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Abstract: Wideband spectrum sensing is a challenging problem in the framework of cognitive ra‑
dio and spectrum surveillance, mainly because of the high sampling rates required by standard
approaches. In this paper, a compressed sensing approach was considered to solve this problem,
relying on a sub‑Nyquist or Xsampling scheme, known as a modulated wideband converter. First,
the data reduction at its output is performed in order to enable a highly effective processing scheme
for spectrum reconstruction. The impact of this data transformation on the behavior of the most
popular sparse reconstruction algorithms is then analyzed. A new mathematical approach is pro‑
posed to demonstrate that greedy reconstruction algorithms, such as Orthogonal Matching Pursuit,
are invariant with respect to the proposed data reduction. Relying on the same formalism, a data
reduction invariant version of the LASSO (least absolute shrinkage and selection operator) recon‑
struction algorithm was also introduced. It is finally demonstrated that the proposed algorithm pro‑
vides good reconstruction results in awideband spectrum sensing scenario, using both synthetic and
measured data.

Keywords: Xsampling; modulated wideband converter; compressed sensing; data reduction; OMP
algorithm; LASSO algorithm; wideband spectrum sensing

1. Introduction
The researchwork presented in this paper ismainly related to thewideband spectrum

sensing problem, which consists of detecting the occupied or active frequency bands, at a
given moment and in a given place, over a very large frequency domain (e.g., larger than
1 GHz). This information is necessary for cognitive radio systems [1] but also for some
spectrum monitoring‑related civil and military applications [2,3].

In this framework, standard spectral analysis methods resulted in heavy or impracti‑
cal spectrum sensing architectures because of the very high sampling frequency required
and the huge quantity of data to be processed. Since a finite‑dimensional signal with a
sparse or compressible representation can be recovered exactly from a small set of linear,
non‑adaptive measurements [4], the compressed sensing approach [5–8] allows the input
sampling constraint to be relieved by taking advantage of the spectrum sparsity [9]. The
new constraint is then that at a given time and in a given location, only a small part of
the whole monitored frequency band is really occupied. Hence, by taking advantage of
this spectrum sparsity, instead of first sampling at a high rate and then compressing the
sampled data before processing, the data can be directly sensed at a lower sampling rate
in a compressed form.

A recent survey of wideband spectrum sensing approaches with special attention
paid to approaches that utilize sub‑Nyquist sampling techniques can be found in [10], and
ref. [11] provides an overview of recent advances in this domain.

The general wideband spectrum sensing scheme considered in this paper is given in
Figure 1. The first stage of the processing chain is represented by the MWC (modulated

Sensors 2023, 23, 2263. https://doi.org/10.3390/s23042263 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042263
https://doi.org/10.3390/s23042263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1427-4577
https://orcid.org/0000-0002-0819-6285
https://orcid.org/0000-0003-3570-1061
https://doi.org/10.3390/s23042263
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042263?type=check_update&version=2


Sensors 2023, 23, 2263 2 of 20

wideband converter) [12,13], which is able to sample the received signal at a much lower
rate than the Nyquist limit (FNyquist), without any information loss, provided that its fre‑
quency content is sparse enough. This specific Xsampling method is considered here just
because it has been actually used to obtain the experimental results discussed in Section 5,
but it is worth noting that some other competing techniques have been also proposed over
these last few years.
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ture and can be implemented with one channel at the cost of more sampling time. As a 
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Thus, ref. [14] describes and discusses an Xsampling architecture named analog‑to‑
information converter (AIC), which aims at acquiring efficiently wideband signals. A
blind sub‑Nyquist sampling approach, referred to as the quadrature analog‑to‑information
converter (QAIC), is proposed in [15]. It relaxes the analog frontend bandwidth require‑
ments at the cost of some added complexity compared to MWC for an overall improve‑
ment in sensitivity and energy consumption. A novel random triggering‑based modu‑
lated wideband compressive sampling (RT‑MWCS) method is also proposed in [16] to
facilitate the efficient realization of sub‑Nyquist rate compressive sampling systems for
sparse wideband signals. Compared to MWC, RT‑MWCS has a simple system architec‑
ture and can be implemented with one channel at the cost of more sampling time. As
a last example, a single channel modulated wideband converter (SCMWC) scheme for
the spectrum sensing of band‑limited wide‑sense stationary (WSS) signals was introduced
in [17]. With one antenna or sensor, this scheme can save not only sampling rates but also
hardware complexity.

Since the contribution presented in this paper is independent of the type of Xsampling
scheme, the MWC architecture was selected for the reason mentioned above. It consists
ofM identical parallel signal processing paths, with a wideband input signal x(t) on each
of them being multiplied with a different Tp‑periodical binary random signal, low‑pass
filtered, sampled at Fs ≪ FNyquist, and analog to digital converted. Note that Fs, the most
often equal to 1/Tp, is also twice the cut‑off frequency of the low‑pass filter.

The MWC output then consists of an M × N matrix Y, where N is the number of
samples required to ensure a given spectral resolution andM ≤ N.

The matrix Y could be directly used as an input for the sparse data reconstructor,
which can be solved with the equation below:

Y = WHZ, (1)

under the sparsity hypothesis for the expected solution, i.e., the L × N matrix Z. The
L ×MmatrixW involved in Equation (1) is known, its elements being calculated directly
from the periodical binary random signals (scramblers) used by the MWC.

In the compressed sensing approach, the price to pay for the reduction in the input
sampling rate is the additional processing required by the signal recovery. The dimension
of the input matrix Y for reconstruction is then of particular importance. Since typical
values ofNmay be very large, it is proposed to reduce the data matrix Y before sparse data
reconstruction. Compared to state‑of‑the‑art published research ([18–20]), our approach
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directly exploits the intrinsic sparsity of the matrix Y. Hence, rather than using it as input
for the sparse data reconstructor, the following matrix is considered instead:

Yr = YVY, (2)

where VY is the N × M matrix provided by the “economy size” singular value decompo‑
sition (SVD) of the matrix Y, i.e.:

Y = UYSYVH
Y . (3)

In this way, the sparse data reconstructor will work with an M × M instead of an
M × N input matrix, which considerably reduces the computational burden for large val‑
ues of N. Actually, problem (1) can be rewritten as follows:

Yr = WHZr, (4)

where Zr = ZVY.
Note that the sparse data reconstructor also requires the estimation of the number of

active frequency bands Nb. This task can be carried out by different algorithms, such as the
information‑theoretic criteria [21], whichmakes use of theM singular values ofY provided
by the diagonal of the SY matrix.

The reduced data matrix Yr and the estimated number of active frequency bands Nb
are then used in the next stage to find out the sparse problem solution Zr through a greedy
algorithm, such as OMP (orthogonal matching pursuit) [22,23], or an optimization‑based
one, such as LASSO (least absolute shrinkage and selection operator) [24,25]. In [26], the
authors showed that LASSO was a suitable choice for compressive spectrum sensing and
recovery in wideband 5G cognitive radio networks.

As will be demonstrated in this paper, greedy algorithms are already data reduction
invariant and do not require any modification when being used in this framework. How‑
ever, the standard LASSO algorithm does not have this useful property because of the
standard l1 norm, which is involved in the optimization process.

In order to overcome this drawback of the standard LASSO algorithm, a new data
reduction invariant l1 norm was first introduced to replace the standard l1 norm in the
optimization process. Then, it was demonstrated that the newly defined version of the
LASSO algorithm became data reduction invariant. To the best of our knowledge, this is
the only data reduction invariant version of the LASSO algorithm proposed so far in the
literature.

Finally, once the matrix Zr is provided by the sparse data reconstructor, the input
signal spectrum is estimated, and the threshold is determined in order to make a decision
about the active frequency bands.

The rest of the paper is organized as follows. In Section 2, it is demonstrated that
greedy algorithms for sparse signal reconstruction are already data reduction invariant.
The new version of the LASSO algorithm was introduced in Section 3, and its invariance
with respect to data reduction was also demonstrated. The performance of the proposed
algorithm is finally evaluated using both simulated and measured data in Sections 4 and 5
respectively, while Section 6 summarizes the research work presented in this paper and
provides some conclusions about its results. Some mathematical preliminaries are also
provided in Appendix A; the standard OMP algorithm is briefly recalled in Appendix B,
while the data reduction invariance of the newly defined l1 norm is demonstrated
in Appendix C.

The general notations used in this paper are as follows. Matrices and vectors are de‑
noted by symbols in boldface, including uppercase for matrices and lowercase for vectors.
(.)T and (.)H represent complex transpose and Hermitian operators, respectively. IM de‑
notes theM ×M identity matrix. ∥ · ∥k and ∥ · ∥F stand for the lk norm and the Frobenius
norm, respectively. Some other specific notations are defined in the next sections.
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2. Data Reduction Invariance of Greedy Algorithms
In this section, it is shown that greedy reconstruction algorithms are invariant with

respect to data reduction. Although the invariance property is demonstrated for the OMP
algorithm only, this result can be extended by similarity to the other algorithms of this
class, such as a compressive samplingmatching pursuit (CoSaMP) [27,28] or IterativeHard
Thresholding (IHT) [8,29]. Also note that while an extensive comparison between the pro‑
posed algorithm and OMP is carried out in the next section, in terms of the mean square
error and detection probability, some results obtained by the CoSaMP and IHT algorithms
on measured data are provided as well in Section 4.

Let us consider the two problems corresponding to the original and reduced data
matrix, respectively:

Y = WHZ,
Yr = WHZr,

(5)

where Yr = YVY and Zr = ZVY, as already mentioned above.
Let us also define the following notations:

• Jk: a subset of {1, . . . , L} with 0 ≤ card{Jk} ≤ M formed by the indices of non‑zero
rows of the solution Ẑk, at the kth iteration;

• WH
(k): the M× card{Jk}matrix formed with the columns ofWH whose indices belong

to Jk;
• Ẑ(k): the card{Jk} × N optimized matrix;
• ΠY = VYVH

Y .
It can be readily noticed that the matrix ΠY is a projector, since Π2

Y = ΠYΠY =

VYVH
YVY︸ ︷︷ ︸
IM

VH
Y = VYVH

Y = ΠY.

Let us finally denote by Fix{Y} the set of all matrices A invariant with respect to ΠY
(fixed points of the projector), so that:

A ∈ Fix{Y} ⇔ AΠY = A (6)

For the first problem in Equation (5), the residual can be written as follows:

R(k) = Y−WH
(k)Ẑ

(k), (7)

where:

Ẑ(k)
=
(
W(k)W

H
(k)

)−1
W(k)Y =

(
W(k)W

H
(k)

)−1
W(k)UYSY︸ ︷︷ ︸

Ẑ(k)
r

VH
Y

Lemma 2⇒ Ẑ(k) ∈ Fix{Y}. (8)

Since Y ∈ Fix{Y}, according to Lemma A1 and Lemma A3 (see Appendix A), the
Equations (7) and (8) result in:

R(k) ∈ Fix{Y}. (9)

For the second problem in Equation (5), the residual can be written as follows:

R(k)
r = Yr −WH

(k)Ẑ
(k)
r = YVY −WH

(k)Ẑ
(k)
r , (10)

where:

Ẑ(k)
r =

(
W(k)W

H
(k)

)−1
W(k)Yr =

(
W(k)W

H
(k)

)−1
W(k)Y︸ ︷︷ ︸

Ẑ(k)

VY ⇒ R(k)
r = YVY −WH

(k)Ẑ
(k)VY =

(
Y−WH

(k)Ẑ
(k)
)

︸ ︷︷ ︸
R(k)

VY
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⇒
{

Ẑ(k)
r = Ẑ(k)VY

R(k)
r = R(k)VY

. (11)

Since it has already been shown that Ẑ(k),R(k) ∈ Fix{Y}, multiplying Equation (11)
at the right side by VH

Y results in:{
Ẑ(k)

r VH
Y = Ẑ(k)

ΠY

R(k)
r VH

Y = R(k)ΠY
⇒
{

Ẑ(k)
r VH

Y = Ẑ(k)

R(k)
r VH

Y = R(k)
, (12)

and finally:
∥R∥ = ∥Rr∥. (13)

Hence, reducing the data matrix does not modify the residual norm. Consequently,
taking into account the bijective relationship (11) between Ẑ(k) and Ẑ(k)

r , since the OMP
algorithm aims at minimizing the residual norm, it can operate as well on the reduced
data matrix without changing the final result.

Furthermore, the key elements involved in the OMP algorithm are the scalar products
between theWH matrix columns and the residual. More precisely, the relevant information
is contained in the diagonal of the matrix below:

(WR)(WR)H =
(
WRrVH

Y

)(
WRrVH

Y

)
= WRr VH

YVY︸ ︷︷ ︸
IM

RH
r WH

⇒ (WR)(WR)H = (WRr)(VRr)
H . (14)

Hence, this matrix does not change when using a reduced data matrix instead of the
original one. Consequently, there exists an isomorphism between the intermediate cal‑
culations required by the OMP algorithm running on the two data matrices since all the
intermediate variables are linked by bijective relationships, and all the elements involved
in the decision‑making steps (i.e., residual norm and scalar products) are invariant.

3. Data Reduction Invariant Version of LASSO Algorithm
A new version of the LASSO algorithm, invariant to data reduction, is introduced in

this section. A key point to keep in mind is that it operates on the reduced data matrix, as
explained in the previous section, and therefore, it optimizes Zr instead of Z, which results
in a significant complexity reduction. Since Z = ZrVH

Y , the sparse solution can be then
easily recovered from the optimized matrix.

In the case of the standard LASSO algorithm, Ẑr is obtained as a solution of the fol‑
lowing optimization problem:

Ẑr = min
Zr

C(Zr) = min
Zr

[
(1/2)∥Yr −WHZr∥

2
2 + λ∥Zr∥1

]
. (15)

The objective function C(Zr) is not invariant with respect to data reduction because
of the l1 norm ∥Zr∥1. Indeed, ∥Zr∥1 = ∥ZVY∥1, which is not equal to ∥Zr∥1. Hence, it is
proposed to replace it with the modified l1 norm ∥Zr∥1,inv, defined as follows:

∥Zr∥1,inv = Tr
{√

ZrZH
r

}
. (16)

It canbe readily noticed that this newlydefinednorm isdifferent from theFrobeniusnorm
because of the square root under the trace operator. According to Equations (A4) and (16), it is
also data reduction invariant (see Appendix C for further details), so it is called the “invariant
l1 norm”.
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Consequently, if the initial solution (LASSO starting point) belongs to Fix{Yr}, the
final solution of the data reduction invariant LASSO algorithm can be obtained from:

Ẑr = min
Zr

Cinv(Zr) = min
Zr

[
(1/2)∥Yr −WHZr∥

2
2 + λ∥Zr∥1,inv

]
. (17)

In order to properly describe the LASSO algorithm in its new invariant form, let us
consider the following notations:
• Z(−i): matrix Zr without its ith row;
• Z(−i): the matrix Zr without its ith column;
• Z(i): the ith row of the matrix Zr;
• Z(i): the ith column of the matrix Zr.

One of the basic ideas of the LASSO algorithm is to transform the multidimensional
optimization problem (17) into a set of mono‑dimensional optimization problems.

This is conducted by expressing the objective function as a sum of two terms, the
first one depending on only one component of Zr, and the second one depending on all its
other components. Thus, the objective function can be optimized successively with respect
to each component of Zr, which is equivalent to globally optimizing it with respect to all
its components.

The problem related to the introduction of the new invariant l1 norm ∥Zr∥1,inv is that
it is not possible anymore to separate a given component of Zr because of the square
root function.

By denoting T = WH , the following expression holds:

R = Yr −WHẐr = Yr − TẐr = Yr −
(
T(−i)Ẑ(−i) + T(i)Ẑ(i)

)
⇒ R =

(
Yr − T(−i)Ẑ(−i)

)
− T(i)Ẑ(i). (18)

According to the definition of the invariant l1 norm, it can be also written as:

∥Ẑr∥1,inv = ∥Ẑ(−i)∥1,inv
+ ∥Ẑ(i)∥1,inv

= ∥Ẑ(−i)∥1,inv
+ ∥Ẑ(i)∥2

. (19)

Let us also denote:
Rpart(i) = Yr − T(−i)Ẑ(−i). (20)

Cinv(Zr) then becomes:

Cinv(Zr) = (1/2)∥Rpart(i) − T(i)Ẑ(i)∥
2

2
+ λ

(
∥Ẑ(−i)∥1,inv

+ ∥Ẑ(i)∥2

)
= (1/2)∥Rpart(i)∥

2
2
− Tr

{
Re
[
RH

part(i)T
(i)Ẑ(i)

]}
+ (1/2)∥T(i)Ẑ(i)∥

2

2
+ λ

(
∥Ẑ(−i)∥1,inv

+ ∥Ẑ(i)∥2

)
⇒ Cinv(Zr) = [(1/2)∥Rpart(i)∥

2
2
+ λ∥Ẑ(−i)∥1,inv

]

+[(1/2)∥T(i)Ẑ(i)∥
2

2
+ λ∥Ẑ(i)∥2

− TrRe[RH
part(i)T

(i)Ẑ(i)]].
(21)

Focus now only on the second term of Cinv(Zr) since the first one does not depend on
Z(i). Let us also define the following notations:

µ = ∥Ẑ(i)∥2
, z̃ = Ẑ(i)/∥Ẑ(i)∥2

,
a = RH

part(i)T
(i), b = T(i).

(22)

Hence, the objective function becomes:

Cinv(z̃, µ) = (1/2)µ2∥bz̃∥2
2 + λµ− µRe[z̃a]. (23)
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The value of µ minimizing Cinv(Zr) can be then obtained from:

∂Cinv(z̃)
∂µ

= 0⇒ µ =
Re[z̃a]− λ

∥bz̃∥2
2

. (24)

If Equation (24) yields a negative value for µ, take µ = 0 since µ ≥ 0 according to
Equation (22).

For a fixed value of µ, by keeping only the termsdepending on z̃, the objective function
to be minimized with respect to z̃ can be written as:

C′ inv(z̃, µ) = (1/2)µ∥bz̃∥2
2 − Re[z̃a],

subject to : ∥z̃∥2
2 − 1 = 0.

(25)

Lagrange’s multipliers method leads to the following objective function:

F(z̃, θ) = (1/2)µ∥bz̃∥2
2 − Re[z̃a] + (θ/2)

(
∥z̃∥2

2 − 1
)

. (26)

where θ stands for the Lagrange multiplier.
Developing Equation (26) to make the components of z̃ appear results in:

F(z̃1, z̃2, . . . , z̃M, θ) = (1/2)µ∑
k

∑
l
|bk|2|z̃l |2 − ∑

l
Re[al z̃l ] + (θ/2)

(
∑
l
|z̃l |2 − 1

)
= (1/2)µ∥b∥2

2∑
l
|z̃l |2 − ∑

l
Re[al z̃l ] + (θ/2)

(
∑
l
|z̃l |2 − 1

)
.

(27)

The phase z̃l is involved only in the product al z̃l , and it can be readily seen that F is
minimized when:

arg{z̃l} = −arg{al}, (28)

so that:

F(z̃1, z̃2, . . . , z̃M, θ) = (1/2)µ∥b∥2
2∑

l
|z̃l |2 − ∑

l
|al ||z̃l |+ (θ/2)

(
∑

l
|z̃l |2 − 1

)
. (29)

The value of |z̃l | that minimizes F is then obtained from:

∂F
∂|z̃l |

= 0⇒ µ∥b∥2
2|z̃l | − |al |+ θ|z̃l | = 0

⇒ |z̃l | =
|al |

µ∥b∥2
2 + θ

. (30)

From Equations (28) and (30), it can be inferred that:

z̃ = ηaH , (31)

and because z̃ is a unit vector, it can be finally expressed as:

z̃ = aH/∥a∥2. (32)

In practice, z̃ is first calculated using Equation (32), then µ is evaluated from Equation
(24); the value of λ is estimated using the cross‑validation method [30]. Finally, Ẑ(i) = µz̃
is computed from Equation (22).

Algorithm1below summarizes the processingflowassociatedwith the proposeddata
reduction invariant LASSO technique.
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Algorithm 1 Processing flow for the proposed data reduction invariant LASSO technique

Input: M × N matrix Y at the output of the MWC scheme,M × L X sampling‑related matrix
T = WH and N ×Mmatrix VY, obtained from the SVD of the Ymatrix using Equation (3).
Initialization:
  Compute Yr = YVY according to Equation (2).
  Take an initial solution for the L ×Mmatrix Ẑr belonging to Fix{Yr}.
  Find the optimal λ value using the cross‑validation method [30].
For i←1 to L, do
  Obtain the matrices T(−i) and Ẑ(−i) by removing the ith column from the matrix T and the
ith row from the matrix Ẑr, respectively.
  In addition, obtain the ith column of matrix T and denote it by b = T(i).
  Calculate Rpart(i) = Yr − T(−i)Ẑ(−i) according to Equation (20).
  Calculate a = RH

part(i)T
(i) according to Equation (22).

  Calculate z̃ = aH/∥a∥2 according to Equation (32) and then µ =
Re[z̃a]−λ

∥bz̃∥2
2

according to
Equation (24).
  Calculate Ẑ(i) = µz̃ according to Equation (22).
  Update the estimated solution Ẑr by replacing its ith row with Ẑ(i).
End for
Output: Calculate the final estimated solution, i.e., the L × N matrix Ẑ = ẐrVH

Y .

A comparison of complexity can be finally performed between the proposed algo‑
rithm and the standard one. Thus, based on Algorithm 1 presented above, it can be read‑
ily established that the complexity is reduced from O

(
MNL2) for the standard LASSO

to O(MN(L + M)) for the data invariant LASSO algorithm. It can be noticed that the
complexity gain increases with the value of L since the proposed algorithm reduces its
quadratic dependence on this parameter to a linear one. An additional complexity result
is provided in the next section in terms of the number of multiplications for a given set of
simulation parameters.

4. Simulation Results
This section aims to illustrate the performance of the proposed invariant LASSO

algorithm in a simulated wideband spectrum sensing scenario characterized by the
following parameters:
• Monitored frequency band: −1GHz ≤ ν ≤ 1GHz;
• The number of active frequency bands: Nb = 8;
• Bandwidth of each active frequency band: B = 20MHz;
• Spectral resolution: ∆ν = 30.518kHz;
• The number of MWC parallel processing paths M = 21;
• Sampling frequency on each path: Fs = Fp = 31.25MHz;
• The number of samples acquired on each path N = 1024.

Note that for this set of parameters, the sizes of thematrices Y and Z are lowered from
21 × 1024 and 32 × 1024, to 21 × 21 and 32 × 21, respectively. It can be also noticed that
given the real nature of the analyzed signal, the eight active frequency bands have to be
considered by couples of two so that they actually correspond to four transmitters.

Figure 2 shows the variation in the cost function during the cross‑validation pro‑
cess. Its minimum value is obtained for λ ∼= 2 · 10−4. This value of λ does not depend
on the noise level and is used by the invariant LASSO algorithm, as explained in the
previous section.
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Figure 2. Choice of optimal λ value (red circle) using the cross‑validation method.

Figure 3 illustrates the newalgorithmperformance for two signal‑to‑noise ratios (SNR),
i.e., 30 dB and 10 dB, respectively. Note that these two values are in‑band SNRs since they
are measured only within the active bands. If the same SNRs are calculated over the whole
monitored band, they correspond to 19 dB and −1 dB, respectively.
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Figure 3. Wideband spectrum sensing results obtained using the invariant LASSO algorithm, for an
In‑band SNR of (a) 30 dB; (b) 10 dB.

As can be readily seen, the active bands are very well reconstructed for an in‑band
SNR = 30 dB, and they can be perfectly detected using an appropriate threshold, which is
iteratively and blindly updated, as has also been already proposed in [31].

For an in‑band SNR = 10 dB, although the results are still exploitable, the algorithm
reaches its limits. This can be explained by the fact that the LASSO algorithm introduces
an SNR loss in the reconstructed bands of about 11 dB in this configuration. Indeed, as
can be noticed from Figure 3b, SNR loss leads to the increasingly challenging detection of
active bands, as well as higher false alarm rates and bandwidth estimation errors.
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In order to evaluate the complexity gain for the considered set of simulation parame‑
ters (M = 21, L = 32), the number of multiplications is also shown in Figure 4 for
N ∈ {512, 1024, 2048, 4096}. It can be noticed that a significant complexity reduction is
obtained using the proposed algorithm, which becomes even slightly larger with the value
of N.
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Figure 4. Complexity gain comparison in terms of number of multiplications.

The performance of the new algorithm was finally evaluated for a wide range of in‑
band SNR (5–30 dB) and false alarm probabilities (10−6− 10−1) in terms of the normalized
mean error and detection rate (Figure 5). The same parameters provided by the OMP
algorithm were also plotted for comparison purposes.
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Figure 5. Performance comparison betweenOMPandLASSOalgorithms in terms of: (a)Normalized
mean error; (b) Mean detection rate.

These two performance parameters have been obtained at the output of a “threshold
and detect” scheme, using Monte‑Carlo simulations with 1000 independent noise realiza‑
tions and random positions of the active frequency bands. The threshold is calculated to
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keep the false alarm rate constant at the output of this scheme. The normalized error is
then obtained as a complement with respect to one of the relative numbers of threshold
overruns inside the active frequency bands. The detection rate is calculated as the relative
number of detected frequency bands. Note that a frequency band is considered as being
detected if there is at least one threshold overrun inside it.

The results depicted here have been obtained for a false alarm probability of 10−3, but
they are similar to the other false alarm probabilities in the range above. It can be noticed
that the performances of the two algorithms are close. However, the proposed algorithm
appears to be more robust to noise, while OMP provides a slightly better detection rate for
high SNRs.

5. Experimental Results
The proposed data reduction invariant LASSO was also evaluated using measured

data. Our experimental testbed is shown in Figure 6, and its block diagram, including the
external instruments, is provided in Figure 7. It is based on a 4‑channels MWC analog
board, which is described in more detail in a previously published paper [13], and is able
tomonitor wideband spectral domains up to 1 GHz. Table 1 provides themain parameters
of our experimental testbed.
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Figure 6. Experimental testbed for the evaluation of data reduction invariant LASSO algorithm.

Our analog front‑end board for compressed sampling with its four physical channels
is shown in Figure 8, while Figure 9 illustrates its operating principle. On input, an SCA‑
4‑10+ splitter from Mini‑Circuits©, with less than 7 dB loss, was used to provide the input
signal to the four channels.

Similar to channel 2 depicted in Figure 9, each channel included an M1‑0008 mixer
from MArki©. The mixer receives an amplified radio‑frequency signal to analyze its RF
input and a pseudo‑random modulating waveform on its LO input.

The mixer output (IF) goes through a low‑pass filter, which is an SXLP‑36+ low‑pass
filter fromMini‑Circuits©, with a 3 dB cut‑off frequency of 40 MHz. This filter was chosen
because it has a very flat response (variations lower than 1 dB) from the 0 to 36 MHz band
and a sharp cut‑off above this band.
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Table 1. Main parameters of the experimental testbed used to evaluate the proposed algorithm.

Parameter Symbol Value

Number of physical channels M 4
Nyquist frequency FNyq 1 GHz
Length of scramblers L 96

Scramblers repetition frequency Fp = FNyq/L 10.41667 MHz
ADC sampling frequency Fs 104.1667 MHz
Measured samples/channel N 448

Spectral resolution ∆ν = FNyq/(L× N) 23.251 kHz

For our experiments, the radio‑frequency signal was provided by a Keysight 81180A
arbitrary waveform generator. An Avnet ML605 DSP Kit, as shown in Figure 10, was also
used to generate the pseudo‑randommodulating waveforms. It included a Xilinx Virtex‑6
FPGA, as well as digital‑to‑analog and analog‑to‑digital capabilities. Moreover, it enables
the selection of each channel sequence from a compiled list. If necessary, recompilation al‑
lows new sequences to be added or changes some parameters, such as the bit rate. The em‑
bedded Gigabit‑Transceiver X (GTX) high‑speed Serializer‑Deserializer transceivers from
0 to 3 were connected to channels 1--4 of the front‑end analog board.
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Figure 9. Illustration of the operating principle of our analog front‑end board.

A DSO90404A Agilent Infiniium 4‑channel oscilloscope was used to acquire the out‑
put signals and save them. To synchronize the acquisition with respect to the modulating
waveforms, a pulse signal was generated by the GTX 7 of the ML605 board and plugged
into the oscilloscope external trigger.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21 
 

 

 

Figure 8. Photo of our analog front-end board. 

 

Figure 9. Illustration of the operating principle of our analog front-end board. 

For our experiments, the radio-frequency signal was provided by a Keysight 81180A 

arbitrary waveform generator. An Avnet ML605 DSP Kit, as shown in Figure 10, was also 

used to generate the pseudo-random modulating waveforms. It included a Xilinx Virtex-

6 FPGA, as well as digital-to-analog and analog-to-digital capabilities. Moreover, it ena-

bles the selection of each channel sequence from a compiled list. If necessary, recompila-

tion allows new sequences to be added or changes some parameters, such as the bit rate. 

The embedded Gigabit-Transceiver X (GTX) high-speed Serializer-Deserializer transceiv-

ers from 0 to 3 were connected to channels 1–4 of the front-end analog board. 

 

Figure 10. Avnet ML605 DSP Kit used for the generation of modulating waveforms. 

A DSO90404A Agilent Infiniium 4-channel oscilloscope was used to acquire the out-

put signals and save them. To synchronize the acquisition with respect to the modulating 

waveforms, a pulse signal was generated by the GTX 7 of the ML605 board and plugged 

into the oscilloscope external trigger. 

Figure 10. Avnet ML605 DSP Kit used for the generation of modulating waveforms.

The acquisition systemwas calibrated using the approach described in [32]. Figure 11
shows the relative error between the observed and predicted system output, as a function
of output frequency, for the calibrated system and for the uncalibrated one, which clearly
demonstrates the interest in the calibration stage. The relative error was evaluated using a
formula similar to the criterion considered in [33]:

ε( f ) = 20 log10

(
∥o( f )− p( f )∥
∥o( f )∥

)
. (33)

Here o(f ) denotes the observed output signal corresponding to the subband centered
on f (the whole frequency band of the signal at the output of the acquisition system has
been divided into 28 subbands). Similarly, p(f ) denotes the predicted output signal corre‑
sponding to the subband centered on f, which is predicted by the calibrated model or by
the theoretical model. In any case, even for the theoretical model, a calibrated low‑pass
filter is always included: the true frequency response of the filter is taken into account in
the related equations.
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The wideband spectrum sensing results provided by the proposed reconstruction al‑
gorithm, using original and reduced data, are shown in Figures 12 and 13 for 2 and 6 active
transmitters, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21 
 

 

  

(a) (b) 

Figure 12. Wideband spectrum sensing results provided by the proposed reconstruction algorithm 

for two active transmitters: (a) Original measured data; (b) Reduced data. 

For the scenario with six active transmitters, i.e., 12 active frequency bands (Figure 

13), the first five transmitters are well detected, while the last one seems to be lost. In 

addition to the fact that it is also close to the higher limit of the monitored frequency band, 

as in the previous case, there is another aspect that explains this result. Actually, with six 

transmitters to be detected instead of two, the expected solution is significantly less sparse 

than in the previous case, which leads to some reconstruction quality loss. 

However, it can be readily seen that the reconstruction results are slightly better, in 

terms of SNR and MSE, when the proposed algorithm runs on reduced data, as shown in 

Figure 13b. The execution time is also about 20 times shorter than when it runs on original 

data, which confirms the results presented in Figure 4. 

  

(a) (b) 

Figure 13. Wideband spectrum sensing results provided by the proposed reconstruction algorithm 

for six active transmitters: (a) Original measured data; (b) Reduced data. 

Finally, as already mentioned in Section 2, the reconstruction results obtained with 

two greedy algorithms, CoSaMP and IHT, are also illustrated in Figure 14 for the same 

Figure 12. Wideband spectrum sensing results provided by the proposed reconstruction algorithm
for two active transmitters: (a) Original measured data; (b) Reduced data.

For the scenario when two active transmitters, i.e., four active frequency bands, are
considered (Figure 12), it can be noticed that they are both well detected. The amplitude of
the upper‑frequency bands is lower than expected because the corresponding transmitter
carrier is close to the higher limit of the monitored frequency band. We have noticed that
the reconstruction is usually less reliable in this area, probably due to higher non‑linear
effects in the analog front‑end at very high frequencies, and it is interesting to see that the
transmitter is detected even in these difficult conditions.

For the scenariowith six active transmitters, i.e., 12 active frequency bands (Figure 13),
the first five transmitters are well detected, while the last one seems to be lost. In addition
to the fact that it is also close to the higher limit of the monitored frequency band, as in the
previous case, there is another aspect that explains this result. Actually, with six transmit‑
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ters to be detected instead of two, the expected solution is significantly less sparse than in
the previous case, which leads to some reconstruction quality loss.
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Figure 13. Wideband spectrum sensing results provided by the proposed reconstruction algorithm
for six active transmitters: (a) Original measured data; (b) Reduced data.

However, it can be readily seen that the reconstruction results are slightly better, in
terms of SNR and MSE, when the proposed algorithm runs on reduced data, as shown in
Figure 13b. The execution time is also about 20 times shorter than when it runs on original
data, which confirms the results presented in Figure 4.

Finally, as already mentioned in Section 2, the reconstruction results obtained with
two greedy algorithms, CoSaMP and IHT, are also illustrated in Figure 14 for the same
measured data scenario with six transmitters. Note that there seems to be less noise on
these images just because, contrariwise to LASSO, in the case of greedy algorithms, the
spectrum is reconstructed only inside the detected active bands. However, as illustrated
in Figure 14, they are more likely to miss some transmitters and generate false alarms.
They can also be subject to bandwidth estimation errors if further processing is carried
out to extract more information related to the detected bands. Note that this kind of post‑
processing is out of the scope of the paper and is mentioned here only to illustrate the
limitations of CoSaMP and IHT algorithms.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21 
 

 

measured data scenario with six transmitters. Note that there seems to be less noise on 

these images just because, contrariwise to LASSO, in the case of greedy algorithms, the 

spectrum is reconstructed only inside the detected active bands. However, as illustrated 

in Figure 14, they are more likely to miss some transmitters and generate false alarms. 

They can also be subject to bandwidth estimation errors if further processing is carried 

out to extract more information related to the detected bands. Note that this kind of post-

processing is out of the scope of the paper and is mentioned here only to illustrate the 

limitations of CoSaMP and IHT algorithms. 

  

(a) (b) 

Figure 14. Wideband spectrum sensing results for six active transmitters obtained using two greedy 

algorithms: (a) CoSaMP; (b) IHT. 

6. Conclusions 

This paper introduces a new idea for designing a highly effective wideband spectrum 

sensing system, which consists of reducing the data matrix at the output of the Xsampling 

MWC scheme. The second contribution of this paper is the demonstration of data reduc-

tion invariance on greedy sparse reconstruction algorithms. Finally, our most important 

contribution presented in this paper is a new version of the LASSO algorithm, which is 

also invariant with respect to the same criterion. Coupled with the data reduction idea, 

the proposed algorithm is a powerful and effective tool in the wideband spectrum sensing 

framework, especially for low SNR values. 

As a future work, the newly proposed method should be tested and further improved 

in the presence of impulsive noise, as has been already conducted in [34] for greedy algo-

rithms. 

Author Contributions: Conceptualization, G.B.; methodology, G.B., E.R., R.G. and D.L.J.; software, 

E.R.; validation, R.G. and D.L.J.; formal analysis, G.B. and E.R.; investigation, G.B., E.R., R.G. and 

D.L.J.; resources, R.G. and D.L.J.; data curation, E.R.; writing—original draft preparation, E.R.; writ-

ing—review and editing, G.B., R.G. and D.L.J.; visualization, D.L.J.; supervision, G.B.; project ad-

ministration, R.G.; funding acquisition, R.G. and D.L.J. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research is supported by the IBNM (Brest Institute of Computer Science and Mathe-

matics) CyberIoT Chair of Excellence, at the University of Brest. 

Acknowledgments: The authors would like to thank the company Syrlinks for the design of the 

analog board. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 14. Wideband spectrum sensing results for six active transmitters obtained using two greedy
algorithms: (a) CoSaMP; (b) IHT.



Sensors 2023, 23, 2263 16 of 20

6. Conclusions
This paper introduces a new idea for designing a highly effective wideband spectrum

sensing system, which consists of reducing the data matrix at the output of the Xsampling
MWC scheme. The second contribution of this paper is the demonstration of data reduc‑
tion invariance on greedy sparse reconstruction algorithms. Finally, our most important
contribution presented in this paper is a new version of the LASSO algorithm, which is
also invariant with respect to the same criterion. Coupled with the data reduction idea,
the proposed algorithm is a powerful and effective tool in the wideband spectrum sensing
framework, especially for low SNR values.

As a future work, the newly proposed method should be tested and further
improved in the presence of impulsive noise, as has been already conducted in [34] for
greedy algorithms.
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Appendix A

Lemma A1. The following equality holds:

Y ∈ Fix{Y}. (A1)

Proof. Indeed, YΠY = UYSYVH
YVY

IM

VH
Y = Y. □

Lemma A2. A ∈ Fix{Y} ⇔ there exists a matrix Ar (not a necessary square) such that:

A = ArVH
Y . (A2)

In the following,Ar is said to be a reduced form of A, because in our applicationAr is considerably
smaller than A.

Proof. If A = ArVH
Y , then AΠY = ArVH

YVY

IM

VH
Y = A. In the other sense, if A ∈ Fix{Y},

then AVYVH
Y = A⇒ Ar = AVY . □

Lemma A3. If A,B ∈ Fix{Y}, then ∀ ΛA and ΛB (not necessary square, nor diagonal), and the
following equality holds:

ΛAA+ ΛBB ∈ Fix{Y}. (A3)

Proof. ΛAA+ ΛBB = ΛAArVH
Y + ΛBArVH

Y ⇒ ΛAA+ ΛBB = (ΛAAr + ΛBAr)VH
Y , so

Equation (A3) is true according to Lemma A2. □
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Lemma A4. If A ∈ Fix{Y} and Ar is a reduced form of A, then for any norm, which can be
expressed by:

∥A∥ = f
(
AAH

)
, (A4)

with f any continuous function, the following equality holds:

∥A∥ = ∥Ar∥. (A5)

Proof. Indeed, ∥A∥ = f
(
AAH

)
= f

ArVH
YVY

IM

AH
r

 = f
(
ArAH

r

)
= ∥Ar∥. □

Corollary A1. The Frobenius norm meets Equation (A5), i.e.:

∥A∥F = ∥Ar∥F. (A6)

Proof. The proof of this corollary is straightforward since the Frobenius norm ∥A∥F =√
Tr
{
AAH

}
already has the form required in Equation (A4). □

Appendix B
OMP is a greedy algorithm that is widely used for finding the sparse solution of the

problem described by Equation (1). For the sake of simplicity and without any loss of gen‑
erality, its operating principle is recalled hereafter for the case when the measured input
data y and the expected sparse solution z are vectors instead of matrices.

Let us introduce the following notations related to the kth iteration: ẑk for the esti‑
mated vector solution, rk = y−WH ẑk for the residual vector, ik for the index vector of ẑk
non‑zero components, ẑk = ẑk(ik) for the estimated vector reduced to its non‑zero compo‑
nents, andWH

k = WH(:, ik) for the matrix formed with the columns ofWH corresponding
to the indices contained in ik.

Basically, OMP startswith a null solution and adds a newnon‑zero component at each
iteration so that, to minimize the norm of the residual vector rk, which measures the recon‑
struction error, the algorithm stops when the targeted number of non‑zero components is
reached or when the residual norm is below a given threshold.

SinceWH ẑk = WH
k ẑk, the residual vector can be also written as rk = y−WH

k ẑk. It is
then possible to place the problem at the kth iteration in the following equivalent form:

min
ẑk
∥y−WH ẑk∥

2
= min

ẑk
∥y−WH

k ẑk∥
2
. (A7)

The advantage of this equivalent form is that, contrary to the initial problem, it results
in the unique solution:

ẑk = W†
ky, (A8)

whereW†
k is the Moore--Penrose pseudo‑inverse ofWH

k .
Note that ẑk can be obtained from ẑk, provided that ik is known. Actually, only the

last component of the vector ik has to be determined at the kth iteration, the other k − 1
components being found out during the previous iterations.

Keeping inmind that the OMP algorithm aims at minimizing the residual norm ∥rk∥2,
and since the productWH ẑk can be seen as the linear combination of the columns ofWH

matrix weighted by the non‑zero components of ẑk, the kth component of ik can be deter‑
mined as follows:

ikk = argmax
l

(
|⟨rk−1,wl⟩|
∥rk−1∥ · ∥wl∥

)
, (A9)
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where ⟨rk−1,wl⟩ stands for the scalar product between the residual vector at the (k− 1)th

iteration and the lth column of the matrixWH .
In other words, the newly added non‑zero component of the vector ẑk corresponds to

the most correlated column of the matrixWH with the residual vector rk−1. Note that all
the non‑zero components of the vector ẑk are updated using Equation (A8).

The convergence of the OMP algorithm toward the global optimum is ensured in the
noiseless case, for a randomWH matrix and provided that M ≥ 2s log(L), whereM is the
length of the measured vector y, L is the length of the sparse vector z, and s is the number
of its non‑zero components.

Appendix C
This appendix explains in more detail why the modified l1 norm ∥ · ∥1,inv is invariant

with respect to data reduction.
Let us first consider the case of a 2 × 2 matrix Z. According to Equation (15), its mod‑

ified l1 norm can be calculated as follows:

∥Z∥1,inv = Tr
{√

ZZH
}
= Tr


√√√√[ z11 z12

z21 z22

][
z∗11 z∗21
z∗12 z∗22

]
= Tr


√√√√[ |z11|2 + |z12|2 z11z∗21 + z12z∗22

z21z∗11 + z22z∗12 |z21|2 + |z22|2

] =
√
|z11|2 + |z12|2 +

√
|z21|2 + |z22|2.

(A10)

It can be readily seen that if the matrix Z becomes a vector Z =
[
z11 z21

]T , then its
modified l1 norm results in the standard l1 norm:

∥Z∥1,inv =

√
|z11|2 +

√
|z21|2 = |z11|+ |z21| = ∥Z∥1. (A11)

Consequently, the new defined invariant l1 norm is equivalent to the standard l1
norm whenever Z is a vector, so that it is able to take into account the sparsity of the
searched solution.

In the case of aM × N matrix Z, the invariant l1 norm takes the form:

∥Z∥1,inv =

√
|z11|2 + · · ·+ |z1N |2 + · · ·+

√
|zM1|2 + · · ·+ |zMN |2

⇒ ∥Z∥1,inv = ∥Z(1)∥2
+ · · ·+ ∥Z(M)∥2

. (A12)

where Z(i) denotes the ith row of matrix Z.
Just for comparison, the standard l1 norm, in this case, yields:

∥Z∥1 = |z11|+ |z12| · · ·+ |z1N |+ · · ·+ |zM1|+ |zM2| · · ·+ |zMN |

⇒ ∥Z∥1 = ∥Z(1)∥1
+ · · ·+ ∥Z(M)∥1

. (A13)

Once again, it can be readily seen that when Z is a vector (i.e., each of its rows become
a scalar) ∥Z∥1,inv = ∥Z∥1, otherwise ∥Z∥1,inv ̸= ∥Z∥1.

However, while ∥Z∥1 is not invariant with respect to data reduction, ∥Z∥1,inv has this
property according to Equations (A4) and (16).
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