
Citation: Xiao, H.; Wang, W.;

Dong, L.; Ogai, H. Adversarial

Auxiliary Weighted Subdomain

Adaptation for Open-Set Deep

Transfer Bridge Damage Diagnosis.

Sensors 2023, 23, 2200. https://

doi.org/10.3390/s23042200

Academic Editors: Kim Phuc Tran,

Athanasios Rakitzis and Khanh T. P.

Nguyen

Received: 22 March 2022

Revised: 6 May 2022

Accepted: 8 May 2022

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adversarial Auxiliary Weighted Subdomain Adaptation for
Open-Set Deep Transfer Bridge Damage Diagnosis
Haitao Xiao 1,2,*, Limeng Dong 3, Wenjie Wang 1, Harutoshi Ogai 2

1 School of Information and Communication Engineering, Xi’an Jiaotong University, No. 28, Xianning West
Road, Xi’an 710049, China

2 Graduate School of Information, Production and Systems, Waseda University, 2-7, Hibikino, Wakamatsu-ku,
Kitakyushu 808-0135, Japan

3 School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road,
Xi’an 710072, China

* Correspondence: xht8015949@xjtu.edu.cn

Abstract: Deep learning models have been widely used in data-driven bridge structural damage
diagnosis methods in recent years. However, these methods require training and test datasets to
satisfy the same distribution, which is difficult to satisfy in practice. Domain adaptation transfer
learning is an efficient method to solve this problem. Most of the current domain adaptation methods
focus on close-set scenarios with the same classes in the source and target domains. However,
in practical applications, new damage caused by long-term degradation often makes the target
and source domains dissimilar in the class space. For such challenging open-set scenarios, existing
domain adaptation methods will be powerless. To effectively solve the above problems, an adversarial
auxiliary weighted subdomain adaptation algorithm is proposed for open-set scenarios. Adversarial
learning is introduced to proposed an adversarial auxiliary weighting scheme to reflect the similarity
of target samples with source classes. It effectively distinguishes unknown damage from known
states. This paper further proposes a multi-channel multi-kernel weighted local maximum mean
discrepancy metric (MCMK-WLMMD) to capture the fine-grained transferable information for
conditional distribution alignment (sub-domain alignment). Extensive experiments on transfer tasks
between three bridges verify the effectiveness of the algorithm in open-set scenarios.

Keywords: structural damage diagnosis; transfer learning; MCMK-WLMMD; deep learning;
adversarial learning

1. Introduction

With the rapid development of artificial intelligence technology, deep learning has
been widely studied and applied in the field of bridge structural damage diagnosis. A large
number of deep learning-based bridge damage diagnosis techniques [1–11] have achieved
better results than traditional damage diagnosis techniques in many aspects. Therefore,
the focus of bridge structure damage diagnosis technology is gradually transitioning from
the study of signal processing technology to the study of data intelligence-driven methods.

1.1. Related Work

Traditional deep learning models have achieved good results when the training (source
domain) and test (target domain) datasets obey the same distribution [12]. However, due to
variable loads and natural environments, the acquired diagnostic data of different bridges
are in different distribution models (i.e., there is distribution discrepancy between the source
and target domains). Therefore, the damage diagnosis knowledge learned from the source
domain is less effective in the target domain. To solve these problems, the transfer learning
(TL) theory has been extensively researched and discussed in recent years. The purpose
of transfer learning is to seek the invariance between different domains by narrowing the
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discrepancy between them, and the method tries to improve the generalization ability and
robustness of the model by utilizing samples from the source (labeled samples) and target
(unlabeled samples) domains [13,14]. TL is widely used in the fields of image recognition,
speech recognition [15], and fault diagnosis [16–18].

Deep transfer learning frameworks based on domain adaptation methods expect
to learn shared features from the source and target domains to transfer damage
knowledge [19–21], which is well suited to diagnosis problems. Domain adaptation mainly
adopts two learning schemes: adversarial learning and the minimization of the distribution
discrepancy metric between domains. Inspired by generative adversarial networks, domain
adaptation based on adversarial learning reduces the feature distribution discrepancy be-
tween source and target domains by adversarially training the feature extractor and domain
classifier [22]. The adversarial domain adaptation methods proposed by Long et al. [23],
Chen et al. [24], and Li et al. [25] utilized feature extractors trained by source domain data
to extract target features. Then, the feature distribution was aligned by maximizing the loss
of the domain classifier, i.e., training the domain classifier with features from the source
and target domains. Another domain adaptation scheme is to align feature distribution
by minimizing distribution discrepancy metrics, such as MMD, JDA, JMMD, and RTML,
to achieve efficient knowledge transfer. Lu et al. [26] and Wen et al. [27] used maximum
mean discrepancy (MMD) for domain adaptive training and established a correspond-
ing feature transfer model. The domain adaptation approach proposed by Lu et al. [28]
achieved transfer learning by aligning distribution in multiple layers by minimizing MMD.
To improve the performance of domain adaptation methods, Yang et al. [29] utilized a poly-
nomial kernel to improve MMD, while Cao et al. [30] proposed a pseudo-classification to
improve MMD for aligning inter-class distributions. Zhu et al. [31] and Che [32] used multi-
kernel MMD to obtain good distribution alignment. Han et al. [33] and Qian et al. [34] used
joint distribution adaptation (JDA) with pseudo-labels to align conditional and marginal
distribution to construct a more efficient and robust feature representation for substantial
distribution discrepancy. To reduce the marginal and conditional distribution discrepancy,
Cao et al. [35] constructed an auxiliary soft label for joint MMD (JMMD) to enhance the
performance of JMMD. Ding et al. [36] proposed a robust transfer metric learning method
(RTML) framework that eliminates the difference between the boundary distribution and
conditional distribution of the two domains in the sample space.

The application of TL in structural health monitoring (SHM) is an emerging field.
The use of TL to solve the classification problem of vision-based SHM is becoming a new
research direction [37]. In road crack detection, TL has proved to be an effective method for
improving the accuracy of classification problems [38–40].

From the discussion of the existing studies mentioned above, we know the following:
(1) The existing research has achieved good results in the close-set scenario; i.e., the

source and the target domains have the same class space. However, in the actual bridge
diagnosis scenario, new damages (unknown class) that are not included in the source
domain classes often appear due to the degradation of the bridge structure; i.e., the class
space of the source domain is a subset of the target domain (open-set) [41,42]. There are
very few studies on fault or damage transfer diagnosis in such open-set scenarios. This
brings a more challenging open-set domain adaptation problem to bridge damage transfer
diagnosis, as shown in Figure 1. Figure 1 shows that the appearance of target outlier classes
(new damage classes) brings the negative transfer of diagnostic knowledge to existing
domain adaptation methods. This leads to a decline in the generalization ability of the
model in the open-set scenarios [43].

(2) In the existing intelligent diagnosis methods based on TL, the domain adaptation
method mainly learns the global domain shift to align the marginal distribution of the
source and target domains without considering the relationship between the corresponding
sub-domains (a sub-domain contains the samples within the same class). This confuses the
data and the discrimination structure. As a result, fine-grained information of each class
may be lost [44]. Figure 1 (left) shows an intuitive example that explains the confusion in
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the global domain adaptation. The data in different subdomains are too close to enable
accurate classification. This is a common adaptation problem in the global domain.

Figure 1. Domain shift and open-set domain adaptation methods.

1.2. Contributions

Motivated by the aforementioned issues and to promote the successful application
of intelligent bridge damage diagnosis in open-set scenarios, this paper proposes a new
intelligent structural damage diagnosis method for bridges, namely, an intelligent bridge
diagnosis method based on adversarial auxiliary weighted subdomain adaptation network
(AWSDN). A multi-channel multi-scale feature extractor is designed to expand the width
of the feature extraction network to obtain deeper and multi-scale features. To isolate target
outlier samples and prevent the negative transfer caused by these outliers, adversarial
learning is introduced to the proposed adversarial auxiliary weights for samples in the
target domain to describe the similarity between samples in the target and source domains.
Furthermore, the multi-channel multi-kernel weighted local maximum mean discrepancy
(MCMK-WLMMD) is proposed to effectively align the conditional distribution between
correlated subdomains, i.e., subdomain adaptation. The main contributions of this paper
are summarized as follows:

(1) Effectively solving the challenging open-set domain adaptation problem in bridge
damage diagnosis, which is rarely studied in the existing literature.

(2) An adversarial weighting method is proposed for target samples by using adver-
sarial training on the domain classifier and feature extractor. Negative transfer is avoided
by isolating outlier class values with the help of adversarial auxiliary weights.

(3) MCMK-WLMMD aims to measure the distribution discrepancy between correlated
subdomains in a shared class space to obtain fine-grained transferable information for more
efficient domain adaptation.

(4) Extensive experiments on the dataset of three bridges verify the effectiveness and
superiority of the proposed method.

This paper is organized as follows. The problem of TL is introduced in Section 2.
In Section 3, the detailed designs of our proposed method are presented. In Section 4, field
experiments and our analysis are discussed. The results prove that the proposed method is
reliable, effective, and useful.
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2. Preliminaries
2.1. Problem Formulate

This study focuses on the problem of open-set domain adaptation in bridge damage
diagnosis. Usually, the labeled data obtained from a bridge or model are used as the source
domain Ds = {(xs

i , ys
i )}, where ns is the number of samples in the source domain, xs

i is
the ith sample of the source domain, and ys

i is the label of the ith sample in the source
domain (ys

i ∈ {0, 1, 2, ..., C − 1}, where C is the number of sample labels). Accordingly,
unlabeled data obtained from other working conditions or bridges are called the target
domain Dt = {(xt

j)}, where nt is the number of samples in the target domain, and xt
j is the

jth sample of the target domain. The source domain data are collected under the probability
distribution Ps, and the target domain data are collected under the probability distribution
Pt, and Ps 6= Pt. In open-set domain adaptation, the label space Ys of the source domain
is included in the class space Yt of the target domain. These classes of Ys are also called
“shared classes”, i.e., Ys ⊆ Yt. Therefore, Ps 6= Pt,sh, where Pt,sh represents the distribution
of the target domain belonging to the source class space.

This paper aims to build a data-driven deep transfer model that can learn invariant
features from source and target domains for bridge damage diagnosis in open-set scenarios.
The deep transfer model can not only identify the target outliers as unknown classes
but also accurately classify the target samples belonging to the shared classes.

2.2. Maximum Mean Discrepancy (MMD)

A parameter-free discrepancy metric called MMD is often used in many transfer tasks.
It can estimate the distribution discrepancy between the different domains. The mathemati-
cal formula is as follows:

MMDH(Xs, Xt) =

∥∥∥∥∥ 1
ns

ns−1

∑
i=0

Φ(xs
i )−

1
nt

nt−1

∑
j=0

Φ(xt
j)

∥∥∥∥∥
2

H

(1)

where Xs and Xt are the sample sets of the source and target domains, respectively,
and MMDH(Xs, Xt) is the distance between the source and target domain samples in
the regenerated kernel Hilbert space. H.Φ() is the feature space mapping function. ns
and nt are the number of samples in the source and target domains, and ‖.‖H is a repro-
ducing kernel Hilbert space. Minimizing Equation (1) can make the source and target
domains closer, so that the model can more accurately predict the label of the sample in the
target domain.

2.3. Convolutional Neural Network (CNN)

A CNN is a multi-layer feed-forward neural network that extracts features layer by
layer through the alternation of connections of convolutional layers and pooling layers.
A typical CNN generally uses a fully connected layer at the end of the network to integrate
local information with category discrimination. Finally, a classifier such as Softmax is used
for classification. The final loss function of the status recognition module based on the
CNN is

LossSR(y, X) =
1
ns

ns−1

∑
i=0

J(ys
i , f (xs

i )),

J(G, Q) = −
C−1

∑
c=0

Gclg(Qc) (2)

where f (xs
i ) is the prediction result of the CNN with MPME for the ith sample of the source

domain; J(), G, and Q are the cross-entropy loss function, one-hot encoding of the real
label, and probability vector of the predicted label, respectively; and Gc is a 0∼1 variable.
When c is the true label of the sample, Gc is 1; otherwise, it is 0.
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3. Proposed Method

In this study, the original vibration signal of the bridge was used as the input for
the intelligent structural damage diagnosis method. Using TL, the proposed method can
achieve satisfactory diagnostic accuracy. The framework and training processes of our
proposed intelligent structural damage diagnosis method are detailed in this section.

3.1. Sub-Domain Adaptation Deep Transfer Learning Network

In this section, a new deep learning framework, named AWSDN, is proposed for
transfer damage diagnosis. The framework consists of four parts, as shown in Figure 2.

Figure 2. Framework of AWSDN.

(1) Status Recognition Module (SR): This includes a feature extractor and a state
recognizer. The feature extractor consists of a CNN and a multi-channel parallel multi-
scale extractor (MPME) to automatically learn higher-level multi-scale features from input
samples in different domains. The health status is determined by the status recognition
based on the features extracted by the extractor.

(2) Adversarial Auxiliary Domain Classifier (DC): This takes the features learned by
the feature extractor as input and predicts the domain labels of the features. Adversarial
learning is introduced to use adversarial training between the domain classifier and feature
extractor, meaning that the domain classifier cannot distinguish the domain classes of
the features. Then, the prediction error of this domain classifier is used to describe the
similarity of the target-domain samples with the source domain, i.e., the indicator of the
adversarial auxiliary weight. Using this auxiliary weight indicator, the outlier samples
(unknown class samples) of the target domain can be separated.

(3) Sub-Domain Adaptation Module with MCMK-WLMMD (SA): A sub-domain
adaptation with multi-channel multi-kernel weighted local maximum mean discrepancy
(MCMK-WLMMD) is proposed to align the conditional distribution for diagnosis acknowl-
edgement transfer.

(4) Outlier Classifier (OC): This is used to identify the outlier classes (unknown classes)
and shared classes of the target domain.
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3.1.1. Status Recognition Module (SR)

The vibration signal of the bridge in this study is a one-dimensional signal, and thus a
1D-CNN was selected. The 1D-CNN model used in status recognition is mainly composed
of one input layer, five convolutional layers, five pooling layers, two fully connected layers,
and one output layer. In the status recognition module, the first 13 layers are feature
extractors, and the last layer is the health status classifier. The parameters of CNN and
MPME are presented in Table 1 and Figure 2, where the original vibration signal data with
length L are used as the input layer. m, n, and L are set as 5, 2, and 256, respectively.

Table 1. Architecture of CNN with MPME.

No. Layer Function Parameters

1 Finput Input L
2 Conv1 1st Convolution m× 1× n
3 P1 Pooling k
4 Conv2 2nd Convolution m× 1× n
5 P2 Pooling k
6 Conv3 3rd Convolution m× 1× n
7 P3 Pooling k
8 Conv4 4th Convolution m× 1× n
9 P4 Pooling k

10 Conv5 5th Convolution m× 1× n
11 P5 Pooling k
12 MPME Multi-channel Parallel Multi-scale Extractor /
13 FC Concat and Flatten /
14 Foutp Softmax /

3.1.2. Adversarial Learning Based Target Instance Weighting

For unlabeled target domains, this paper proposes a weighting scheme assisted by
adversarial learning. Wk is set as the auxiliary weight for the kth target-domain sample,
which represents the likelihood that the sample belongs to the shared class. This paper
calculates the weights through two strategies, namely adversarial auxiliary weighting and
inter-domain distance metric weighting.

A. Adversarial Auxiliary Weighting.
Figure 2 shows that the domain classifier is composed of a fully connected layer

and an output layer, i.e., FCDC (two neurons) and Doutput (SoftMax). Based on the theory
of domain learning discussed in [14] and Equation (2), the loss functions between the
predicted domain label and the ground truth in domain classifier for the ith sample of
source and target domains are expressed in Equation (3). Thus, the domain classifier loss
can be written as in Equation (4). In Equation (3), Ds

i and Dt
i are the labels in the source

and target domains, respectively. f s
DC,i,k and f t

DC,i,k represent the kth elements of FCDC’s
output for the source and target domains, respectively.

Losss
DC,i = −

2

∑
k=1

1{Ds
i = k}log(

e f s
DC,i,k

∑2
m=1 e f s

DC,i,m
)

Losst
DC,i = −

2

∑
k=1

1{Dt
i = k}log(

e f t
DC,i,k

∑2
m=1 e f t

DC,i,m
) (3)

LossDC =
1
ns

ns−1

∑
i=0

Losss
DC,i +

1
nt

nt−1

∑
i=0

Losst
DC,i (4)

In this study, the purpose of adding a domain classifier is to make the model unable
to identify the domain label by maximizing the domain classifier loss. This means that
it is difficult for domain classifiers to separate shared classes, while it is easy to separate
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outliers, through adversarial learning. Therefore, the domain prediction error of the domain
classifier can be used as a similarity metric for the adversarial auxiliary weighting scheme.
In this way, outlier samples of the target domain have smaller domain prediction errors,
resulting in smaller adversarial auxiliary weights. From Equation (3), the adversarial
auxiliary similarity weight WA,i of the ith target-domain sample can be defined as

WA,i = Losst
DC,i (5)

B. Inter-Domain Distance Metric Weighting.
Although there is a domain gap between the source and target domains, the same

classes in these domains generally have similar characteristics. Therefore, they should be
closer in the high-level space. The centroids of the source-domain classes in the representa-
tion layer can be expressed as Equation (6).

CS
J =

1
ns

j
∑

xs
i∈Ds

j

f (xs
i ) (6)

where Gs
j and ns

j represent the jth class of the source domain and the number of samples in
the jth class, respectively. For the kth target sample, all distances between it and the source
centroids are calculated, i.e., l1, l2, ..., lk, k = nG. Generally, when lk is smaller, the target
sample is closer to the centroids of the source domain; i.e, the class of the target sample
has a higher probability of belonging to the source domain. Therefore, the reciprocal of the
minimum distance is selected as the weight WL,k, as shown in Equation (7).

WL,i =
1

lk,min

lk,min = min
j=1,2,...,nG

∥∥∥ f (xt
k)− cs

j

∥∥∥ (7)

C. Joint Target Instance Weighting.
In this study, the proposed target instance weight combines the adversarial auxiliary

weight with the inter-domain distance metric weight, i.e., the joint target instance weight
expressed as Equation (8). In addition, to obtain normalized weights, the weights need to
be properly scaled by normalization. The min–max normalization shown in Equation (9) is
used to normalize these two weights. After normalization, Equation (8) can be rewritten as
Equation (10). After normalizing the joint weights, they are attached to the target samples
for subdomain adaptation. In this way, in MCMK-WLMMD-based subdomain adaptation,
the distribution between target and source domains in shared classes is aligned, while
target outliers are isolated.

Wi = WA,i + WA,i (8)

ŴA,k = τ
WA,k −WA,min

WA,max −WA,min + ω

ŴL,k = τ
WL,k −WL,min

WL,max −WL,min + ω
(9)

WA,max = max(WA,k), WA,min = min(WA,k)

WL,max = max(WL,k), WL,min = min(WL,k)

WK = ŴA,k + ŴL,k (10)

3.1.3. Sub-Domain Adaptation with MCMK-WLMMD

Most of the studies using domain adaptation for TL [42–45] focus on using MMD
to reduce the edge distribution discrepancy (global distribution) between the target and
source domains without considering the relationship between the two sub-domains in
the source and target domains. Thus, the conditional distribution discrepancy between
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the source and target domains is ignored. This is a common problem in the previous
global domains.

A. Weighted Local Maximum Mean Difference (WLMMD).
To solve the above problems, the local distribution of the two sub-domains in the

source and target domains is used in this study. By minimizing the local distribution
discrepancy between the two sub-domains of the source and target domains, sub-domain
adaptation (also known as aligning condition distribution) is achieved. However, in un-
supervised TL, the samples of the target domain are unlabeled, which makes it difficult
to use the MMD to align the conditional distribution between the source and target do-
mains. In response to this situation, the WLMMD is proposed to achieve proper alignment.
WLMMD uses the output of the training network y = f (xt) as the pseudo-label of the
target domain samples. For the target domain, the pseudo label may be incorrect, and us-
ing this incorrect label will reduce the performance. Therefore, a probabilistic prediction
(soft prediction) is proposed to mitigate this negative impact. The WLMMD measures the
distribution discrepancy of related sub-domains in the source and target domains while
considering different sample weights. According to weight ωc, each sample should belong
to a class. Therefore, based on this, Equation (11) is obtained. By minimizing Equation (11),
the distribution of the sub-domains in the same class can be closer.

d̂H =
1
C

C−1

∑
c=0

∥∥∥∥∥ns−1

∑
i=0

ωs
i,cΦ(xs

i )−
ns−1

∑
j=0

ωt
i,cΦ(xt

j)

∥∥∥∥∥
2

H

,

where ωi,c =
yi,c

∑n−1
j=0 yi,c

(11)

where d̂H is the distribution discrepancy measurement considering the effect of pseudo-
labels with probabilistic prediction. ωs

i,c and ωt
j,c represent the weights of xs

i and xt
j belong-

ing to category c, respectively. Note that both ∑
ns,c−1
i=0 ωs

i,c and ∑
ns,c−1
j=0 ωs

j,c are equal to 1,

and ∑nc−1
i=0 ωi,c is the weighted sum of category c. yi,c is the cth item of the vector yi. For the

samples in the source domain, it uses the real label ys
i as the one-hot vector to calculate the

ωs
i,c of each sample. However, in unsupervised adaptation, the target domain is unlabeled

data, and it cannot directly use yt
j to calculate ωt

j,c. Thus, the output of the training network
ŷ = f () is used as a pseudo-label of the target domain samples to calculate the ωt

j,c of each
sample in the target domain. Then, the ωt

j,c can be calculated for each target sample. Finally,
Equation (11) is calculated.

B. MCMK-WLMMD Alignment.
Because the high-order features directly affect the capability of damage transfer,

the adaptation alignment of the sub-domain distribution is realized by reducing the distri-
bution discrepancy between the relevant sub-domain distributions in these channels (CH1,
CH2, and CHn), as shown in Figure 3.

First, the hidden representations of CH1, CH2, and CHn are mapped to reproducing
kernel Hilbert spaces (RKHSs), and the source and target domains outputs are set as f s

CH1

and f t
CH1

, f s
CH2

and f t
CH2

, and f s
CHn

and f t
CHn

, respectively.
Second, in the RKHS space, to avoid the fact that a single kernel function is not

conducive to a proper expression of the mapping relationship between the two spaces, this
study selects multiple Gauss kernel (MK) functions to enhance the representation ability of
the mapping function. The multi-kernel function (MK) is given by Equation (12). Therefore,
based on Equation (12), it can obtain the MK-WLMMD in CH1, CH2, and CHn by using
Equation (13), where z = (1, 2, ..., nCH) (nCH = 4 in this study), and C is the number of
categories. By minimizing Equation (14), the condition distribution between the source
and target domains is aligned to realize sub-domain adaptation. Therefore, the error of
sub-domain adaptation with MCMK-WLMMD can be expressed as Equation (14).
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κ , {K =
m−1

∑
µ=0

βµkµ : βµ ≥ 0, ∀µ} (12)

d̂( f s
CHz

, f t
CHz

) =
1
C

C−1

∑
c=0

[
ns,c−1

∑
i=0

ns,c−1

∑
j=0

ωs
i,cωs

j,cκ( f s
CHz ,i, f s

CHz ,j)

+
nt,c−1

∑
i=0

nt,c−1

∑
j=0

ωt
i,cωt

j,cκ( f s
CHz ,i, f t

CHz ,j)

− 2
ns,c−1

∑
i=0

ns,c−1

∑
j=0

ωs
i,cωt

j,cκ( f s
CHz ,i, f t

CHz ,j)] (13)

DMSA =
nCH

∑
z=1

d̂( f s
CHz

, f t
CHz

) (14)

Figure 3. Framework of sub-domain adaptation with MCMK-WLMMD.

3.1.4. Outlier Classifier

As shown in Figure 4, the model contains three classifiers: the state recognition (SR),
the domain classifier (DC), and the outlier classifier (OC). The state recognition is designed
to identify the bridge health states under source supervision, and its loss function is shown
in Equation (2). The purpose of the domain classifier is to discriminate whether the samples
belong to the source or target domains. This is a two-class classification problem based on
supervision. The cross-entropy loss function of DC is shown in Equation (4).

The outlier classifier OC is designed to accurately identify outlier states in the target
domain. Since the samples in the target domain are unlabeled data, this study proposes
pseudo-outlier labels for the target samples to train the outlier classifier. As described in
Section 3.1.2, the loss function of DC can be used as an outlier indicator to assist in labeling
target-domain samples. Object samples from the shared classes are often hard to distinguish,
which leads to larger errors. At the same time, the target outliers are more different from
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the source domain, resulting in a smaller prediction error. Therefore, for the normalized
similarity weight of the target domain, i.e., Wk, the samples larger than the threshold are
considered as shared classes, and those below the threshold are outliers, i.e., unknown
classes. In this way, pseudo outlier labels can be appended to unlabeled target samples
to train the outlier classifier OC. The loss function of DC for the ith target sample can be
expressed as Equation (15), where denotes the pseudo outlier label. Therefore, the loss
function of the outlier classifier can be written as Equation (16). When the feature of the
target domain is classified as an outlier state by OC, the damage state of this target domain
sample is identified as the unknown damage state (new damage). When OC identifies the
feature of the target domain as a known state (shared class), this feature is fed into the SR
to further identify the detailed damage state (labeled shared class).

Losst
OC,i = −

2

∑
k=1

1{Ot
i = k}log(

e f t
OC,i,k

∑2
m=1 e f t

OC,i,m
) (15)

LossOC =
1

nps

nps−1

∑
i=0

Losss
OC,i (16)

Figure 4. Classifiers of AWSDN.

3.2. Optimization Objective

The training optimization objective of the AWSDN mentioned in this study consists of
four parts:

(1) Minimizing the status recognition error in the source domain;
(2) Maximizing the error of the domain classifier;
(3) Minimizing the error of the sub-domain adaptation with MCMK-WLMMD;
(4) Minimizing the error of the outlier classifier.
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3.2.1. First Objective

In the status recognition module, because there are sufficient damage state labeled
data in the source domain, the training of the AWSDN model on the source domain adopts
the supervised learning mode. After the model completes the feature extraction, the status
recognition loss (LossSR) between the predicted class (predicted by the model) and the
actual class of the source domain is calculated. The calculation formula is the same as
Equation (2). Then, the first optimization objective is expressed in Equation (17).

min
f

1
ns

ns−1

∑
i=0

J(ys
i , f (xs

i )) (17)

3.2.2. Second Objective

As shown in Figure 2, the domain classifier was designed to learn domain invariant
features; that is, the domain classifier cannot distinguish the features between the source
and target domains. Therefore, the second object is to maximize the domain classification
error (i.e., LossDC), i.e., Equation (18).

max
f

(
1
ns

ns−1

∑
i=0

LossS
DC,I +

1
nt

nt−1

∑
j=0

Losst
DC,j) (18)

3.2.3. Third Objective

The sub-domain adaptation with MCMK-WLMMD is proposed to reduce the condition
distribution discrepancy between the source and target domains, i.e., minimizing the error
of sub-domain adaptation (DSA). Therefore, the third objective is shown as Equation (20).

min
f

nCH

∑
z=1

d̂( f s
CHz

, f t
CHz

) (19)

3.2.4. Fourth Objective

Outlier classifier is designed to recognize the new damage in the target domain; thus,
the fourth objective is to minimize the error of the outlier classifier, i.e., Equation (20).

min
f

1
nps

nps

∑
i=1

Losst
OC,i (20)

3.3. Optimization Objective Training

Based on the above information on optimization, the overall optimization objective
is to maximize the error of the domain classifier under the premise that the sum of the
errors of the status recognition with sub-domain adaptation and outlier classifier in their
respective domains is minimized. Thus, the final object is to minimize Equation (21).

Losstotal = LossSR + λDMSA + ηLossoc − γLossDC (21)

After establishing the training optimization object, AWSDN can use the fast gradient
descent algorithm (SGD) to train the proposed method. To complete the training process by
minimizing Losstatal , the trained network (AWSDN) can learn domain-invariant features,
so that the trained network can recognize the new damage status and accurately predict the
labels of the samples in the target domain. Therefore, the AWSDN can be used to transfer
damage diagnosis between different bridges and working conditions in open-set.

4. Field Bridge Experiment Result Study

From 2008 to 2019, an intelligent bridge structural health monitoring system (IBSHM)
was developed to gather vibration data and evaluate the healthy condition automatically
and in real time. A schematic of this system is shown in Figure 5. To improve the IBSHM, it
was tested on 10 bridges in Japan using a variety of experiments.
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To promote the successful application of intelligent damage diagnosis of bridges with
unlabeled data, this paper introduces experiments on the Kando Bridge, the simulation
model of the Kando Bridge, and the Seiran Bridge to verify the reliability, superiority,
and transfer ability of AWSDN. We used three data sets obtained from three different
bridges (a test bridge named Kando Bridge, Kando Bridge’s simulation model, and a similar
structure bridge named Seiran Bridge) to perform transfer damage diagnosis experiments
and data analysis.

Figure 5. Sketch of IBSHM.

4.1. Data Set

The data-sets of these three bridges (data-set A, data-set B, and data-set C were
acquired from Kando Bridge, Kando Bridge’s simulation model, and Seiran Bridge, respec-
tively) were established to carry out the research on deep TL damage diagnosis. Thus,
the three datasets were distributed in three different domains, and the data distribution
in each domain was different. In these experiments, acceleration sensors with 200 Hz
sampling frequency were deployed on bridges. For example, in the Kando Bridge exper-
iment, 300 iterations of data collection by 15 wireless sensors and 300 iterations of data
collection by 15 wired sensors were performed for each damage and excitation situation. In
total, 400 samples was selected randomly from these 600 samples for data analysis. The
acceleration data of one sensor (in the case 1 of damage type III) is shown in Figure 6 The
upper picture shows the data of the intact bridge, and the lower picture shows the data
after damage. Therefore, each dataset has 2800 samples, including seven different bridge
states (seven categories of labels, or seven sub-domains); i.e., the number of samples with
the same label in each domain is 400. The information of these three bridges and their
corresponding datasets is introduced in detail in the next three subsections.

4.1.1. Data Set A

Data-set A was obtained from a test bridge named Kando Bridge. The old Kando
Bridge was built in 1964 in Izumo, Shimane Prefecture, Japan. Since the new Kando
Bridge was built, the old bridge was abandoned and used for various damage diagnosis
experiments. Experiments were conducted to acquire undamaged and damaged bridge
data. The bridge is a steel girder bridge with a concrete deck slab. Figure 7 shows a
schematic showing the location of the damage on the bridge.

Before we artificially damaged the bridge, we collected data to serve as the measure-
ment of the undamaged condition (although these data may not reflect the actual bridge
condition). To obtain significant vibration data in the damage position, we deployed sensors
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beside the potential damage in this experiment. We then induced damage to the bridge and
collected measurement data, which were considered to represent the damage condition.

Figure 6. Acceleration data of one sensor in Kando Bridge.

Figure 7. Kando Bridge.

Damage was inflicted at three different locations in two cases, as listed in Table 2.
The detailed information of these damage types is as follows:
(1) Type I: The bearing between the abutment and bridge deck was damaged, as shown

in Figure 8a, cutting the auxiliary steel plate at 100 mm and 500 mm, respectively.
(2) Type II: The gusset plate of the bridge deck located between piers P1 and P2 was

damaged, as shown in Figure 8b, and the horizontal gusset L was cut.
(3) Type III: The concrete ceiling and the reinforcement were scratched out to damage

the deck of the bridge, as shown in Figure 9, where the cut depth of cut line type 1 is 25 mm.
The depth of cut line type 2 in the horizontal direction was 25 mm, and the depth in the
vertical direction was 3 mm. The depths of the area where concrete was scratched out in
case 1 and case 2 were 10 mm and 30 mm, respectively (no damage to the rebars).

After measuring the non-damaged Kando Bridge, we performed the above three types
of artificial damage to the bridge. Because the most common excitation in normal bridges is
a running car, apart from ambient excitation, a loaded moving car was used as an external
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excitation. For damage type I, II, and III, the sampling frequency of the acceleration sensors
was 200 Hz.

Table 2. Damage mode classification of Kando Bridge.

Damage Mode Type Degree Load

N No damage No damage 20 kmph, car
D1,1 Type I case 1 20 kmph, car
D1,2 Type I case 2 20 kmph, car
D2,1 Type II case 1 20 kmph, car
D2,2 Type II case 2 20 kmph, car
D3,1 Type III case 1 20 kmph, car
D3,2 Type III case 2 20 kmph, car

Figure 8. Damage type I and II.

Figure 9. Damage type III.

4.1.2. Data Set B

Dataset B was obtained from the simulation model of the Kando Bridge. The model
is shown in Figure 10, where the length is 258 m. It is divided into 40 units (one sensor
node per unit). The elastic modulus of the material is E = 2.06 × 108 kN/m2, Poisson’s
ratio σ = 0.3, and density ρ = 7850 kg/m3. The structural damage is mainly reflected
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in the decrease in stiffness. In this study, the reduction in the elastic modulus E of the
material was used to simulate damage (indicated in Table 3), and stochastic white noise was
used as excitation. ANSYS was used to establish the finite element model of a continuous
beam bridge.

Figure 10. Kando Bridge model.

Table 3. Damage condition of simulation model.

Condition Unit Degree (Percent)

N No damage No damage
D1,1 Reduce the intensity of the portion near A2 in unit 6 10
D1,2 Reduce the intensity of the portion near A2 in unit 6 20
D2,1 12 5
D2,2 12 15
D3,1 16, 17, 18 15, 35, 5
D3,2 16, 17, 18 15, 65, 5

4.1.3. Data Set C

The experimental bridge was called Seiran Bridge. This bridge satisfied all the demand
conditions that we required: made of steel, with deterioration problems, many crossing
cars, and easy placement of the bridge sensor module. In other words, this bridge is typical
of Japan’s bridge problems. Figure 11 shows the bridge and damage locations.

Figure 11. Seiran Bridge.

Damages include corrosion and deterioration at three different places, as indicated in
Table 4. The detailed information of these damage types is as follows:

(1) Type I: The bearing between the abutment and bridge deck was corroded, as shown
in Figure 12a.

(2) Type II: The steel frame of the bridge deck located between piers P1 and A2 was
corroded, as shown in Figure 12b.

(3) Type III: The concrete ceiling of the deck was deteriorated as shown in Figure 13.
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Figure 12. Damage type I and II of Seiran Bridge.

Figure 13. Damage type III of Seiran Bridge.

Table 4. Damage mode classification of Seiran Bridge.

Mode Type Load

N No damage 40 kmph, car
D1,1 Bearing corrosion: case 1 40 kmph, car
D1,2 Bearing corrosion: case 2 40 kmph, car
D2,1 Steel frame corrosion: case 1 40 kmph, car
D2,2 Steel frame corrosion: case 2 40 kmph, car
D3,1 Concrete deck deterioration: case 1 40 kmph, car
D3,2 Concrete deck deterioration: case 2 40 kmph, car

4.2. Pen-Set Transfer Tasks and Details

In this study, to evaluate the damage recognition performance of our proposed method
in the open set scenarios, the source domain only covers part of the damage states in
different transfer tasks. The open-set transfer tasks are listed in Table 5. Each open-set
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transfer task is represented by the symbol A→B, where A is the source domain data
collected under Kando Bridge (dataset A), and B is the target domain data collected under
Kando Bridge’s simulation model (dataset B). TL uses 2800 labeled samples in the source
domain, 50% unlabeled samples (1400) in the target domain for training, and 1400 samples
in the target domain for testing.

Table 5. Open-set transfer tasks.

Transfer Tasks Source States Training Data-Set Testing Data-Set

A1,1 : A→ B all 100% Labeled data-set A and 50% unlabeled data-set B 50% unlabeled data-set B
A1,2 : A→ B N, D1,1, D1,2, D2,1, D2,2, D3,1 100% Labeled data-set A and 50% unlabeled data-set B 50% unlabeled data-set B
A2,1 : A→ C N, D1,1, D1,2, D2,1, D3,1 100% Labeled data-set A and 50% unlabeled data-set C 50% unlabeled data-set C
A2,2 : A→ C N, D1,1, D1,2, D2,1 100% Labeled data-set A and 50% unlabeled data-set C 50% unlabeled data-set C
B1,1 : B→ C N, D1,2, D2,1, D3,1, D3,2 100% Labeled data-set B and 50% unlabeled data-set C 50% unlabeled data-set C
B1,2 : B→ C N, D1,2, D2,1, D2,2 100% Labeled data-set B and 50% unlabeled data-set C 50% unlabeled data-set C
B2 : B→ A N, D1,1, D1,2, D2,2, D3,1 100% Labeled data-set B and 50% unlabeled data-set A 50% unlabeled data-set A
C1 : C → A N, D1,1, D1,2, D2,1, D3,1 100% Labeled data-set C and 50% unlabeled data-set A 50% unlabeled data-set A
C2 : C → B N, D1,2, D2,1, D2,2, D3,1, D3,2 100% Labeled data-set C and 50% unlabeled data-set B 50% unlabeled data-set B

4.3. Methods for Comparison

To verify the effectiveness and superiority of the AWSDN in open-set scenarios, this
study also uses other models to conduct a comparative analysis. The related models are
presented in Table 6.

Table 6. Various transfer learning method.

Method No. Method Name Feature Transfer Leaning Type

M1 CNN Learned feature No transfer
M2 OSVM Learned feature No transfer
M3 OSVM-MMD Learned feature MMD with OSVM
M4 DDC Learned feature MMD
M5 DCTLN Learned feature MMD with adversarial learning
M6 AWSDN Learned feature MCMK-WLMMD and adversarial auxiliary weighting

(1) CNN (M1): A deep learning method based on the same scheme as the CNN in
AWSDN. It is a supervised learning method only considering the source domain as a loss
function. Compared with M1, it aims to illustrate the improvement of the deep transfer
damage diagnosis method.

(2) Open-set support vector machine (OSVM, M2) [45]: OSVM utilizes a probability
threshold to detect outliers, and when the predicted probability is less than the threshold,
the sample is identified as an outlier. This method utilizes supervised learning to train
the network structure. Then, it focuses on the data representation learned by the trained
network to implement OSVM. This comparison aims to illustrate the impact of the learned
features on transfer learning.

(3) OSVM-MMD (M3): OSVM-MMD combines transfer learning techniques with
OSVM. The transfer learning is achieved by minimizing the MMD metric between the
source and target domains to improve the identification of OSVM.

(4) Deep TL (DDC, M4) [46]: To demonstrate the advantage of our proposed model,
AWSDN is compared with the existing advanced and widely used deep TL method M4.
Based on M1, M4 adds an adaptive layer based on the MMD and uses the learning features
for domain adaptation. In the adaptive layer, a single Gaussian kernel was used to calculate
the distribution distance MMD. The optimization goal is to minimize the MMD loss and
the classification loss to reduce the marginal distribution discrepancy between the source
and target domains for TL. The CNN model structures of M1 and M4 are presented in
Table 1, where the convolution kernel is 5, the pooling kernel is 2, and the modified linear
unit (ReLU) is mainly used as the activation function.

(5) DCTLN (M5) [47]: This is an adversarial domain adaptation method. DCTLN uses
single-kernel MMD with adversarial learning for effective domain adaptation.
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4.4. Result Analysis and Comparison
4.4.1. Cross-Bridge Damage Diagnosis Result Analysis

In this study, to evaluate performance, target outliers are treated as unknown classes.
Figure 14 lists the transfer damage diagnosis accuracy of the six models, and the calculation
formula is shown as Equation (22).

a =
1
nt

nt−1

∑
j=0

sign( f (xt
j) = yt

j) (22)

where sign() is the indicator function, yt
j is the true label of the jth sample in the target do-

main, and f (xt
j) is the prediction result of the model on the jth sample in the target domain.

As can be observed in Figure 14, the proposed model, AWSDN, is superior to other
models in open-set transfer tasks. Figure 15 shows the results further analyzed with the
confusion matrix. These results confirmed the superiority of the model and allowed us to
obtain the following conclusions.

(1) AWSDN achieved the best results for all open-set transfer tasks. The high accu-
racy rate highlights the superior generalization ability and robustness of AWSDN. It can
effectively address the challenging open-set transfer damage diagnosis and provide more
accurate diagnosis results.

(2) In the open-set damage diagnosis, because M1 (CNN) is trained only through
source domain data and ignores the discrepancy in the distribution of data collected under
different bridges or different environments, the results of M1 are far from ideal. In addition,
the samples of the target outlier classes lead to a significant increase in the recognition
error rate of M1. However, AWSDN reduces the distribution discrepancy and separates
the samples of the target outlier classes by proposing an adversarial auxiliary weighted
sub-domain adaptation module to obtain a better classification accuracy. Experimental
results show that, compared with traditional CNN (M1), the classification accuracy of
AWSDN is increased by 48%, which is significantly better than CNN. This means that TL
can promote the successful application of the intelligent damage diagnosis of bridges in
the case of open-set scenarios.

(3) Compared with the effective approach for outlier detection (OSVM), the diagnosis
accuracy of the two methods with transfer learning and outlier detection (OSVM-MMD
and AWSDN) is significantly better. The reason is that OSVM-MMD and AWSDN reduce
the distribution discrepancy between the source and target domains through the domain
adaptive method, while OSVN cannot well address the domain shift. By combining MMD-
based domain adaptation with OSVM, OSVM-MMD not only extracts domain-invariant
features, but also separates outliers, which greatly improves the diagnostic accuracy.

(4) The deep TL method DDC (M4) and DCTLN (M5) show better diagnostic perfor-
mance than M1 because of the use of domain adaptation to reduce the domain distribution
discrepancy. However, since DDC and DCTLN do not consider the negative transfer
caused by outlier samples in the target domain, their diagnostic accuracy is greatly reduced.
Therefore, the diagnosis results of these two deep transfer learning methods are signifi-
cantly worse than AWSDN. Experimental results show that, compared with DDC (M4) and
DCTLN (M5), the classification accuracy of AWSDN is increased by approximately 32%
and 24%. This means that, compared with the widely used deep TL methods (such as DDC)
and recent deep TL methods (DCTLN), AWSDN uses adversarial auxiliary weighting to
isolate outliers to avoid negative migration caused by outliers and designs an outlier classi-
fier to identify unknown classes. Otherwise, AWSDN uses the MCMK-WLMMD-based
sub-domain adaptation to minimize the conditional distribution discrepancy enabling the
convolutional network to better handle the open-set scenario.

(5) Figure 15 shows the confusion matrix of the diagnosis results of DCTLN and
AWSDN for task C1 : C → A. Table 7 lists the accuracy and recall rate of AWSDN in the
transfer task C1 : C → A. As can be observed in Figure 15 and Table 7, the health state of
the bridge can be easily and correctly identified by AWSDN. The average precision and
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average recall rate of AWSDN were both above 94%. However, DCTLN cannot achieve good
class-level alignment due to the interference of target outliers. Therefore, lower diagnostic
accuracy is obtained in the open-set scenario. Figure 15 and Table 7 confirm the effectiveness
and practicability of AWSDN on the other hand. The calculation formulas for the precision
P and the recall rate R of label c are expressed in Equations (23) and (24) respectively.

Figure 14. Diagnosis results of six methods in accuracy (%).

Figure 15. Confusion matrix of the diagnosis results in C1 : C → A.
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P =
nTP

c
nTP

c + nFP
c

(23)

R =
nTP

c
nTP

c + nFN
c

(24)

where nTP
c is the number of samples whose true label and predicted label are both c. nFP

c
is the number of samples whose predicted label is c, but the true label is not c. nFN

c is the
number of samples whose true label is c, but the predicted label is not c.

Table 7. Results of AWSDN in transfer B→ A.

Condition Precision (%) Recall Sample

N 98.52 1.00 200
D1,1 92.75 0.92 200
D1,2 90.12 0.91 200
D2,2 92.91 0.92 200
D3,1 95.65 0.97 200

Unknown 95.08 0.93 400
Average 94.17 0.94

4.4.2. Visualization Analysis

To reveal the ability of AWSDN to align the features of the same label samples (sub-
domains) in different domains, Figure 16 shows the results of high-order feature visual-
ization using t-SNE [40]. These features are the high-order features of the source domain
and target domain samples processed by these methods in the transfer task A1,2 : A→ B
and B1,2 : B → C. The additions of s and t in front of the status symbols represent the
features of the source and target domains, respectively. The results of A1,2 : A→ B shows
that the visualized features of AWSDN have the smallest number of error clusters, and the
samples of the same class in different domains are clustered in the same area. At the same
time, AWSDN can properly isolate the target outlier classes in different regions. Therefore,
the diagnosis knowledge learned from the source domain can be well transferred to the
target domain, and the unknown classes in the target domain can also be accurately iden-
tified. This means that AWSDN can accurately align the distribution between the source
and target domains in open-set scenarios, enabling sub-domain adaptation. However,
the clustering results obtained by CNN show that the samples of the same label in different
domains are far apart and overlap with the samples of other labels. This can easily lead to
errors in model classification and a decrease in diagnostic accuracy. The clustering effect of
DCTLN (M5) with the adversarial learning and MMD is significantly improved compared
to that of CNN, but there is still a significant overlap between target outliers and known
classes, which leads to a significant drop in the transfer diagnostic performance under the
source domain supervision. The fundamental reason for this phenomenon is that DCTLN
ignores the negative transfer caused by outliers and the conditional distribution discrep-
ancy between domains. Thus, the use of adversarial auxiliary weighting and sub-domain
adaptation with MCMK-WLMMD can further reduce the negative effects of outliers and
distribution discrepancy. This finding indicates that the AWSDN model can divide samples
more clearly than other models.
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Figure 16. Feature visualization using t-SNE.

5. Conclusions

In this study, deep transfer learning was introduced for the first time in the field of
bridge structural damage diagnosis to promote the successful application of intelligent
bridge damage diagnosis in open-set scenarios. To solve the distribution discrepancy
between domains in the open-set scenarios, an adversarial auxiliary weighted subdomain
adaptation-based deep transfer learning model was proposed. A sub-domain adaptation
module based on MCMK-WLMMD was proposed to obtain domain-invariant features.
To prevent the negative transfer caused by the outliers, an adversarial auxiliary weighting
mechanism was proposed to obtain the instance-level weights of the target-domain samples,
which were used to describe the similarity of target-domain samples with the source.
An experimental study of open-set deep transfer damage diagnosis was also conducted.
From the results, the following conclusions were drawn:

(1) First, compared with the deep learning based intelligent structure damage diagnosis
method without the transfer learning and outlier classes isolation, our proposed method
has a higher recognition accuracy in open-set scenarios.

(2) Second, our proposed adversarial auxiliary weighted sub-domain adaptation with
MCMK-WLMDD is superior to the domain adaptation of other widely used TL methods in
terms of minimizing the distribution discrepancy between different domains.

(3) Finally, our proposed method can extend the network trained with labeled data
obtained from one bridge to classify the unlabeled data with unknown classes in the open-
set scenarios. This will promote the practical application of the transfer damage diagnosis
of bridges.
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