, 60). α% of the data are used
as training data, 20% are used as test data, and the remaining (100-20-α)% are used as
verification data. In the experiment, to ensure balanced training data and verification data,
α = 50.

Table 3 shows the performance of the model on the 20% test set after using the α%
data to fight the attack. This is because of the scarcity of SAR ship data and the very large
differences in public data. In general, the variables must be controlled, and the data changes
must be objectively reflected. This makes the model perform poorly because the training
data are insufficient. However, this does not affect the anti-defence effect of our observation
and comparison models. The focus of our attention is the trend of the data change.

Table 3. Test of the detection effect on the test sets when no defence training is applied.

Attack Precision Recall mAP

FGSM 12.12 12.23 12.36

SI-NI 10.21 10.52 10.72

NAA 5.69 5.95 6.42

The data shown in Table 4 use the α% data training model to verify the detection
effect on the (100-20-α)% data set. Attack-response training is not used for the verification
data set; it is only used for testing, and the purpose is to compare it with the model after
defence training.

Table 4. Verification data test results when no defence training is applied.

Attack Precision Recall mAP

Original 78.62 78.82 79.02

For the results shown in Table 5, the α% data are used to train the models, and then
the α% data are used as confrontation data for defensive training. The detection effect is
verified on the (100-20-α)% data set.

Table 5. Defence training verification test results.

Attack Precision Recall mAP

FGSM 78.63 78.83 79.03

SI-NI 79.17 79.24 79.23

NAA 83.52 83.36 84.58

Notably, in Tables 3–5, the experimental data designed for Tables 4 and 5 can be used
in multiple tests (cross-verification). In each experiment, the data are verified to ensure the
objectivity and fairness of the results.

The experimental results show that compared with the defensive monitoring model,
the mAP obtained by attack-sample defence training is improved.

It can be seen from the comparison of Tables 4 and 5 that NAA confrontation defence
training improves the detection performance on the third part of the data. In the com-
parison experiments, due to the decrease in the amount of training data, the overall data
performance is lower than that in Tables 1 and 2. However, from the overall data, it can
still be seen that the generalization ability of the model is increased.
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6. Conclusions

Here, we address the original questions of the study. Gaussian distributed noise
with a preset average value of 0 is added to the original data as confrontation attack data.
Compared with other random noise types, Gaussian distributed noise is more similar to
actual noise data. The gradient expansion method is used to combine the noise to fight
against attack methods generated by adapting the attack algorithm. This attack method has
a strong negative effect on the SAR ship detection model, it can greatly reduce the accuracy
of the identification results obtained by the ship model, and it has a lower disturbance
rate. The attack data that are screened during training can effectively improve the defence
capabilities of the model. The anti-defence ability of defence training and the generalization
ability of the model are strong.
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