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Abstract: Recognizing traffic signs is key to achieving safe automatic driving. With the decreasing cost
of LiDAR, the accurate extraction of traffic signs using point cloud data has received wide attention.
In this study, we propose combining point cloud and image traffic sign extraction: firstly, we use the
improved YoloV3 model to detect traffic signs in panoramic images. The specific improvement is
that the convolution block attention module is added to the algorithm framework, the traditional
K-means clustering algorithm is improved, and Focal Loss is introduced as the loss function. It
shows higher accuracy on the TT100K dataset, with a 1.4% improvement in accuracy compared to
the previous YoloV3. Then, the point cloud of the area where the traffic sign is located is extracted
by combining the image detection results. On this basis, the outline of the traffic sign is accurately
extracted using the reflection intensity, spatial geometry and other information. Compared with the
traditional method, the proposed method can effectively reduce the missed detection rate, narrow
the range of point cloud, and improve the detection accuracy by 10.2%.

Keywords: lidar point cloud; object detection; panoramic image; convolutional neural network;
projection transformation

1. Introduction

Traffic sign detection is an important part of driverless and assisted driving. Vehicles
need to detect traffic signs on the road ahead in order to obtain road information. Automatic
detection and accurate identification of road signs from complex scenes is an important
guarantee for driving safety, which is of great significance in the field of intelligent driving.
Conventional road sign detection involves finding traffic signs in road images obtained
from image acquisition systems, which is a typical image recognition problem, usually
based on the color [1–3], shape [4–6], and multi-feature fusion method. The detected area
also needs to be recognized by certain algorithms. At present, the mainstream methods of
traffic sign recognition include template matching and machine learning, among others.

Image template matching refers to the process of matching the corresponding rela-
tionship between the image to be identified and the template image by translation search.
Image template calculating the similarity between the image to be detected and the tem-
plate, which is widely used in the field of computer vision. Wang Y [7] incorporates OCR
techniques to template matching, but the recognition effect is greatly affected by occlusion
and angle. Qian R [8] proposed a representation based on new geometric shape features,
namely the real-time traffic sign detection system based on template matching of multi-
level chain code histograms, which have high robustness under different rotations, scales
and illuminations.
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Machine learning involves extracting target features from the images for training. The
classifier derived from machine learning is then used to match the image to be recognized
and the recognition results are obtained. Its common features include edge features and
their variants HOG [9], Harr [10], and DTB [11], and FFT shape features [12]. The common
machine learning classifiers are: Support Vector Machine (SVM), Extreme Learning Machine
(ELM), Random Forest (RF), etc. Stallkamp [13] achieved a recognition accuracy of 95.68%
in German public data sets, using directional gradient histogram features combined with
a linear discriminant analyzer. Boi F [14] developed a shape-based classification model
using SVM. Based on SVM, it used grid search and simulated annealing search, making it
possible to classify speed limit signs with an accuracy greater than 99%. Most of the early
target detection algorithms were constructed based on manual features, which failed to
meet the requirements in terms of speed and accuracy despite the use of a large number of
complex feature representations and network gas pedals.

With the development of computer hardware, the method of deep learning has been
widely used in target detection. Deep learning target detection models can be divided into
two categories: one-stage models and two-stage models. The one-stage model converts the
border localization problem into a regression problem for one-step training, generating the
category and location information through the backbone network. The final detection result
can be directly obtained by a single detection, so it has a faster detection speed, such as
Overfeat, Yolo [15], and SSD [16]. The training process of the two-stage series algorithms is
divided into two parts: generating region proposals and training RPN networks. Compared
with the one-stage model, the accuracy is higher, but speed and real-time performance are
poor. The common methods include R-CNN [17], Fast R-CNN, Faster R-CNN [18].

The most mainstream method for target recognition is Convolutional Neural Networks
(CNN). There are many precedents for using this method for detection. Y. Ma adjusted
the convolutional kernel to 3 × 3 size and added dropout and convolutional layers to the
AlexNet model, which achieved an accuracy of 96.875% on the German GTSRB public
dataset. Ciresan [19] used a multi-column deep convolutional neural network, reaching an
accuracy of 99.46% after testing on the GTSRB dataset. Dan C [20] added and subtracted
two standard deviation average pixel intensities on RGB three channels and performed
histogram equalization to greatly expand the dataset. Then, he combined HOG features and
SVM extraction to achieve an accuracy of 99.15% in GTSRB. Yawar Rehman [21] learned
features by gathering semantic information, which reduced the use of sliding window in
traditional target detection and relied on color changes to find areas with a higher possibility
of traffic signs, achieving an accuracy of 100% on the GTSRB dataset. The deep learning
method requires prior training of features from a large amount of sample data. Compared
with the traditional manual method, accuracy and robustness are greatly improved, making
it is less likely to be undetectable due to lighting, angle, and occlusion.

However, these methods rely on visual images that lack 3D depth information and
are sensitive to illumination and weather conditions, thus limiting the accuracy of target
detection and localization. In the actual scenario of autonomous driving, we are more
frequently faced with 3D targets with depth information; using vision only for 2D detection
can neither utilize richer spatial information nor meet the engineering needs in complex
scenarios. With the development and application of 3D laser scanning technology, point
cloud data acquisition has become fast and inexpensive. In addition to the spatial location
information and complete geometric structure of the measured target, LiDAR can also
provide the reflection intensity, color, texture, and other information of the target. Such
comprehensive and diverse feature descriptions provide more possibilities for target ground
feature identification. Vision-LiDAR SLAM obtains more information in the face of intense
movement, lack of light, or lack of visual features [22]. In HD maps, real-time positioning
and obstacle detection cannot be achieved without the support of LiDAR. Lidar technology
is expanding into many different applications, especially obstacle [23] detection and object
recognition during autonomous driving [24].
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LIDAR-based traffic sign extraction is mainly based on spatial geometric features
and reflection intensity features. Lipu Zhou [25] proposed a new traffic sign detection
and recognition algorithm based on data fusion of camera and lidar, which fused the data
obtained by two sensors to improve the robustness of the algorithm. Yokoyama [26] pro-
posed a rod extraction algorithm based on Laplacian smoothing and Principal Components
Analysis (PCA), in which the Laplacian operator is used to smooth the data to eliminate
noise points and distribution bias of data points in the data, while the PCA method is
used to perform feature analysis on the smoothed data segments and detect rod structure
targets from them. Since traffic signs are generally made of highly reflective materials with
clear visibility, the reflective intensity information in the point cloud data can effectively
distinguish the signage from other targets on the road, thus being widely used in traffic
sign detection [27,28]. In addition, template-driven methods are also used to detect traffic
signage [29,30]; the detection is realized by using the characteristics of high reflection
intensity and symmetry of traffic signs.

With the rapid development of artificial intelligence, researchers at home and abroad
have tried to apply deep learning from 2D data to 3D data. Qi [31] proposed a network
called PointNet, which directly processes point clouds, exploiting their order invariance
and rotation invariance, but without the process of extracting local features. However,
the generalization ability of the model is limited in complex scenes. Li [32] put forward a
simple and general learning framework of point cloud features, PointCNN, which emu-
lates convolutional neural networks to utilize local correlations on point cloud space; the
accuracy rate on the ModelNet is 91.7%.

Although LIDAR has many advantages, it is still difficult to extract traffic signs with
high precision. There are three reasons for this. The first is that traffic signs are often
obscured by other targets. Secondly, signs that have been outdoors for a long time will
inevitably become damaged and aged, dulling their reflection characteristics. Finally, in the
process of data acquisition, the density of the target, which is far away from the scanning
equipment, is low. So far, the accurate extraction of traffic signs from large-scale point cloud
data in different scenes has not been realized. In addition, unlike traditional point cloud
classification, vehicles will pass through various complicated environments during driving,
and it is difficult to accurately identify the targets along the way through traditional means,
which suggests that the detection of traffic signs requires improvement.

Many methods have been proposed for detecting and extracting traffic signs from
images or LiDAR data. Due to the emergence of deep learning methods, the accuracy and
robustness of traffic sign detection in images have reached a very high level. However,
in comparison, the classification and extraction algorithms of point clouds are mostly at
the theoretical level and the accuracy is relatively low. One of the most important factors
is that point cloud data has more features and complex scenes, so it is not easy to extract
the correct category from a large number of data points. Up until now, there has been
no research that can combine point cloud and image data sources to extract traffic signs.
Qi C R [33] used RGB-D data for 3D object detection, using a mature 2D object detector
and advanced 3D deep learning for object localization, identifying conical regions in the
point cloud combining a deep learning model for detection. However, there is no targeted
training for road signs, and the point cloud deep learning method not only needs great
computational power but also needs to improve in accuracy and robustness.

To sum up, extracting the range of traffic signs from massive point cloud data is not
only extremely time-consuming, but also has a high false detection rate. Furthermore,
it depends on manual discrimination in most cases. To address the above issues, this
paper proposes a set of methodological processes for traffic sign extraction by combining
camera and LIDAR using sensor fusion technology to obtain detection targets using mature
and efficient image detection means, then combining them with laser point cloud for fine
extraction. The method has practical application value for the intelligent classification
of point clouds, and also has certain reference significance for the realization of assisted
driving technology in unmanned driving. In this paper, the following is achieved:
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(1) An improved convolutional neural network model is proposed for road traffic sign
detection in panoramic images. The method is based on the YoloV3 deep learning model,
adding a convolutional block attention module to the algorithm framework to enhance the
saliency of the detection target in the image, improving the traditional K-means clustering
algorithm by using the area intersection ratio between the target frame and the real frame
as the distance loss function, generating a priori anchor frames instead of default values,
and introducing Focal Loss as the loss function to solve the imbalance between the target
and the background. In our study, the improved model is tested on TT100K dataset, and
compared with YoloV3 before improvement, it is proved that the improved model in this
study has higher accuracy.

(2) A method is proposed to accurately extract traffic signage from point clouds by
combining image detection results. The method is divided into two steps. The first step
is to locate the area where the traffic sign is located with the help of internal and external
parameters of the image. The central projection method is used to extract the point cloud
within a certain range near the target. The second step is to cluster the point clouds within
the range using a region growing algorithm, and filter out the points that do not meet
the requirements by intensity filtering and RANSAC plane fitting. Then, the dimensional
characteristics of all the point clouds are analyzed based on PCA algorithm, and the traffic
sign is finely extracted.

(3) Cross-comparison experiments were conducted from two aspects: whether the
image is combined or not, and different traffic sign extraction methods. The experiments
proved that the accuracy and recall rate of the traffic sign extraction method based on point
cloud combined image proposed in this paper were significantly improved compared with
other methods.

The overall structure of this paper is as follows: Section 1 explains the background of
our research and summarizes the related work. Section 2 introduces the improved YOLOv3
algorithm. Section 3 describes the method of accurately extracting point cloud of traffic
signs. Section 4 presents the analysis of experimental results. Finally, Section 5 presents the
summary and future prospects.

2. Traffic Sign Detection
2.1. Improved Yolo Network

Yolo network is a regression-based target detection algorithm that uses a feature
extraction network to obtain the input image feature map, divides the input image into
S×S grids, and if the center point of the target to be detected falls into a certain grid, the grid
is responsible for detecting the target. The Yolov3 [34] network consists of the Backbone
(red dashed area), Neck (blue dashed area), and Head (green dashed area). The input
image is processed by Backbone to obtain feature maps of different scales, then processed
by Neck to obtain deeper features, and finally sent to Head for detection. As shown in
Figure 1, all the basic modules in the network consist of Convolutional Layer (Conv), Batch
Normalization (BN), and LeakyRelu activation layers.

Since the Yolo series did not undergo further principal changes after version 3, this
paper proposes an improved Yolo detection model based on YoloV3, combined with
currently proven mainstream deep learning techniques. With specific improvements,
including the introduction of a convolutional block attention module, the use of K-means
to generate anchor boxes, and the use of GIoU and Focal Loss to improve the loss function.

2.1.1. Convolutional Block Attention Module

Neural networks are designed to mimic the structure of human brain neurons, and
the Convolutional Block Attention Module (CBAM) [35] is designed to mimic human
attention. Adding an attention mechanism module is to add attention to input weight
assignment, which can be divided into channel attention that focuses on pixel information
and spatial attention that focuses on location information, etc. In this paper, we improve
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the performance of model detection by adding a CBAM, which fuses channel and spatial
attention to the backbone network.
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First, a channel attention mechanism module is generated to carry out the global
maximum pooling and global average pooling of the input feature maps (H ×W × C) to
output two 1 × 1 × C feature maps. Then, they are fed into a two-layer mutually shared
neural network MLP, and the output two feature maps are summarized and activated
using the Sigmoid function to finally generate a 1 × 1 × C size channel attention module.
The calculation formula is shown in Equation (1). where σ denotes the Sigmoid activation
function, F represents the input feature maps, MLP denotes the shared network of two
layers, the W0 and W1 denote the weight matrix in the MLP. W0∈RC/r×C, W1∈RC×C/r,
where r is the decay rate, AvgPool, and MaxPool denote the average pooling and maximum
pooling operations. Fc

avg and Fc
max operations denote the global average pooling and

maximum average pooling operations of the channel attention mechanism.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (1)

After that, the original input feature map and the channel attention mechanism module
are subjected to the homogeneous multiplication operation to obtain the feature map of
the fused channel attention mechanism. The global average pooling and global maximum
pooling operations are performed, respectively, to obtain two H ×W × 1 feature maps,
which are stitched together and then downscaled by the convolution operation. It is
proved that the convolution kernel has the best effect with the size of 7 × 7 [35], which is
activated by the Sigmoid function to generate a spatial attention mechanism module of
size H ×W × 1. The calculation formula is shown in Equation (2): f 7×7 represents the
convolutional kernel of size 7 × 7 for the convolutional operation, FS

avg and FS
max operations

represent the global average pooling and maximum average pooling operations of the
spatial attention mechanism.

MS(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

FS
avg; FS

max

])) (2)

Finally, the previously obtained fusion channel attention mechanism feature map is
homogeneously multiplied with the spatial attention mechanism module to obtain the
CBAM module, whose structure is shown in Figure 2.
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2.1.2. K-Means

The anchor box is used in Yolo as an a priori box to assist in predicting target bound-
aries. The anchor box is the shape and size of the most frequently occurring prediction box
from all actual samples, and the default anchor box value is derived for the COCO dataset
that can be used for large-scale target detection. A suitable anchor box can effectively
improve localization accuracy and accelerate convergence. To make the anchor box size
more representative of traffic signs, this paper proposes to use the K-means clustering
algorithm to update the anchor value. If the Euclidean distance is used as the loss function,
a larger target will generate a larger loss function compared to a smaller target, resulting in
a larger error in the results of clustering. Therefore, this paper uses the Intersection Over
Union (IoU) ratio between the prediction frame and the real frame instead of the Euclidean
distance as the loss function distance measure; the larger the IoU, the smaller the loss, and
the objective function of clustering is defined in Equation (3).

F = min
n

∑
i=1

k

∑
j=1

[1−
truthi ∩ boxj

truthi ∪ boxj
] (3)

In the above equation, n is the number of samples; k is the number of selected clustering
centers, which is generally set to 9; truthi is the reference anchor box, ground truth; boxj is
the jth clustering center.

2.1.3. Modified Loss Function

Bounding box regression is an important part of target detection, and metric loss
calculated by IoU is used instead of regression loss in Yolo. There are some shortcomings in
using IoU as a metric function: if there is no intersection between the reference anchor box
and the prediction, the IoU value will be zero, which cannot reflect the distance between
them at this time, and IoU cannot distinguish the alignment between two anchor boxes. So,
this paper uses the generalized gradient intersection ratio (Generalized Intersection Over
Union, GIoU) [36] to replace IoU as the loss function. As shown in Figure 3. The calculation
formula is as in Equation (4).

GIOU =
A ∩ B
A ∪ B

− |C\(A ∪ B)|
|C| (4)
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In the process of loss function calculation of the network, the GIoU of the prediction
frame and the standard reference frame are regarded as positive samples when it is greater
than a certain threshold and negative samples when it is less than that threshold. However,
the traffic sign data usually come from panoramic images or surveillance equipment, and
the proportion occupied by the signage in the image is generally much smaller than the
background proportion. For the problem of unbalanced positive and negative samples in
the detection data, the loss function of the network is used instead of the original confidence
loss by using Focal Loss, and the formula for calculating Focal Loss is shown in Equation (5).

f (p, y) =
{
−α(1− p)γlog(p), y = 1
−(1− α)pγlog(1− p), y = 0

(5)

The final loss function consists of three components, as in the following equation.

Loss = Lossposition − Losscon f idence + Lossclass (6)

Lossposition, Losscon f idence, Lossclass represents location loss, confidence loss, and classi-
fication loss. Among them, the confidence loss is modified by Focal Loss, and it is proved
that the best detection effect is achieved when Focal Loss is introduced together with the
adjustment of the GIoU threshold. The calculation formulae of localization loss, confidence
loss, and classification loss are shown in Equations (7)–(9).

Lossposition = (2− w× h)
S2

∑
i=0

B
∑

j=0
Iobj
ij
[(

txi − ˆtxi
)
+
(
tyi − ˆtyi

)]
+(2− w× h)

S2

∑
i=0

B
∑

j=0
Iobj
ij
[(

twi − ˆtwi
)
+
(
thi − ˆthi

)] (7)

Losscon f idence =
S2

∑
i=0

B
∑

j=0
Inoobj
ij

[
Ĉiα(1− Ci

γlog(Ci) +
(
1− Ĉi

)
(1− α)C2

i log(1− Ci)
]

+
S2

∑
i=0

B
∑

j=0
Iobj
ij
[
Ĉi log(Ci) +

(
1− Ĉi

)
log(1− Ci)

] (8)

Lossclass = −
S2

∑
i=0

B

∑
j=0

Iobj
ij ∑

c∈n
[ p̂i(c)log(pi(c) + (1− p̂i(c)) + (1− α)log(1− pi(c))] (9)

where w and h represents the width and height of the current grid; S denotes the number
of grids and B denotes the number of prediction frames in which the current grid is located.
Iobj
ij and Inoobj

ij denote the presence or absence of the target in the ith grid in the jth prediction
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frame, which takes the value of 0 or 1. txi, tyi, twi, thi denotes the horizontal and vertical
coordinates of the center point of the real target grid and the width and height of the
grid. ˆtxi, t̂yi, ˆtwi, ˆthi denotes the horizontal and vertical coordinates of the center point of
the predicted target grid and the width and height of the grid. Ci and Ci denote the actual
and predicted confidence levels in the ith grid. pi(c) and p̂i(c) denote the probability of
the real box category and the probability of the predicted box in the ith grid. α is used to
balance the samples and the γ denotes the rate of sample weight reduction.

2.2. Detection Result
2.2.1. Experimental Data

The CSUST Chinese Traffic Sign Detection Benchmark (CCTSDB), produced by the
Changsha University of Technology, is an extension of the CTSDB dataset. It is an expansion
of the CTSDB dataset. At present, only part of the data is published, and there are three
major categories of labeled data: indication signs, prohibition signs, and warning signs.
The Tsinghua-Tencent traffic dataset (TT100K), jointly published by Tsinghua University
and Tencent, features panoramas stitched together from six DSLR camera shots, capturing
images from vehicles and shoulder-mounted devices at approximately 10-m intervals.
TT100K selects 10 areas from five different cities in China (including each city’s urban). The
TT100K dataset provides a more detailed classification of traffic signs, but the dataset also
suffers from an unbalanced number of labeled samples.

In this paper, we propose using the TT100K dataset as the main dataset for training.
Forty-six categories are labeled and classified in the original dataset, and the precise identifi-
cation of each category is not the focus of this paper, so the labeled categories are divided into
three categories: ban signs, instruction signs, and warning signs. To balance the problem of a
serious imbalance in the number of samples, the CCTSDB dataset is introduced to expand
the samples, and the distribution of the balanced dataset is shown in Table 1.

Table 1. Sample balance comparison.

Category Before Balance After the Balance

Prohibition signs 18,317 18,317
Indicator signs 4989 7631
Warning Signs 1396 5317

2.2.2. Refine Results

The model can reach a stable convergence state in the performance of the convolutional
neural network model when it is trained. In this paper, the training log of the model is
recorded and visualized in the output, and the output metrics include Loss value and
average IoU, as shown in Figure 4. The improved model is tested on the test set and
panoramic image, respectively, and the results are shown in Figure 5.
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In this paper, precision and recall are chosen as evaluation metrics, the former reflect-
ing the accuracy of classification, and the latter reflecting the degree of completeness of
detection. TP indicates the number of correctly detected targets, FP indicates the number of
incorrectly detected targets, and FN indicates the number of missed detections. The correct
rate Precision and recall rate Recall are defined as shown in Equations (10) and (11).∣∣∣∣Precision =

TP
TP + FP

∣∣∣∣ (10)

∣∣∣∣Recall =
TP

TP + FN

∣∣∣∣ (11)

As shown in Table 2, the model recall of the method used in this paper is 1.8% higher
than the original Yolov3, and the overall accuracy value is 1.4% higher. Specifically, the
overall detection accuracy of ban signs and instruction signs will be higher, reaching 86.3%
and 83.7%, with 1.6% and 1.8% accuracy improvement compared to the original method,
while the accuracy of warning signs only improves by 0.9% compared to the original
method, reaching 80.2%. This may due to the complex pattern of warning signs, which is
more difficult to distinguish.

Table 2. Comparison of model results.

Accuracy (%)
Overall

Accuracy (%)
Recall Rate

(%)Prohibited
Signs

Indicator
Signs

Warning
Signs

Yolov3 84.7 81.9 79.3 82.0 86.3
Ours 86.3 83.7 80.2 83.4 88.1

3. Traffic Sign Positioning Extraction
3.1. Image Coordinate Transfer to Point Cloud

The high precision conversion of pixel coordinates to point cloud coordinates is a
prerequisite for making full use of image detection results. Next, we will introduce the
transformation process from pixel coordinates to point cloud coordinates in detail, and
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carry out crude extraction of traffic signs based on this. The vehicle-mounted laser measure-
ment system(Figure 6) is equipped with a panoramic camera that continuously captures
images during travel. Meanwhile, in the LIDAR radar system, the laser range scanning
unit continuously emits microwaves to obtain distance information, the Differential Global
Position System (DGPS) obtains position information, and the Inertial Measurement Unit
(IMU) obtains attitude information. The geometric relationship between the camera coordi-
nate system and the corresponding ground points in the geodetic coordinate system can be
determined from the internal and external orientation elements of the image. The image
acquired by the camera can be matched with the point cloud to give color information.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 26 
 

 

transformation process from pixel coordinates to point cloud coordinates in detail, and 
carry out crude extraction of traffic signs based on this. The vehicle-mounted laser meas-
urement system(Figure 6) is equipped with a panoramic camera that continuously cap-
tures images during travel. Meanwhile, in the LIDAR radar system, the laser range scan-
ning unit continuously emits microwaves to obtain distance information, the Differential 
Global Position System (DGPS) obtains position information, and the Inertial Measure-
ment Unit (IMU) obtains attitude information. The geometric relationship between the 
camera coordinate system and the corresponding ground points in the geodetic coordi-
nate system can be determined from the internal and external orientation elements of the 
image. The image acquired by the camera can be matched with the point cloud to give 
color information. 

 
Figure 6. The vehicle-mounted laser measurement system SZT-R1000. 

 

3.1.1. Obtaining Depth Map 
The external attitude parameters of each frame of panoramic image can be obtained 

by the combination navigation of panoramic camera and lidar system. First, the world 
coordinate system is converted to the camera coordinate system, which is based on the 
following principle: 

൥Xୡୟ୫Yୡୟ୫Zୡୟ୫൩ = R ൥X୵୭୰ୢY୵୭୰ୢZ୵୭୰ୢ൩ + ቎T୶T୷T୸቏ (12)

R = ൥1 0 00 cos β sin β0 − sin β cos β൩ ൥0 cos γ − sin γ0 1 00 sin γ cos γ ൩ ൥ cos α sin α 0− sin α cos α 00 0 1൩ (13)

In the above equation, the  Xୡୟ୫,  Yୡୟ୫, Zୡୟ୫ represent the coordinates under the 
camera coordinate system. u, v are the pixel coordinates of the point. X୵୭୰ୢ, 𝑌୵୭୰ୢ and  Z୵୭୰ୢ denote the world coordinates of the point cloud.T୶, T୷ and  T୸ denote the offset of 
the camera with respect to the origin of the world coordinate system. α, β and γ denote 
the three attitude angles of the outer azimuth element parameters. 

The depth image requires the acquisition of distance information for each pixel point, 
which is calculated by converting to the pixel coordinate system with the help of the 
spherical coordinate system. 

Figure 6. The vehicle-mounted laser measurement system SZT-R1000.

3.1.1. Obtaining Depth Map

The external attitude parameters of each frame of panoramic image can be obtained
by the combination navigation of panoramic camera and lidar system. First, the world
coordinate system is converted to the camera coordinate system, which is based on the
following principle: Xcam

Ycam
Zcam

= R

Xword
Yword
Zword

+
Tx

Ty
Tz

 (12)

R =

1 0 0
0 cosβ sinβ
0 − sinβ cosβ

0 cosγ − sinγ
0 1 0
0 sinγ cosγ

 cosα sinα 0
− sinα cosα 0

0 0 1

 (13)

In the above equation, the Xcam, Ycam, Zcam represent the coordinates under the
camera coordinate system. u, v are the pixel coordinates of the point. Xword, Yword and
Zword denote the world coordinates of the point cloud.Tx, Ty and Tz denote the offset of

the camera with respect to the origin of the world coordinate system. α, β and γ denote the
three attitude angles of the outer azimuth element parameters.

The depth image requires the acquisition of distance information for each pixel point,
which is calculated by converting to the pixel coordinate system with the help of the
spherical coordinate system.

u =
arccos(Zcam

r )

π
H (14)

v = [(
atan2(Ycam, Xcam)

2π
+ 0.5)W] (15)
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In the above equation, the u, v denotes the pixel coordinates of the point; and r denotes
the distance from the center of photography to the target point; calculated from the camera
position and the position parameters in the external camera reference. W and H are the
width and height of the panoramic image.

Based on the above theory, the coordinates of the image point of the point cloud in the
panoramic image and the distance from the point cloud to the center of photography are
calculated, from which the pixel value of the depth image is calculated to generate the final
depth image, and the pixel value is calculated by the following formula.

Di =
ri

d× 255
(16)

In the above equation, Di denotes the pixel value of each pixel point in the depth
image, ri denotes the Euclidean distance from the point cloud to the photography center, d
denotes the distance constraint for generating the depth image, and the pixel values larger
than this value from the center of photography will be ignored. The generated depth map
is shown in Figure 7.
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Figure 7. Figure (a) is a panoramic photo of the Fourth Ring Road in Beijing. By adding the distance
constraint, meaningless point cloud information can be excluded and the computational effort can be
reduced, the generated depth image is shown in figure (b).

3.1.2. Image Projection to Point Cloud

The conversion from pixel coordinates to LIDAR coordinates can be carried out in two
steps: Firstly, converting the pixel coordinate system to the polar coordinate system, and
then converting the polar coordinate system to the LIDAR coordinate system, as calculated
by the following equation. Xp

Yp
Zp

=
ρ sin θ sinϕ
ρ sin θ cosϕ
ρ cos θ

 (17)

θϕ
ρ

=
 π × u

H
π × v−H

H
k (1− D/d)

 (18)

Equation (17) represents the conversion from the polar coordinate system to the LIDAR
coordinate system. Xp, Yp and Zp denote the three-dimensional coordinates in the laser
coordinate system. ρ, θ and ϕ denote the sphere in the three-dimensional coordinates
value. Equation (18) represents the conversion from the pixel coordinate system to the
polar coordinate system. u and v denote the pixel coordinates, k is the conversion constant,
and D denotes the depth image pixel value.

The main process of the conversion of LiDAR coordinates to world coordinates is as
follows. Firstly, the points of the LiDAR coordinate system are transferred to the carrier
coordinate system. Then, the conversion matrix from carrier coordinates to geodetic
coordinates is generated according to the external orientation parameter file. Finally, the
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position of the carrier center under the geodetic coordinate system is added. The calculation
process is as follows: XG

YG
ZG

=
XB

YB
ZB

+R

Xp
Yp
Zp

+

x0
y0
z0

  (19)

XG, YG and ZG denote the three-dimensional coordinates in geodesic coordinates. Xp,
Yp and Zp represent the three-dimensional coordinates under the LiDAR coordinate system.
XB, YB and ZB are the offset of the carrier center in the geodetic coordinate system. x0, y0

and z0 are the offset of the lidar coordinate origin in the carrier coordinate system. R is the
conversion matrix from the carrier coordinate system to the geodesic coordinate system,
which is defined as shown in Equation (20).

R = Rϕ Rω Rκ (20)

The conversion matrix consists of three angular elements ϕ,ω, κ in the outer orienta-
tion element. The pitch angle ϕ (pitch) indicates the angle between the carrier coordinate
system axis and the ground plane; the carrier lift is positive. (As shown in Panel a of
Figure 8). The side roll angle ω (roll) indicates the angle between the carrier symmetry
plane and the carrier vertical axis plumb plane; the right is positive. (As shown in Panel b
of Figure 8). The yaw angle κ (yaw) indicates the angle between the projection of the carrier
axis on the horizontal plane and the ground axis; the right is positive. (As shown in Panel c
of Figure 8).
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Figure 8. (a) To perform the conversion, first wind the original image spatial coordinates XYZ− S
under the Y axis ϕ to obtain the coordinate system X′Y′Z′ − S; (b) Then rotate around X′ axis to
obtain the coordinate system X′Y′Z′ − S; (c) Finally rotate around Z′′ . The final spatial coordinate
system is obtained by rotating around the axis, as shown in the figure below.

The rotation matrices Rϕ, Rω and Rκ can be expressed, respectively, as follows:

Rϕ =

cosϕ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 (21)

Rω =

1 0 0
0 cosω − sinω
0 sinω cosω

 (22)

Rκ =

cos κ 0 − sinϕ
0 1 0

sinϕ 0 cosϕ

 (23)

From Equation (20)–(23), the conversion matrix expression is obtained as follows:
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R =

 cosϕ cos κ− sinϕ sinω sin κ − sinϕ cosω sinϕ cos κ+ cosϕ sinω sin κ
− cosϕ sin κ− sinϕ sinω cos κ cosω cos κ − sinϕ sin κ+ cosϕ sinω cos κ

− sinϕ cosω − sinω cosϕ cosω

 (24)

3.2. Region of Interest Extraction

After obtaining the detection frame geodesic coordinates, there are still challenges in
how to make full use of the 2D detection results to extract the point cloud data. Firstly,
the prediction box in the image is in the two-dimensional plane, which can provide four
effective coordinates, and at least eight vertex coordinates are needed to establish the
bounding box in 3D. Secondly, the vertex coordinates of the prediction frame may be
located on the target or outside the target; although the feature point is on the photographic
beam consisting of the photographic center and pixel coordinates, it is impossible to
determine the exact range. A common practice is to determine the range of point clouds by
means of central projection, which means that the light source is regarded as a point and
the light is scattered outward to the projection surface. The central projection is shown in
Figure 9.
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Figure 9. As shown in Figure 9, the photography center is placed at the origin of the coordinate
system, and a projection beam is launched to the four 3D coordinates of the prediction box to form a
conical projection area with a rectangular bottom. In this process, the scope of the cone region will be
set according to the actual situation, and it will not be allowed to extend indefinitely. The shaded
area is the region of interest. Using this method to extract the region of interest can fully contain the
detection target, ensuring that no omissions occur.

In this paper, based on the image detection results, we use image depth information
for point cloud signage area of interest extraction. After aligning the prediction frame
vertex coordinates with the depth image, the approximate geometric center of the detected
traffic signage is located. Then, this center is taken as the origin, the depth image pixel
value is combined to determine the signage range, and the extraction radius is determined
according to this range. With no restriction in the vertical ground direction, the ground
direction takes the radius as the threshold for region of interest extraction. The main process
is shown in Figure 10.
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The target area extracted according to the coordinate conversion result is shown in
Figure 11. The extraction threshold is determined by extending the approximate center
point of the traffic signage outward, which not only ensures the integrity of the traffic
signage itself but also ensures that there is only one target object in the extraction area. The
scope of the extracted data is greatly reduced to facilitate the subsequent refined extraction
of traffic signs.
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3.3. Refined Extraction

Traffic signage has the following characteristics in the point cloud data: (1) traffic
general signage is suspended from the pole, above the ground, and perpendicular to the
ground. (2) Traffic signage belongs to the façade, with a regular geometric shape, generally
rectangular or triangular. (3) In order to ensure the safety of traffic, the state requires
the surface of traffic signs to be sprayed with high-reflectivity materials, and the national
safety production standard has a minimum value of reflectivity for traffic sign equipment,
including poles.

Combining the above characteristics, this paper adopts the point cloud traffic sign
extraction by combining intensity features and morphological features. Although the
atmospheric attenuation and laser acquisition incidence angle will affect the reflection
intensity of the point cloud data, this feature can still be used to distinguish the traffic sign
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from most of the features. At the same time, the RANSAC method is used to fit the plane
where the traffic sign is located and identify the traffic sign by the dimensional information.
The technical route is shown in Figure 12.
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Figure 12. Signage extraction technical route.

3.3.1. Ground Points Removal

In this paper, we use the Cloth Simulation Filter (CSF) proposed by Wuming Zhang et al. [37].
The region of interest extracted in this paper has the characteristics of high accuracy and a
small range; the overall area is relatively flat, so it meets the conditions of the application
of this algorithm. The basic idea of the CSF algorithm is to cover a large piece of fabric
on top of the inverted point cloud after removing isolated points. After fully considering
the influence of external driving factors (gravity, collision) and internal driving factors
(interaction between particles inside the fabric), the final fallen fabric can represent the
current terrain. As shown in Figure 13, the distance relationship between the fabric and the
inverted point cloud is used to determine whether it is a ground point or not. The algorithm
has a strong generalization ability, few parameter settings, and has a good extraction effect
under a non-steep slope area.
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3.3.2. Regional Growth Clustering

Due to the small amount of data in the target area, it is not suitable to use the RANSAC
algorithm directly. Traffic signage has the characteristics of regular shape and obvious
contour, and has obvious distance from other features. This paper adopts the region
growing algorithm to perform point cloud clustering; the segmented region is used to
establish ROI with the principle of closest neighbor.

The region growing algorithm is originally used in the field of image cutting, which
considers that the object has a similar property in the same region and establishes the
initial region by this property. From the initial region, the data with the same property
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are gradually grouped into the region, so that the segmentation of the region can be
realized [38]. Since the point cloud data is in three-dimensional space, it has direction itself,
so the direction information can be regarded as the target property. Information on the
direction is measured by the smoothness between two points, which is expressed by the
normal angle. When the normal angle between the points in the initial region and the
neighboring points meets the specified requirements, both points belong to part of the
smooth surface. The algorithm proceeds by iteration, and the output data structure is an
array after clustering, thus completing the segmentation of the 3D point cloud.

The main process of this algorithm is as follows:
(1) All data points are sorted according to the size of the curvature; the point with the

smallest curvature value is selected as the initial seed point, and the selected point is added
to the seed set and the current region is marked.

(2) The normal direction of the seed point is calculated and the normal direction
of each neighbor is determined in turn through the search. If the angle between the
normal direction of the neighbor and the normal direction of the seed point is less than the
threshold, the nearest neighbor is added to the current region.

(3) The curvature value of each nearest neighbor of the current seed point is calculated.
If the curvature value is less than the given threshold, the nearest neighbor point is added
to the seed set and the current seed point is removed from the seed array. The above steps
are repeated until the seed array is empty.

(4) Steps (2) and (3) are repeated until all areas are marked and the final point cloud
segmentation result is obtained as shown in Figure 14.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 14. Point cloud growth clustering segmentation results. 

The advantages of the region growing algorithm are that it is more flexible to use, it 
can set the growing rules according to the actual scene, it has a better effect on segmenting 
the area around the seed point, and it is more efficient. However, the algorithm also has 
some limitations: when the connectivity of the region to be segmented is poor, the data 
are easy to segment into a small closed region, and the algorithm is susceptible to noise 
infection and has high time complexity. In addition to curvature, the region growth algo-
rithm can also be based on color segmentation, which is the same principle as the method 
based on curvature. The basic idea is to divide the points set with similar colors in the 
same region into the same class. 

3.3.3. Intensity Filtering and RANSAC Planar Fitting 
The point cloud data measured by the laser scanner can not only obtain the coordi-

nate information and color information, but also obtain the reflection intensity infor-
mation of each point. The reflection intensity information is not only related to the reflec-
tion ability of the target but is also affected by the scanning distance, angle, atmospheric 
conditions, and other factors. For the same point cloud data, the intensity of the laser echo 
is closely related to the material of the object being measured, and the higher the reflec-
tivity of the object itself, the higher the reflectivity value of the point cloud. In order to 
ensure safety, traffic signs are sprayed with paint that increases the reflectivity, so they 
have high reflectivity in the point cloud data, and some non-target areas can be removed 
accordingly. Since the traffic signs themselves are outdoors for a long time, the paint will 
inevitably be damaged and fall off, which may lead to the reflectivity of the points on the 
traffic signs not reaching the standard level. So, our paper uses the clusters obtained from 
the area growth as the unit for filtering. The specific approach is to set up a reflection 
intensity threshold and to count the point clouds in each cluster. If the majority of the 
point cloud intensities are lower than this threshold, it is considered that the cluster is not 
a cluster containing traffic signage. The threshold is determined without the purpose of 
separating traffic signage, but a large number of experiments are needed to determine the 
best threshold. Most of the ground appendages can be filtered after point cloud filtering, 
such as stone piers and fences, etc. What remains are mainly traffic sign poles, their ap-
purtenant pole objects, and some highway barriers near the traffic, which can be fitted 
with planar features for further screening. 

The nature of estimating object parameters from sampled points has a long history 
of research, where the RANSAC algorithm [39] has high robustness to noise in point cloud 
data; therefore, it is often used to extract local models from mixed data. The random sam-
pling consistency algorithm (Random Sample Consensus (RANSAC) is an effective and 
robust estimation algorithm. The RANSAC algorithm considers that the data are com-
posed of valid data with small deviations. These points are called intra-local points, and 
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The advantages of the region growing algorithm are that it is more flexible to use, it can
set the growing rules according to the actual scene, it has a better effect on segmenting the
area around the seed point, and it is more efficient. However, the algorithm also has some
limitations: when the connectivity of the region to be segmented is poor, the data are easy
to segment into a small closed region, and the algorithm is susceptible to noise infection
and has high time complexity. In addition to curvature, the region growth algorithm can
also be based on color segmentation, which is the same principle as the method based on
curvature. The basic idea is to divide the points set with similar colors in the same region
into the same class.
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3.3.3. Intensity Filtering and RANSAC Planar Fitting

The point cloud data measured by the laser scanner can not only obtain the coordinate
information and color information, but also obtain the reflection intensity information of
each point. The reflection intensity information is not only related to the reflection ability of
the target but is also affected by the scanning distance, angle, atmospheric conditions, and
other factors. For the same point cloud data, the intensity of the laser echo is closely related
to the material of the object being measured, and the higher the reflectivity of the object
itself, the higher the reflectivity value of the point cloud. In order to ensure safety, traffic
signs are sprayed with paint that increases the reflectivity, so they have high reflectivity
in the point cloud data, and some non-target areas can be removed accordingly. Since the
traffic signs themselves are outdoors for a long time, the paint will inevitably be damaged
and fall off, which may lead to the reflectivity of the points on the traffic signs not reaching
the standard level. So, our paper uses the clusters obtained from the area growth as the
unit for filtering. The specific approach is to set up a reflection intensity threshold and
to count the point clouds in each cluster. If the majority of the point cloud intensities are
lower than this threshold, it is considered that the cluster is not a cluster containing traffic
signage. The threshold is determined without the purpose of separating traffic signage,
but a large number of experiments are needed to determine the best threshold. Most of
the ground appendages can be filtered after point cloud filtering, such as stone piers and
fences, etc. What remains are mainly traffic sign poles, their appurtenant pole objects,
and some highway barriers near the traffic, which can be fitted with planar features for
further screening.

The nature of estimating object parameters from sampled points has a long history of
research, where the RANSAC algorithm [39] has high robustness to noise in point cloud
data; therefore, it is often used to extract local models from mixed data. The random
sampling consistency algorithm (Random Sample Consensus (RANSAC) is an effective and
robust estimation algorithm. The RANSAC algorithm considers that the data are composed
of valid data with small deviations. These points are called intra-local points, and the
distribution of intra-local points can be explained using model parameters. However,
data points with large deviations that cannot be applied to the model are classified as
extra-local points, such as noisy extremes, incorrect measurements, etc., as well as noise
points. The basic idea of this method is to establish a mathematical model to obtain the
model distribution parameters of local points through a set of sample data sets containing
various external points and noise points. Specifically, a hypothetical model is established,
and if the initial data meet the model judgment conditions, it is expanded using a consistent
data set. If there are enough point distributions that can be explained using the model
parameters, the hypothetical model is reasonable enough, which is actually an idea of using
the model to fit the data.

Traffic signage has an obvious faceted geometric shape in the point cloud data. In
this paper, we use the RANSAC algorithm to fit the plane to the point cloud data in the
extracted area and compare the enclosing box where the non-facets are located with the
clustered results. As shown in Figure 15. When most points in a coarse class cluster
are in the enclosing box of non-facets, it is considered that the coarse class cluster does
not belong to the traffic signage. Combining the parameters of the laser scanner and the
characteristics of the traffic signage, the number of data points constituting the traffic
signage should be greater than one hundred, and those that do not meet the conditions
should also be eliminated.
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Figure 15. (a) After intensity filtering, most ground appendages can be filtered, traffic signs and their
attached poles, and some highway barriers are retained. (b)After further screening by RANSAC
fitting plane features, only traffic signs and their attached rods remain.

3.4. Dimensional Feature
3.4.1. Calculating Eigenvalues

After processing in the previous sections, traffic signs and other features can be
distinguished in most scenes. To further increase the accuracy, our paper uses the principal
component analysis to calculate the dimensional features.

Principal Components Analysis (PCA) is a common method of dimensionality reduc-
tion, which aims to determine the variables that are not linearly related to each other by
the correlation between data with the help of mathematical operations. Additionally, it is
arranged in order of decreasing variance. While keeping the total variance constant, each
group of variables is called the first principal component, the second principal component,
and so on. The variables between each principal component are not correlated.

The covariance reflects the mutual relationship between two sets of variables; greater
than zero means they are positively correlated, less than zero means they are negatively
correlated, and equal to zero means they are independent from each other. After obtaining
the covariance matrix formula for each point, the covariance matrix of its neighboring
points is calculated as follows:

M =
1
n

n

∑
i=1

(ci − c)(ci − c)T (25)

where M is a 3 × 3 covariance matrix, and ci denotes the points in the neighborhood, c
denotes the average coordinates in the neighborhood, n denotes the number of points, and
further the eigen decomposition of M.

M = [e1 e2 e3]

λ1 0 0
0 λ2 0
0 0 λ3

e1
T

e2
T

e3
T

 (26)

where λ1, λ2 and λ3 denote the eigenvalues sorted from largest to smallest and e1, e2 and e3
are the eigen vectors corresponding to the three eigenvalues.
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3.4.2. Dimensional Analysis

After calculating the eigenvalues, the dimensional features can be defined.

a1D =

√
λ1 − λ2√
λ1

, a2D =

√
λ2 − λ3√
λ1

, a3D =

√
λ3√
λ1

(27)

From Equation (28), it can be seen that when the first principal component is much
larger than the second and third principal components, the a1D maximum. When the first
principal component is close to the second principal component and much larger than the
third principal component, a2D is the maximum. When the first two and three principal
components are close to each other, the first two or three principal components are close to
each other and the maximum is defined. Accordingly, the dimensional characteristics of
the data points can be defined as follows:

D = argMax(aiD) (28)

where i ∈ {1, 2, 3}, the above equation means that the dimension D of the point is the value
of i when aiD is the maximum value. Combined with the analysis of Equation (28), the
scanned points can be classified into three categories: linear points (D = 1), planar points
(D = 2), and discrete points (D = 3).

Since the RANSAC algorithm is more obviously influenced by parameters, it may
fit objects with less obvious face features to a plane. As shown in Figure 13, which can
be avoided by adding the judgment of dimensional features. The point cloud data after
growth clustering is processed by intensity filtering and RANSAC screening; if there is still
more than one cluster to be selected, the points in all clustering clusters are considered to
be dimensional. Suppose there are two clusters A and B. If the dimensional mean Da of
all points in cluster A is closer to D = 2 than the Db, since there is only one traffic signage
in the area of interest, A can be judged as traffic signage. Meanwhile, in order to further
refine the contour of the traffic signage, the anomalous points of dimensional features in
the clustering cluster are removed. The results are shown in Figure 16.
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4. Discussion
4.1. Accuracy Analysis

In this paper, the reflection intensity-based extraction method and RANSAC-based
extraction method are used for comparison. The reflection intensity-based extraction
method extracts traffic signage based on the manually set intensity range; the RANSAC-
based extraction method goes to extract the faceted area as traffic signage based on the
manually set area region. The comparison experiments in this paper are divided into
two aspects: whether to combine images and different traffic signage extraction methods.
Therefore, there are five groups of experiments: (1) extraction based on reflection intensity
for the whole point cloud; (2) extraction based on RANSAC for the whole point cloud;
(3) extraction based on reflection intensity method combined with image positioning;
(4) extraction based on RANSAC method combined with image positioning; (5) using the
method of this paper.

In Table 3, Method I and Method III, Method II, and Method IV can form two sets of
control tests, illustrating that locating traffic signs by image detection before performing
traffic sign extraction can bring a huge improvement to the accuracy and recall rate. This is
due to the elimination of most other easily confusing objects after establishing a reasonable
target area. Method III and Method V, and Method IV and Method V can form two more
sets of control tests, which illustrate that the traffic sign extraction method proposed in this
paper has a better extraction effect compared with the reflection intensity-based method or
the RANSAC method.

Table 3. Accuracy analysis results.

Method Accuracy (%) Recall Rate (%)

Extraction method based on reflection intensity 7.5 28.6
RANSAC-based extraction method 2.8 12.9

Combined Image + Reflection Intensity 76.3 94.7
Combined Imaging + RANSAC 87.6 94.7

Methodology of this article 97.8 94.7

4.2. Visual Analysis

In this section, the original training set is reprogrammed using an improved Yolo
network, and the panoramic images collected by the laser system on the South Fourth Ring
Road of Beijing are used as an expanded dataset to include more indication signs on top of
the original dataset. The overall process of the proposed method to extract traffic signage in
the target point cloud range goes through several steps, including region growth clustering
segmentation, ground point removal, intensity filtering, and dimensional feature screening.

The effect of traffic sign extraction in this paper is shown in Figure 17. It can be seen
that the method in this paper achieves good extraction results for traffic signs in various
scenes. It should be noted that although it may be difficult to detect in some images
due to factors such as lighting, angle, and occlusion, the panoramic image is obtained by
continuous shooting during the driving process, and the same target is shot at multiple
angles, so it generally does not affect the recognition of this target.
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intensity information are sparse or even missing.

5. Conclusions and Future Research Directions

Traffic signs play an important regulatory role in the process of road driving, and the
correct identification of traffic signs is an important guarantee for driving safety. Extracting
traffic signs accurately in complex and changing road scenes is a difficult problem. In this
paper, we analyze the existing traffic sign extraction methods and propose a traffic sign
extraction method that combines image detection and point cloud segmentation. In order
to improve the signage detection accuracy in images, three aspects of the YoloV3 detection
model are improved: network structure, prediction frame size, and loss function. The
model is validated using domestic public road traffic datasets, and the experiments prove
that the model has higher accuracy compared with the original model.

A localization method of traffic signage in LiDAR data is proposed for the panoramic
images, and point cloud data acquired by vehicle-mounted mobile laser scanning equip-
ment. The method can make full use of the detection results of deep learning in road
images to accurately locate the range of traffic signage in the point cloud data. Then, it
further combines the depth image to determine the extraction range and obtain the point
cloud region where the traffic sign is located. After, the acquired point cloud region is sub-
jected to a CSF filtering algorithm to remove the ground. The clusters are clustered using
the region growing method, and the clustered target clusters are filtered using intensity
filtering and RANSAC plane fitting to narrow the target range. For the remaining coarse
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class clusters, traffic signage is extracted using dimensional features based on the PCA
method, while noise points with abnormal dimensionality are removed. In comparison
with other commonly used point cloud segmentation extraction methods, it has a better
extraction effect.

However, there are still some problems that need to be improved or solved. The
method in this paper is harsh on data acquisition, which needs to rely on the external
parameters of each panoramic photo derived from the conversion of the inertial guidance
system. These parameter files are used as the initial data to realize the whole process, which
has high requirements on data acquisition, cannot be realized solely by point cloud data,
and the universality needs to be enhanced. Our method relies on visual detection results
to extract point cloud, and the final accuracy is affected by the deep learning algorithm.
Manually marking traffic signs in a 3D scene takes time and effort. The point cloud data
extracted in this paper can provide a dataset for extracting traffic signs directly from
3D data.
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