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Abstract: Oxygen uptake (V̇O2) is an important metric in any exercise test including walking and
running. It can be measured using portable spirometers or metabolic analyzers. Those devices
are, however, not suitable for constant use by consumers due to their costs, difficulty of operation
and their intervening in the physical integrity of their users. Therefore, it is important to develop
approaches for the indirect estimation of V̇O2-based measurements of motion parameters, heart
rate data and application-specific measurements from consumer-grade sensors. Typically, these
approaches are based on linear regression models or neural networks. This study investigates how
motion data contribute to V̇O2 estimation accuracy during unconstrained running and walking.
The results suggest that a long short term memory (LSTM) neural network can predict oxygen
consumption with an accuracy of 2.49 mL/min/kg (95% limits of agreement) based only on speed,
speed change, cadence and vertical oscillation measurements from an inertial navigation system
combined with a Global Positioning System (INS/GPS) device developed by our group, worn on
the torso. Combining motion data and heart rate data can significantly improve the V̇O2 estimation
resulting in approximately 1.7–1.9 times smaller prediction errors than using only motion or heart
rate data.

Keywords: oxygen uptake; INS/GPS; running metrics; machine learning; LSTM neural network

1. Introduction

Oxygen consumption (V̇O2) during unconstrained running can be measured directly
by portable spirometers or metabolic analyzers. However, using these devices on a constant
basis is not convenient and often requires trained personnel. Furthermore, the price range
of portable spirometers can be in tens of thousands of euros, causing additional operational
costs. Therefore, estimating V̇O2 based on measurements from consumer-grade sensors and
without reliance on direct measurements would be highly useful for different performance
assessment applications and enable their wide-range use.

Indirect estimation of V̇O2 from the observation of other variables (using surrogate
variables) is a growing field of research thanks to the development of small wearable
sensors and machine learning algorithms. Typically, surrogate modeling of instantaneous
oxygen uptake or its steady value is based on heart rate (HR) measurements [1]. However,
there are factors that can affect the relationship between heart rate and oxygen uptake.
Some of these include hydration status, exercise duration, medication, altitude, state of
training, environmental conditions, and time of day [2]. Therefore, some additional input
features can be considered, and their choice depends on specific application. For example,
in running it could be breathing frequency, speed, speed variation and cadence that can be
computed by wearable devices during outdoor exercise [3]. For cycling, in addition to HR
and breathing frequency, the input features can include mechanical power and pedaling
cadence that can be accurately measured directly on cycling ergometers [4–6].
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Many previous studies used linear regressions for V̇O2 prediction [1,3,7,8]. However,
this approach has limitations for very low and very high intensity exercises when the
HR vs. V̇O2 relationship is significantly non-linear. Furthermore, heart rate is affected by
factors such as day-to-day variability, age, sex, fitness, exercise modality, and environmental
conditions [3]. Due to a reduced number of parameters, analytical models cannot adapt to
changes in exercise conditions. To mitigate the effect of these variables, HR index (HRI)
can be used as a surrogate for V̇O2 prediction instead of HR [1,8]. HRI is equal to a given
HR divided by resting HR and it is considered that it can potentially remove the need for
individual calibration often required for tracking daily activity using HR [8].

Some commercial products, for example, the Suunto personal HR monitoring system,
use HR measurements as a surrogate for the estimation of V̇O2 and energy expenditure [7].
In this approach the input features include R-wave-to-R-wave (R-R) heartbeat intervals,
R-R–derived respiration rate, and the on-and-off V̇O2 dynamics during various exercise
conditions. Although the investigators acknowledge the limitations in the prediction
accuracy when individual values for maximal HR and V̇O2 are included, they give little
information on the validity against pulmonary gas exchange values or correction factors to
account for variation in these estimates.

In [9], machine learning was used to predict V̇O2 during walking and with other daily
activities using surrogate variables such as HR, breathing frequency, minute ventilation,
hip acceleration and walking cadence. ECG and respiration band were integrated into a
Hexoskin smart shirt. Walking cadence was computed based on hip acceleration using
proprietary algorithm. From the HR data, a new variable was derived. The ∆HR was
composed by the difference between the current HR value and the previous value by
a 1 s lag operator, capturing dynamic changes in cardiac activity. The V̇O2 data were
measured breath-by-breath by a portable metabolic system (K4b2, COSMED, Italy). The
predicted oxygen uptake V̇O2 was obtained by a random forest regression based on these
features streamed from wearable sensors throughout the day. The deployment of such
nonintrusive technologies can help us to study relationships between patterns of daily
physical activity and fitness markers. The prediction accuracy was 6.166 mL/min/kg (95%
limits of agreement).

For V̇O2 prediction, advanced machine learning techniques can be used, such as
long-short term memory (LSTM) neural networks (e.g., in [4], a recurrent neural network
with three LSTM layers is used). These networks can process entire sequences of data and
consider the historical context of inputs. This property is important for applications such
as oxygen uptake predictions. Therefore, LSTM networks are widely used in the field of
exercise physiology to model V̇O2 dynamics across a variety of exercise conditions. They
perform better than analytical models or linear regressions [4]. In [4], an LSTM neural
network was trained from laboratory cycling data collected on electromagnetically-braked
bicycle ergometer (Excalibur Sport, Lode) to predict V̇O2 values from easy-to-obtain inputs,
such as heart rate, mechanical power output, cadence, and respiratory frequency. Accuracy
of workload was 2% for power between 100 and 1500 Watt. The authors compared the
performance of their LSTM neural network to that of two analytical models: (a) a first
order model assuming V̇O2 dynamics to be linear and (b) the model from [10]. The root
mean squared error (RMSE) of the LSTM was about 7.2% of the V̇O2max. For the analytical
models the respective RMSEs were between 10 and 15% of the V̇O2max, depending on the
test intensity. One drawback of neural networks is that model parameters often do not
have direct physiological meaning and require big datasets for training.

Amelard et al. [5] investigated the temporal prediction of V̇O2 from wearable sensors
during cycle ergometer exercise using a temporal convolutional neural network (TCN) or
stacked LSTM. The four cardiorespiratory bio-signals (HR, HR reserve, breathing frequency,
and minute ventilation) derived from a Hexoskin smart shirt (Hexoskin, Carre Technologies,
Montreal, Canada). The shirt contained a textile electrocardiogram to measure HR and
thoracic and abdominal respiration bands to obtain estimates of breathing frequency and
minute ventilation (VE) via respiratory inductance plethysmography. The VE was also
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calibrated by linear regression to the known VE measured throughout each protocol with
the bi-directional turbine [5]. In addition to these four inputs, the work rate profiles were
used as inputs into neural network. The V̇O2 data were measured breath-by-breath by
a portable metabolic system (MetaMax 3B-R2, CORTEX Biophysik, Leipzig, Germany).
TCN showed a V̇O2 prediction accuracy of approximately 8% of the V̇O2max (95% limits of
agreement) when the input data history was 218 s.

In this study, we investigated how motion data can contribute to V̇O2 prediction and
if it can be sufficient for accurate V̇O2 prediction. We also check whether the addition of
heart rate as an input feature can improve V̇O2 prediction accuracy. We have developed a
data-driven surrogate modelling for accurate oxygen uptake prediction based on motion
data measured by an inertial navigation system (INS) combined with a Global Positioning
System (GPS) receiver [3] and/or heart rate using an LSTM network. The V̇O2 predictions
are individualized, i.e., training and predictions are for the same person.

Our measurement setup was based on an INS/GPS device attached to the torso [3]
and a heart rate monitor (HRM). We developed a system that can provide continuously
different walking and running metrics. We have already used this system for indirect
estimation of vertical ground reaction force (vGRF), ground contact time (GCT), and some
other target features that can be directly measured only by instrumented insoles or by force
plates [3,11]. The results showed that the LSTM network can accurately predict vGRF and
GCT based on measurements of accelerations and angular velocities [11].

Considering the promises of LSTM networks, the purpose of this study was to predict
the individual response of V̇O2 during unconstrained walking and running using measure-
ment from the body-mounted motion sensor and/or HRM. One research goal was to study
how motion data contribute to V̇O2 prediction and if the motion data alone can achieve
a prediction accuracy comparable to HRM based predictions. We also tried to select an
optimal LSTM NN model: input features and length of input sequences, number of LSTM
layers and hidden units. Agreement between the measured and predicted oxygen uptake
is validated by Bland–Altman analysis by computing root mean square errors.

2. Materials and Methods
2.1. Experimental Data

Twelve recreational runners (age 30.9 ± 8.7 yrs, height 176.9 ± 8.9 cm, body mass
78.3 ± 13.0 kg, body mass index 24.9 ± 3.1 kg/m2, nine males) with varying fitness levels
participated in the field tests on a level outdoor track. All participants were healthy and
trained, according to their own statements, on average two times per week. The Ethics
Committee of Tampere Region approved the study. The participants gave informed consent,
and the research was conducted in accordance with the WMA Declaration of Helsinki [12].
After arriving at the track and providing consent, the participants were equipped with the
chest mounted INS/GPS device, oxygen mask, gas analyzers and telemetry radios from
Oxycon Mobile and, in some cases, a heart rate monitor’s chest strap. The setup is shown in
Figure 1. Participants were instructed to walk or run on the outdoor track at speeds ranging
between 1.3 and 3.5 m/s. The speed was chosen subjectively based on the participant’s
own feeling of fast and slow pace.

Every test for each test person started from resting condition (sitting or standing
still) for 3 min to measure oxygen consumption at rest. This allowed us to see the effect
of exercise on oxygen consumption. The test continued with walking at two different
speeds and running at two different speeds. Thus, data from four speeds and two different
gaits were collected. The participants maintained each speed for 3 min so that the oxygen
consumption had time to reach a steady state. In between each tested speed, the participants
were standing still to allow oxygen uptake and heart rate to return to resting level. The
total duration of tests for one participant was about 20 min. The data were collected in two
measurement campaigns, on 24/25 May and 1/2 November 2022 in Jyväskylä, Finland.
The field tests were carried out at different temperatures, ranging from +3 ◦C up to +22 ◦C,
and different relative humidity levels, ranging from 21% to 100%.



Sensors 2023, 23, 2249 4 of 14

INS/GPS
datalogger

Oxycon Mobile
gas analyzers
and telemetry

Figure 1. Measurement setup: Oxycon Mobile portable spirometer (the gas analyzers are on the back)
and chest mounted INS/GPS device. The heart rate monitor is worn under the shirt.

Temperature has significant impact on oxygen consumption. For example, in [13]
authors tested with eleven healthy subjects at various temperatures. They found that, on
average, oxygen consumption was 20.5% higher at −10 ◦C compared to 20 ◦C at same
exercise intensities. Similarly, Sandsund et al. [14] discovered that at −15 ◦C oxygen
consumption was 10.8% higher than at 23 ◦C during submaximal exercise intensities. They
tested with eight elite non-asthmatic cross-country skiers. Regarding the above mentioned
percentages it is crucial to note that the impact of temperature decreases as exercise intensity
increases due to the body’s increased heat production [15]. Oksa et al. [16] argue that the
increase in oxygen consumption at lower temperatures may be caused by “shivering or
increase thermoregulatory tonus of the muscles”, altered neuromuscular function and use
of additional clothing, which increases the metabolic rate.

Influence of humidity on oxygen uptake was investigated in [17]. The authors of this
study found no difference in V̇O2 at four sub-maximal velocities of 2.7, 3.3, 3.9, and 4.5 m/s,
respectively, for 4 min per stage during tests with different levels of relative humidity (23,
43, 52, 61 and 71%) at 31 ◦C temperature. As our measurements were taken in May at
20 ◦C/40% relative humidity (https://www.jyv-weather.info/wxhistory.php?date=202205,
(accessed on 13 January 2023)) and in November at 5 ◦C/90% relative humidity, the absolute
humidity, i.e., the total mass of water vapor present in the air were almost the same. Thus,
in our measurements humidity has no considerable impact on the V̇O2 measurements.

V̇O2 measurements and respiratory frequency were collected using breath-by-breath
methods from a portable spirometer (Oxycon Mobile, Jaeger, Würzburg, Germany) every 5 s.
Immediately before every test session, the gas analyzer and the flow meter were calibrated.
The data from the Oxycon Mobile were collected on the notebook using provided telemetry.
The accuracy of Oxycon Mobile was discussed in [18]. According to the authors of this
study, the Oxycon Mobile significantly underestimates V̇O2 at high workloads above 200 W.
Typical bias is about 100 mL/min and standard deviation is approximately 125 mL/min.
The oxygen uptake measurements were post-processed to reduce the measurement noise
and remove outliers. A Savitzky-Golay filter [19] with polynomial order and frame length
set to 3 and 1, respectively, was applied three times on the oxygen input data (Figure 2).
HR measurements were recorded continuously (beat-by-beat) during the test with a Su-
unto Movesense IMU+HR system with an output rate of approximately 1 Hz. It was also
smoothed and interpolated after the tests.

Measurements of running and walking parameters were collected continuously by
the INS/GPS datalogger and saved to a memory card through a wired connection, which
ensured that no data were lost. For our outdoor walking and running tests on a level
track, the datalogger unit was attached to the torso of test subjects. After the experiment,
the data were transmitted to cloud storage using a 4G/LTE USB modem connected to

https://www.jyv-weather.info/wxhistory.php?date=202205
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the datalogger. A detailed description of this setup is provided in [3]. The accuracy of
speed and speed difference is approximately 0.05 m/s. Vertical displacement and step
duration are computed with the accuracy of about 0.01 m and 10 ms, respectively. The
output frequency for acceleration, velocity, angular velocity and orientation is 400 Hz. To
compute walking and running metrics, the step segmentation was performed. The metrics
were computed with the step frequency for each step.

Figure 2. Example of oxygen uptake measurements (dashed green), smoothed oxygen uptake (solid
green), HR measurements (red) and speed (blue) during the typical 20 min test.

2.2. Dataset Preparation

Oxygen uptake, heart rate and motion measurements were synchronized in time in
a post-processing phase. Jumps with both feet were executed at the beginning of each
data recording simultaneously with bookmarks in oxygen uptake measurements, to obtain
time-synchronization between the three different devices. The jumps caused sharp peaks
in the acceleration measured both by the INS/GPS and the Suunto Movesense IMU+HR
systems. Using these peaks, the synchronization of oxygen uptake, heart rate and motion
measurements, as well as the data analysis, were performed offline on a computer after the
experiment. The achieved accuracy in time synchronization of about 0.1–0.2 s is sufficient
because HR and V̇O2 are slowly changing variables with sampling rates of 1 Hz and
0.2 Hz, respectively.

The motion data were processed to obtain step segmentation and compute running
and walking metrics for each step as described in [3]. Accelerations and velocities were
computed in the anatomical frame. Once the data were segmented into steps, features
or metrics that are commonly used in walking and running were computed for each
step to facilitate analysis of the data (see [3,11] for details). The oxygen uptake and HR
measurements were resampled to meet the same step-by-step frequency as the running
metrics. To use an LSTM neural network for oxygen uptake prediction, a training set
of sequences (input features) and target values (oxygen uptake) must be created. The
following running metrics were computed for each step and selected as input features in
this study:

• Speed averaged over one step: arithmetic mean of the speed (=step length/duration
of step), m/s;

• Speed: peak-to-peak difference during one step, m/s;
• Step duration, s;
• Vertical displacement: peak-to-peak difference in vertical movement, m;
• Heart rate, bpm.
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The number of steps in input sequences is one of the hyperparameters that relates the
length of past surrogate variables and oxygen uptake. Based on experiments, we decided
that input sequences of 50 steps yield a good estimate of the time-dependence decay
between the output and past values of inputs. For a better fit, and to prevent the training
from diverging, the input sequences were normalized between 0 and 1.

In machine learning, optimal feature selection is crucial for developing simple yet
reliable prediction models. The purpose of feature engineering is to identify valid, useful,
and understandable patterns in INS/GPS data that have a strong correlation with the target
parameter (V̇O2), but minimum inter-correlation with the other features. Figure 3 shows
the absolute correlations between pairs of input features and target features averaged for
all participants.

Figure 3. Matrix of correlations between the input features (left) and correlations of the input features
with the target feature (right).

These recommendations are not binding. Sometimes features that are weakly corre-
lated with the target features can significantly improve the machine learning algorithm
prediction accuracy if they are combined with other features. Furthermore, one needs to
keep in mind that weak correlation between the input and the target features indicates only
that there is no linear relationship between the two features but provides no information
about potential non-linear relations.

The selected set of input features was validated based on the consider only one and
leave-one-out approaches. It shows that speed, speed change and heart rate are the most
important input vectors to predict the V̇O2 label. Adding vertical displacement and step
duration improves the predictions to some extent. Adding further input features does
not improve the prediction accuracies. Figure 3 shows that speed and oxygen uptake are
correlated. However, if speed or HR is the only input feature the accuracy is worse than
when they are combined with other features. The optimal set of input features was selected
based on correlation matrix and our domain knowledge. The entire dataset was shuffled
and split into training and test subsets with 80% to 20% ratio.

2.3. LSTM Network Architecture

Oxygen uptake predictions have to take into account the historical context of inputs,
therefore a many-to-one long-short term memory (LSTM) model was developed for oxygen
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uptake (V̇O2) prediction. Optimal length of the input sequences is estimated based on
the results. We tried sequences of 50 and 100 steps and concluded that shorter sequences
are better. The neural network was implemented in Matlab Deep Learning toolbox. The
neural network includes the following layers: one LSTM layer, input, output and dense
layers. We used a sequence input layer that can contain two to five input sequences
and its input size matches the number of channels of the input data. The LSTM layer
has 150 hidden units. The number of hidden units determines how much information
is learned by the layer. Larger values can yield more accurate results but can be more
susceptible to overfitting to the training data. The output is a single number for each set of
sequences giving the value for predicted V̇O2. A fully connected layer with a size matching
the number of predictors, followed by a regression layer, were used to specify the number
of values to predict. The number of LSTM layers is a hyperparameter and was selected
based on experiments. The total number of trainable parameters was 93,151 that is far
more than training samples (typically 1500–5000). However, LSTM networks work very
well despite these potential overfitting problems, mainly because of various regularization
effects implicit to the training/optimization algorithm. The obvious benefit of having
many parameters is that the network is flexible enough to represent the desired mapping.
Adapting the size of the network to the size of the training set can lead to a problem when
the network is too simple and unable to represent the desired mapping (high bias).

It was trained using the Adam optimizer for 8000 epochs. For larger datasets, you
might not need to train for as many epochs for a good fit. The learning rate was set to 0.005.
Training the neural network required approximately 3–5 h on a PC equipped with an Intel
Core i7-6700 @3.4 GHz CPU processor. Testing the models requires only a few seconds for
every simulation.

To assess the prediction ability of the different models, a residual analysis was con-
ducted. Residuals were calculated as the difference between the experimental V̇O2 values
and the output V̇O2 values predicted by the models. The RMSE of the residuals was
calculated. A Bland–Altman analysis was used to assess the level of agreement between
measured and predicted data. The mean bias and the limits of agreement at 95% of
probability (two times standard deviation) were calculated.

3. Results
3.1. Input Features Include Only Motion Parameters

Two different input feature options were compared here: (a) four motion parameters
including speed, speed change (peak-to-peak) during one step, step duration and vertical
oscillation; (b) only speed. The Bland–Altman analysis of the predicted V̇O2 using LSTM
network with four motion input features and directly measured V̇O2 across all exercise
conditions and participants combined are shown collectively in Figure 4. Dashed horizontal
lines represent 95% limits of agreement and the solid line represents the prediction bias.
Each color represents data from a unique participant in the test set. This plot shows that the
prediction bias is −0.04 mL/min/kg (approximately 0.2% of V̇O2peak) and the validity of
the predicted V̇O2 values from the LSTM network expressed with 95% limits of agreement
is 2.49 mL/min/kg (approximately 5% of V̇O2peak).

Example of V̇O2 prediction accuracy for a single representative athlete is shown
in Figure 5. The plot shows V̇O2 measurements (blue) and predictions (red). Based on
our tests with 11 participants, it can be concluded that the bias is typically small, less
than 0.5 mL/min/kg (<1% of V̇O2peak). The standard deviation (σ) is typically about
1.2–1.5 mL/min/kg, 95% of all predictions are within 2σ.
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Figure 4. Bland–Altman analysis of the predicted and directly measured oxygen uptake with all
exercise conditions combined. The inputs to the LSTM network include four motion features. Dashed
horizontal lines represent the 95% limits of agreement and the solid line represents the prediction
bias. Each color represents data from a unique participant in the test set.

Figure 5. Performance of the regressor is shown for a single representative athlete: predicted V̇O2 (red) vs.
measured V̇O2 (blue) oxygen uptake. The inputs to the LSTM network include four motion features.

The Bland–Altman analysis of the predicted V̇O2 using LSTM network with one input
feature (speed) and directly measured V̇O2 across all exercise conditions and participants
combined are shown collectively in Figure 6. Performance of the same LSTM network for
a single representative athlete is shown in Figure 7. The LSTM network with four input
features yields more accurate prediction than the LSTM network with only one feature: 2.49
vs. 5.79 mL/min/kg (95% limits of agreement). Although the vertical displacement, speed
change and step duration cannot be used alone, they significantly improve the prediction
accuracy if they are combined with speed (Figure 5).
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Figure 6. Bland–Altman analysis of the predicted and directly measured oxygen uptake with all exer-
cise conditions combined. The inputs to the LSTM network include only speed. Dashed horizontal
lines represent the 95% limits of agreement and the solid line represents the prediction bias. Each
color represents data from a unique participant in the test set.

Figure 7. Performance of the regressor for a single representative athlete when only speed is used as
the input to the LSTM network. Predicted (red) vs. measured (blue) oxygen uptake.

3.2. Input Features Include Only Heart Rate

When heart rate is the only input feature to the LSTM network, the Bland–Altman
analysis of the predicted and directly measured oxygen uptake across all exercise conditions
and participants combined is shown collectively in Figure 8. This plot shows that the
prediction bias is 0.16 mL/min/kg (approximately 0.35% of V̇O2peak) and the validity of
the predicted V̇O2 values from the LSTM network expressed with 95% limits of agreement
is 2.52 mL/min/kg (approximately 5.5% of V̇O2peak). Performance of the regressor for a
single representative athlete during 20 min-long test is shown in Figure 9.
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Figure 8. Bland–Altman analysis of the predicted and directly measured oxygen uptake with all
exercise conditions combined. The inputs to the LSTM network include only heart rate. Dashed
horizontal lines represent the 95% limits of agreement and the solid line represents the prediction
bias. Each color represents data from a unique participant in the test set.

Figure 9. Performance of the regressor for a single representative athlete: predicted (red) vs. measured
(blue) oxygen uptake. The inputs to the LSTM network include only HR.

3.3. Input Features Include Motion Parameters and Heart Rate

When the input features to the LSTM network include both the motion features and
heart rate, the Bland–Altman analysis of the predicted and directly measured oxygen
uptake across all exercise conditions and participants combined is shown collectively in
Figure 10. This plot shows that the prediction bias is 0.02 mL/min/kg (approximately
0.05% of V̇O2peak) and the validity of the predicted V̇O2 values from the LSTM network
expressed with 95% limits of agreement is 1.36 mL/min/kg (approximately 3% of V̇O2peak).
Performance of the regressor for a single representative athlete during 20 min-long test is
shown in Figure 11.
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Figure 10. Bland–Altman analysis of the predicted and directly measured oxygen uptake with all
exercise conditions combined. Dashed horizontal lines represent the 95% limits of agreement and the
solid line represents the prediction bias. Each color represents data from a unique participant in the
test set.

Figure 11. Performance of the regressor using a single representative athlete: predicted (red) vs.
measured (blue) oxygen uptake. The inputs to the LSTM network include motion features and HR.

4. Discussion

Our hypothesis was that an LSTM neural network could be used to accurately predict
individual’s oxygen uptake during walking and running from measurements of motion
parameters and heart rate. We also wanted to examine how heart rate measurements could
improve V̇O2 prediction accuracy if they are added to the wearable INS/GPS device that
measures acceleration, velocity, angular velocity and orientation of the upper body where
the device is attached.

To the best of our knowledge, we are the first to apply recurrent neural networks for
prediction of V̇O2 during unconstrained walking and running based on measurements of
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motion parameters only and motion parameters combined with the heart rate. The results
show that performance of the LSTM network with the input features that include only
motion parameters and the LSTM network with heart rate as the only input are comparable:
the bias is −0.04 mL/min/kg vs. −0.16 mL/min/kg and the 95% limits of agreement is
2.49 mL/min/kg vs. 2.52 mL/min/kg. In the first case the bias is negligible. If the motion
features are combined with heart rate the LSTM network’s performance is considerably
better: the bias is 0.02 mL/min/kg and the 95% limits of agreement is 1.36 mL/min/kg.

All previous studies used heart rate and sometimes mechanical power (in cycling
ergometer case) for oxygen uptake prediction. In such approaches, mechanical power
is a very important feature. However, it cannot be measured for walking and running
directly as it is measured on cycling ergometer. For example, Zignoli et al. [4] studied
the ability of recurrent neural networks to predict oxygen uptake during exercises on
cycling ergometer. They show that, using heart rate, mechanical power output, pedaling
cadence and respiratory frequency as input features to the LSTM network, it is possible to
estimate V̇O2 with the accuracy of 7.2% of V̇O2max which is approximately 3.5 mL/min/kg.
The performance of our approach for V̇O2 prediction during unconstrained walking and
running is better (1.47 mL/min/kg). Some studies did not use the mechanical power,
but the prediction was less accurate. For example, Amelard et al. [5] developed temporal
convolutional neural network to predict V̇O2 during cycle ergometer exercise using only
cardiorespiratory bio-signals (HR, HR reserve, breathing frequency, and minute ventilation).
The prediction accuracy was 8% of V̇O2max which is approximately 3.8 mL/min/kg.

As our LSTM model’s performance was mainly evaluated using data collected during
the same session, it remains unclear how well it can perform with data collected during
different days. There are many factors that can influence daily oxygen uptake during
exercise, such as previous physical activity, state of health and contents and the time
of previous meal. Even when these things are taken into account, day-to-day variation
in oxygen consumption can be around 5% when performing exercise under a constant
load [20]. When thinking about changes in oxygen consumption during exercise in the
long run, factors such as endurance training, resistance training and nutrition can also have
an effect [21,22].

In our approach, the model training is based on data from a single person and pre-
diction is performed for the same person, similar to other studies [4,5]. Despite of this
limitation, our approach still has practical importance. Once the training is complete, the
system can be used for several months until a brief update is required. During this time,
without using expensive and cumbersome equipment (portable spirometers), it can esti-
mate fitness level, physical conditions, and shape (including potential injuries). To develop
a robust model that is stable with respect to physiological variability, the training data have
to include measurements from several tests carried out at different temperatures and times
over a long period of time. The development of generalizable models for inter-subject (i.e.,
using trials of some subjects in model training, and taking the trials of different subjects for
validation) oxygen uptake prediction is still an open research question.

5. Conclusions

Our study suggested that an LSTM network can predict oxygen consumption based
only on sequences of motion data collected from wearable sensors with an accuracy of
2.49 mL/min/kg (95% limits of agreement). Motion input features have to include speed
and speed change. The addition of vertical oscillations and step duration does not provide
a substantial improvement. Physiological markers, such as heart rate, can be added
to the input and improve the V̇O2 prediction accuracy (1.36 mL/min/kg 95% limits of
agreement). Achievable accuracy is comparable with the measurement accuracy of an
Oxycon Mobile (approximately 250 mL/min 95% limits of agreement) portable spirometer
when the training and predictions are for the same person and performed at similar
temperatures. Based on this study and our experience with V̇O2 prediction, we think that
this algorithm has the potential to be embedded in a portable system and to provide real-
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time assessment of individual V̇O2 during walking and running. The proposed approach
for V̇O2 prediction can provide a unique opportunity for continued V̇O2 collections in
unsupervised environments. Our approach can be applied in continuous assessment of
energy expenditure and aerobic fitness with the potential for future applications such as the
early detection of possible injuries and the deterioration of physical health. The proposed
algorithm can also be adapted to estimate energy expenditure and the quantification of
training intensity. We investigated exercising conditions at low and moderate intensities.
More work is needed to cover all different conditions including heavy and severe intensity
exercises. The effect of inter-subject variation and day-to-day variability on V̇O2 prediction
has yet to be studied.
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4G Fourth generation broadband cellular network technology
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GPS Global positioning system
HR Heart rate
HRI Heart rate index
HRM Heart rate monitor
IMU Inertial measurement unit
INS Inertial navigation system
INS/GPS GPS-aided inertial navigation system
LSTM Long short-term memory
LTE Long term evolution
RMSE Root mean square error
R-R R-wave-to-R-wave
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