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Abstract: Device-free localization (DFL) systems exploit changes in the radio frequency channel by
measuring, for example, the channel impulse response (CIR), to detect and localize obstacles within a
target area. However, due to a lack of well-defined interfaces, missing modularization, as well as
complex system configuration, it is difficult to deploy DFL systems outside of laboratory setups. This
paper focused on the system view and the challenges that come with setting up a DFL system in an
indoor environment. We propose MA-RTI, a modular DFL system that is easy to set up, and which
utilizes a multipath-assisted (MA) radio-tomographic imaging (RTI) algorithm. To achieve a modular
DFL system, we proposed and implemented an architectural model for DFL systems. For minimizing
the configuration overhead, we applied a 3D spatial model, that helps in placing the sensors and
calculating the required calibration parameters. Therefore, we configured the system solely with
idle measurements and a 3D spatial model. We deployed such a DFL system and evaluated it in a
real-world office environment with four sensor nodes. The radio technology was ultra-wideband
(UWB) and the corresponding signal measurements were CIRs. The DFL system operated with CIRs
that provided a sub-nanosecond time-domain resolution. After pre-processing, the update rate was
approximately 46 Hz and it provided a localization accuracy of 1.0 m in 50% of all cases and 1.8 m in
80% of all cases. MA fingerprinting approaches lead to higher localization accuracy, but require a
labor-intensive training phase.

Keywords: device-free localization; multipath-assisted; radio tomographic imaging; ultra-wideband;
channel impulse response; system architecture; raytracing; multipath components; MQTT

1. Introduction

A DFL system detects, tracks, and identifies objects, such as persons, within the target
area. In comparison to device-based systems, DFL systems do not require an electronic
device in order for a person to be detected, localized, or identified. We envision DFL systems
for deployment in real-world environments to support applications, such as elderly care,
ambient assisted living, intrusion detection, and smart-home application where one or
multiple persons in buildings and rooms need to be detected and tracked with a localization
accuracy of about 1–2 m to determine the room and the rough position of the person in
the room.

The term device-free passive localization was introduced, in 2007, by Youssef et al. [1].
However, we use the shorter term device-free localization (DFL) for the rest of this article,
as device-free and passive is considered redundant.

Literature, like that in [2], distinguishes different kinds of DFL systems, such as camera-
based or acoustic- and ultrasonic-based systems. Camera-based localization relies on the
acquisition of high-resolution images, which imposes completely different challenges,
such as computationally intensive signal processing, high data rate demands, and privacy
concerns. Acoustic and ultrasonic signals have different propagation characteristics and
frequencies compared to RF signals.
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In our work, we focused on DFL systems in the radio frequency (RF) domain by
means of IEEE 802.15.4a UWB networks. RF-based DFL systems offer the advantage of
combining both device-free localization and regular data transmission (the necessary signal
measurements are performed during message reception). IEEE 802.15.4a, in particular, is
already being used for indoor positioning systems. For a comprehensive overview and
evaluation of the strengths and weaknesses of different technologies for DFL, refer to [2].
In addition, Alam et al. provide an excellent overview of non-RF-based DFL systems
in [3]. In this paper, we developed a modular online DFL system with low configuration
and installation effort. For communication between the required function blocks, we
proposed a distributed and scalable architecture, based on the message queuing telemetry
transport (MQTT) protocol for RF-based DFL systems, that can also be implemented within
infrastructure networks, i.e., based on IEEE 802.11 or IEEE 802.15.4(a).

RF-based DFL systems measure and process the change within the RF signal propaga-
tion to detect, track, and identify one or multiple persons within a target area. Detection
is the identification of changes within the target area, according to [1]. Tracking is the
continuous determination of the position of a person within a target area. Identification is a
task to determine the type (human, non-human), size, mass, and shape of a person [1].

To implement the functionality for detection, tracking, and identification, a signal
variation is required, based on propagation effects, such as reflection, shadowing, scattering,
and diffraction. The signal strength is measured e.g., with RSS. Therefore, DFL systems
transmit messages or use existing ones, such as beacons, and record the RSS on receipt.
The measurements are processed in order to detect and track persons within the target
area. Besides RSS, radio technologies, such as IEEE 802.11, offer the complex-valued CSI of
orthogonal frequency division multiplex (OFDM) radio communication. The CSI represents
the complex values for each amplitude of the sub-carrier of the radio transmission, and,
thus, provides the DFL parameter over various frequencies.

UWB communication systems, such as IEEE 802.15.4a, designed for indoor localization
systems, offer a complex-valued CIR in time domain. The fine-grained radio measurements
improve the localization accuracy and reliability of DFL systems.

Another challenge for DFL systems in indoor environments is multipath propagation
leading to constructive and destructive interference of the received signals. Ignoring multi-
path propagation effects reduces localization accuracy. To cope with multipath propagation,
measurements over multiple frequencies, e.g., multiple channels, the CSI, or deploying of
UWB systems, are proposed [4–7].

Another recent approach is to exploit multipath propagation. Considering multipath
propagation increases localization accuracy or reduces the number of physical sensors, as
shown in [7–9].

Our main motivation in writing this paper was that we are not aware of online
DFL systems deployed in productive real-world environments, as only a few works have
considered a system view of DFL. Figure 1 depicts the principle of our proposed multipath-
assisted DFL system and provides an excerpt of the system view, ultimately providing an
overview of the contributions of this paper. Assume two wireless sensor nodes, S1 and
S2, which are deployed in a room (see Figure 1a). The transmitted signal arrives at the
receiver on the direct path (MPC0) and via echo paths that are reflections on the walls
(MPC1, . . . , MPC4). Figure 1b depicts the resulting UWB CIR, which is composed of the
different MPCs. A person standing at position P affects MPC3 and MPC4 and, therefore,
alters the magnitude of the MPCs in comparison to the idle case, where no person is present.
The dashed lines indicate the magnitude of the altered MPCs. A novelty of multipath-
assisted (MA) DFL systems is that they can break down alterations from different MPCs.
We used a simple 3D spatial model that extracted the map information to map the altered
MPCs to the target area.

In this paper, we propose a modular system that is composed of function blocks
and the communication between each function block takes place via the MQTT protocol.
Figure 1c shows the processing chain, composed of signal measurement, signal process-
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ing, and localization algorithm. The localization result is published to the topic /loc,
and subscribed by the visualization. In this paper, we propose and implement the system
configuration, data acquisition, signal processing, localization algorithm, and visualization.
Our contributions are as follows:

• We present a novel architectural model for building a distributed, multipath-assisted
(MA) DFL system. The main focus is on distributed and lightweight communication
between functional blocks and the use of map information for system construction.

• We describe and implement the architectural model using a multipath-assisted DFL sys-
tem. The UWB CIR measurements are extracted from an IEEE 802.15.4a UWB network.

• MA radio tomographic imaging (RTI) has shown promising results in the past. How-
ever, the measurements were presented in an outdoor scenario. We present a means
by which to transfer MA-RTI to indoor environments, with a simple 3D spatial model
of the room, and we evaluate the overall system. In addition, we compare the training-
free MA-RTI with a MA fingerprinting approach, MAMPI, that incorporates feature
vectors based on magnitude and phase differences for localization.
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Figure 1. Principle of the proposed MA DFL System and an excerpt from the system view. (a) Map
information with MPCs. (b) Resulting UWB CIRs. (c) Modular system.

The rest of the paper is structured as follows: Section 2 presents the principle of DFL
and provides an overview of multipath-assisted DFL systems, together with real-world
implementations. In Section 3, we propose a simple architectural model for DFL systems.
We describe the implementation of an MA DFL system that is based on UWB CIRs in
Section 4. The proposed system is evaluated in Section 5. Finally, in Section 6, we conclude
this paper and give an outlook for future work.

2. Principles of Device-Free Localization and Related Work

DFL systems consist of electronic devices that emit signals that are measured in return.
Typically, the electronic devices are wireless transceivers within a network, named sensor
nodes in this paper. Note: As stated beforehand, persons that are to be detected and
tracked do not wear any device that participates in the process of localization. The emitted
signals are often regular packets sent within the network e.g., beacons of wireless APs.
The information about the presence of a person is contained in the electromagnetic field
strength, measured by a channel measurement. Typically, a channel measurement is an
RSS measurement, e.g., the RSSI value, the energy detection value, or the fine-grained
CSI, or CIR. We refer to a periodic measurement of the channel measurement stream
(sometimes called link in literature). As stated in the introduction, we focused on channel
measurements that are measured during wireless network communication.

The working principles, a generic and layered three-tier system architecture, and the
most relevant channel measurements are presented in [10]. However, following the classifi-
cation of DFL systems from [11], DFL systems can be fingerprint-based or stream-based.
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2.1. Fingerprint- and Stream-Based DFL Systems

A fingerprint-based DFL system requires a training phase in order to create a passive
radio map. In contrast with radio maps that are recorded with active (e.g., smartphone-
based) systems, we use the term passive radio map from [1]. The passive radio map is
created by placing a person in pre-defined reference positions and measuring the channel
measurement for the positions. Throughout this paper, we use the term reference position.
Other authors use cells, zones, and locations in this context. During an online phase,
the passive radio map is used to compare the current measurements with the trained ones
in order to determine the position of the person. Examples of fingerprint-based systems
are [1,6,12–14]. A person stands at a reference position, while the sensor nodes perform the
channel measurements and save them as a fingerprint. The fingerprint-based DFL system
does not require the positions of the sensor nodes in order to locate the person. To overcome
the tedious training phase, Zhou et al. proposed a ray-aided generative adversarial model
for the construction of the passive radio map [15].

In contrast to fingerprint-based systems, stream-based DFL systems evaluate changes
in channel measurements in any stream. A person moving within the target area affects the
channel measurement of the streams. These changes are detected and processed to localize
persons. Typically, stream-based algorithms employ a calibration phase to estimate channel
measurements of each stream, while the target area is vacant. Examples of stream-based
systems are [16,17]. Characteristics such as the mean and the variance for each stream
describe the state of each stream.

Extensive training phases increase the installation and maintenance effort of DFL
systems. Therefore, our system was calibrated solely with idle measurements, i.e., measure-
ments done while the target area was vacant. We performed such calibration phases after
placing the sensor nodes and could repeat them when no person was present within the
target area e.g., at night.

2.2. Multipath-Assisted DFL Systems

As stated before, DFL systems must cope with multipath propagation, otherwise the
multipath propagation decreases the localization accuracy. Some authors avoid multipath
by measuring the channel measurement over various channels in order to combine the
information, or pick the channel that is least affected by multipath [4,5,18].

In [19], Schmidhammer et al. showed that multipath propagation could be exploited
actively for DFL. In [20], the authors demonstrated, by calculating theoretical performance
bounds, how the coverage of the target area increased by including MPCs for DFL. While
in [19] the authors deployed a channel sounder. They deployed low-cost commercially off-
the-shelf (COTS) UWB radio chips in [21]. COTS-available UWB radio chips enable access to
UWB CIR measurements, where multiple complex-valued MPCs can be extracted from one
measurement [7,9,22]. In addition to the magnitude of the MPCs, the phase of the complex-
valued MPC can be modeled and exploited in MA-DFL systems [8,23]. Furthermore,
UWB CIRs enable bi- and multi-static radar approaches that are able to localize a person
by extraction of additional signal paths [24–26]. However, these approaches are again
susceptible to multipath propagation [9]. In this work, we proposed applying an MA-RTI
approach to our real-world indoor localization system. MA-RTI is solely calibrated with
idle measurements and a 3D spatial model. In contrast, we compared the localization
accuracy of MA-RTI with an MA fingerprint approach, MAMPI, that required an extensive
training phase [7,22].

2.3. Exploitation and Transport of Channel Measurements

In [27], the problem of human motion detection in IEEE 802.11 (WiFi) networks was
targeted by measuring body-induced alterations of RF signals. The data collection and
signal processing for extraction of the Channel State Information (CSI) was done on a
dedicated device. Subsequently, the CSI was serialized using JavaScript Object Notation
(JSON) and transmitted to any client application with the message queuing telemetry
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transport (MQTT) application protocol utilizing a publish/subscribe pattern. In our work,
we focused on sensing with IEEE 802.15.4(a), while deploying a more distributed approach.

The proposed platform for real-time processing and analytics in [28] used different
types of channel quality information (CQI) to support passive detection and tracking of
objects with radio sensing and vision technologies. The architecture consisted of multiple
nodes. Any node collected CQI values and pushed them to a gateway. The gateway
performed low-level feature extraction and forwarded the features to the cloud for real-
time detection, classification, and tracking. All data processed in the cloud was made
accessible via representational state transfer (REST) in JSON format for client applications,
such as localization and behavior recognition. Our approach did not rely on cloud services,
so it was computationally less expensive.

An architecture with ensemble models trained with machine learning for counting
people with CSI in dense IEEE 802.11 infrastructure networks was proposed and evaluated
in [29]. However, the proposed system design depended on WiFi devices with multiple
antennas, and MIMO techniques. In our work, we did not require MIMO features, since
we did not count, but rather tracked, objects.

In [30], a DFL system with real-time capability for occupancy sensing with commercial
off-the-shelf (COTS) WiFi devices was presented. First, CSI was collected on an IoT platform.
Subsequently, the transformation of the CSI values to human presence and CSI time series
data to human activity information was done on a cloud server, aided with a MQTT
broker. Clients (e.g., smartphones) subscribed topics on the MQTT broker to collect data
for application purposes. Similar to our approach, the data transport was implemented via
MQTT. However, we used MQTT for modular, bi-directional communication via several
topics, as described in the following section.

3. System Design

In this section, we present the main contribution of our paper, namely, a scalable and
modern system design for DFL systems with a focus on ease of integration. After a brief
description of the conceptual shape of any DFL system, with the aid of function blocks, we
take an established DFL system architecture, partitioned in responsibility planes, and link
them together to yield our proposed system design.

3.1. DFL Function Blocks

In general, a DFL system consists of common parts that we name function blocks [12,14].
These function blocks operate in a processing chain. They comprise signal measurement,
signal processing, localization algorithm, training or calibration phase and models. A
DFL system requires a function block that performs the signal measurements as shown
in Figure 2. The first block measures one or several channel measurements as raw data
that is processed further in the rest of the system. Due to noisy measurements, and to
extract desired features from the raw data, signal processing is performed in the next
step. The localization algorithm extracts information about the presence and position of
one or several persons. A training or calibration phase is needed to create reference data
to better distinguish between multipath effects and the influence of the person on the
channel measurement. The results of this training or calibration are used in the online
phase by the localization algorithm. Models are the bases to interpret the measurements,
detect multiple persons, predict movement, and simulate the RF propagation. In Figure 2
thick lines indicate data that is processed fast during runtime, while dashed lines indicate
configuration parameters that are required to control the processing blocks.

Signal Measurement: The signal measurement function block is the source of the
channel measurements. It creates and formats the measurements e.g., RSS, CSI, or CIR
measurements. This measurement block is dependent on wireless networking technology.
Examples for IEEE 802.11-based DFL systems are [1,12,31]. Abdel-Nasser et al. used the CSI
of the IEEE 802.11n in [6]. IEEE 802.15.4 was the technology used in [32–34]. Proprietary
sub-GHz DFL systems were proposed in [11,35]. UWB CIR were proposed in [7,24,36–38].
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Figure 2. General function blocks of a DFL system.

Signal Processing: The next block is the signal processing function block that processes
the raw data and prepares the data for localization algorithms. Examples are filters or the
calculation of the mean or the variances of each stream e.g., in [12,16,31]. Other systems
use the α-trimmed mean filter e.g., in [14] or detection of stream outliers e.g., in [14,33].
Anomaly-based DFL systems normalize the result in order to detect whether there is a
person near the affected stream (see [16,31,34]). UWB CIR measurements are often time-
aligned [39] and sinc-interpolated [7]. From the CIR, the complex-valued MPCs can be
extracted [23], or the CIR can be processed as a whole [8,24].

Localization Algorithm: Finally, the localization algorithm function block estimates
the hidden state, such as the presence or position of the persons. The state information
changes slowly compared to the measurement signal, so fast processing beyond this block
is not required anymore. However, the demand for flexibility and extensibility increases,
so that state fusion with other systems could be integrated.

Training or Calibration Phase: All DFL systems have either a training phase to record
the fingerprints and to map the position of a person to a certain reference position, or
a calibration phase to adjust parameters, such as the mean or variance of RSS values,
while the target area is vacant. This block mainly instructs the measurement block of the
data plane.

Models: For the processing and algorithms, the modeling block provides propagation
models and other models, e.g., mobility models, that control the underlying processing or
localization blocks. Previously proposed are, e.g., person models, such as conditional ran-
dom field (CRF) [11,14], hidden Markov model (HMM) [14] or person motion models [16].
Thereby, the block also validates and corrects the processing of the measurements and
position estimations, e.g., by adding spatial and temporal constraints.

3.2. Architectural Model

As a base for our system design, we incorporated the architecture that was proposed in
the context of software-defined networking (SDN) consisting of five planes [40], as shown
in Figure 3: data, control, management, operational and application.

To enhance existing wireless networks for DFL, the DFL system requires an extension
of firmware that is able to supervise the state of the sensors and either able to perform
the signal measurements itself or extract the data from received network packets. Further,
in this paper, we demonstrate how this is achieved with a UWB network. The data has to
be forwarded to a server that processes and runs the algorithms. Additionally, a block for
operation and maintenance needs to be added. Consequently, the proposed architectural
model included the following well-known DFL function blocks: signal measurement, signal
processing, localization algorithm, training or calibration phase, and models, as well as
additional blocks for managing the network.

In the following, we develop and explain the tasks and functions of the proposed
architectural model, plane by plane, starting with the data plane.

Data Plane: The data plane is also called the forwarding plane in SDN. An important
aspect of the data plane is the efficient and fast processing of data. Consequently, channel
measurements, such as RSS, CSI, and CIR, that require fast processing are handled in this
plane. In general, all DFL system function blocks that process the data in such a manner are
placed here. These are signal measurement, signal processing, and localization algorithms.
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Figure 3. Proposed architectural model. The light gray-filled blocks within the control and data plane
are DFL function blocks, covered in research within the last decade. The dark gray-filled function
blocks were proposed and implemented in this work. The non-filled function blocks are the subject
of current research.

Control Plane: The control plane instructs or configures the data plane on how to
process the data. In the networking domain, firewall and routing functionality are placed
in the control plane to generate rules for forwarding, filtering, and intercepting packets in
the data plane. In DFL, the data plane behavior is controlled by configuration parameters,
which are created from a training or calibration phase, models, and the map information.

Map Information: Maps are an additional valuable source of information for control-
ling the algorithms of the data plane. They provide entry and exit points for persons to the
target area and check whether the calculated path of algorithms is reasonable (e.g., persons
cannot walk through walls). The blocks in the control plane should continuously adapt to
changes in the environment. Research in the last decade has focused on these two planes
and the light gray highlighted blocks mainly. However, real-world systems need additional
planes for operations, which are operational, management, and application planes.

Operational Plane: The operational plane contains functionality that operators of the
network devices require (e.g., for restarting or shutting down a device). In DFL systems, we
place functions to switch measurement on and off, for processing, and for localization or
load, and replace configuration parameters or models in the control plane. We differentiate
here between configuration and monitoring functionality, e.g., node monitoring as operators
need to monitor as well as configure the network device. For instance, battery-powered
sensors have to go into a sleep state in order to save energy according to their energy level
in the battery.

Management Plane: The task of the management plane is to monitor, configure and
maintain one or more network devices or parts of network devices. It may also configure
the forwarding plane, but it does so infrequently. For DFL systems, we introduce the
function blocks system configuration and system monitoring. System configuration can,
for example, identify the network nodes that are suited for DFL. Furthermore, the blocks in
the plane are responsible for organizing the structure of the system and assigning network
nodes to cells. The idea of the management plane is to create an interface for the system
operator to access, for example, a group of devices, such as WiFi APs or other sensors, on a
system level. In real-world applications, it is necessary to control sensors or control and
coordinate a training phase. For these tasks, a dedicated management application, or an
interface, is required.

Application Plane: Applications and services that use services from the control and/or
management plane form the application plane. The task of the application plane is to pro-
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vide a localization interface and visualization of the localization, and to create an interface
for system control. The localization interface enables the localization results to be accessed
by external applications connected to the DFL system. External applications include enter-
prise resource planning (ERP)-systems or safety applications. The visualization shows, for
example, the number and location of persons and highlights their paths. Finally, the system
control provides the system operator with an API to access all settings of the system.

3.3. Our DFL System Design

Our system design took the five architectural planes and included the function blocks.
The model included all function blocks of DFL systems, as well as blocks and functionality
that we proposed for integration of DFL systems in existing networks, which are needed
for real-world deployments. Some blocks in this proposed architecture, as well as the
communication and interfaces between the different planes, remain an open issue for
future work.

3.3.1. MQTT-Based Transport Network

The message queuing telemetry transport (MQTT) protocol was designed to be open
and easy to implement [41]. It utilizes a scalable and event-driven publish/subscribe
architecture that supports thousands of clients from a single server, called the MQTT
broker. The MQTT broker is responsible for creating and maintaining the message link
between publishers (data producers) and subscribers (data consumers). This architecture
enables applications with weak dependencies between publishers and subscribers. In
general, MQTT is ideal for usage in constrained environments with high latency or low
bandwidth, respectively, as well as on embedded systems with limited memory and pro-
cessing capabilities, which are critical aspects of Internet of Things (IoT) applications [42,43].
Furthermore, in contrast to HTTP with its document-centric request/response paradigm,
MQTT permits lower power consumption and less protocol overhead [44]. We decided in
favor of MQTT, instead of REST-based protocols, such as HTTP or Constrained Application
Protocol (CoAP), because of the publish/subscribe pattern. The main advantage of the
publish/subscribe pattern is that each function block only needs to know the broker ad-
dress. In addition, once data is published (e.g., the UWB CIRs with its metadata), multiple
subscribers can subscribe to this topic and receive the data. There is no need to poll the
data by multiple sources and cache it.

Figure 4 presents the proposed system. The central data distribution unit of our
system was the broker that connected all the function blocks. The arrows between the
planes indicate the flow of data or control messages. Dashed lines indicate that data
was subscribed from the broker, and solid lines indicate that data was published to the
broker. The narrow dashed lines indicate user configurations that were required for the
system configuration.

Signal
Measurement

Signal
Processing

Localization
Algorithm Visualization

System
Configuration

/conf subscribepublish

/conf /raw
/conf

UWB CIR /raw
/sp /loc/conf

/sp

/conf

/loc

user config.

Broker

Management
Plane

Control
Plane

Data Plane Application Plane

Map 
InformationModels

Calibration
Phase

Node
Configuration

Operational Plane

firmware
config

Figure 4. The DFL system design implements a publish/subscribe pattern for message exchange and
inter-process communication. The function blocks, except the node configuration, are MQTT clients,
that publish and subscribe data from the MQTT broker. The control plane provides information for
the system configuration.
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The UWB CIR measurements are published as raw data via the MQTT topic /raw.
The signal processing function block subscribes to the topic /raw, performs calculations
on the data (refer Section 4.3.1), and publishes its results in /sp. Further, the localization
algorithm uses the processed data and publishes the calculated result to the topic /loc. With
these topics, we create the processing chain in the data plane that processes the channel
measurement toward the localization algorithm. Although the function blocks are logically
connected, MQTT enables a distributed execution of the function blocks over various
machines. Furthermore, the system can run in parallel with multiple instances that are
configured, e.g., with different parameters.

3.3.2. Scheme of Operation

The system is configured and calibrated in the initialization and calibration phases.
Models provide parameters for the signal processing and map information provides the
boundaries of the room. The system configuration block gathers the information and
creates the system configuration object, which is published to the topic /conf. All function
blocks subscribe to the /conf topic and extract their relevant configuration parameters.

Finally, the systems’ data are visualized in the visualization block. This block subscribes
the configuration to display, e.g., the map information, and shows the localization results.

As the sensor nodes are not connected to the MQTT broker (they solely communicate
via the UWB radio), the node configuration is done within the firmware of the sensor
nodes. The broker is installed locally on a laptop. The function blocks of the data plane
are processes that subscribe data from the broker, perform the calculations and publish
their results back to the broker. Therefore, each block of the data plane processes the signal
measurement, signal processing, and localization algorithm. The results are visualized
in another process. The calibration phase subscribes to the pre-processed UWB CIRs and
determines the relevant parameters. The 3D spatial model is a separate program. The
system configuration collects all the required information and calculations and publishes
the configuration in the /conf topic. As the algorithms are lightweight, the broker and the
processes run locally on a laptop. In the calibration phase, when the system is offline, we
compute the required parameters described in (14). As long as the network configuration
does not change [4], the system just multiplies the new measurement vector z with the
matrix result from (14). For details, refer to Section 4.3.3. If required, due to, for instance,
higher processing demands, we could use an external MQTT broker and run the data plane
within the cloud.

4. Implementation

In this section, we provide the implementation details for our real-world MA DFL
system. We describe each required function block in their corresponding planes and
highlight the design decisions.

4.1. Map Information

In this paper, we designed and evaluated a MA DFL system. MA DFL systems exploit
both the direct path between each sensor, and echo paths coming from reflections, such as
walls. Exploiting multipaths helps in reducing the number of required sensors or increases
the accuracy of the DFL system. Therefore, we describe the map information block of our
proposed system. In order to reduce the training effort, we deployed a simple 3D spatial
model that helped in finding good placements for the sensor nodes and for calculation of
reflection paths and their respective time delays τi. Specifically, we placed the sensor nodes,
performed raytracing, and extracted the required information for calibration of the system.

4.1.1. Including Multipath Handling in the System

To set up an MA DFL system, we had to exploit multipath propagation. Therefore, we
briefly describe the handling of multipath propagation and channel impulse responses in
this section, as UWB CIRs enable the extraction of multiple MPCs from one CIR.
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The transmitter Tx sends a UWB pulse x(t) that is received by the receiver Rx. The
pulse arrives at the receiver in a direct path (Tx, Rx) and, via additional echo paths, due
to reflections on walls and other obstacles. Echos of x(t) on the i-th path are received
with a time delay τi and an altered amplitude ai. The CIR h(t) represents the multipath
propagation of all I signal echos between Tx and Rx:

h(t) =
I−1

∑
i=0

aiδ0(t− τi), (1)

where δ0(t) is the Dirac function.
The received signal y(t) at Rx is a superposition of all received signal echoes:

y(t) = x(t) ∗ h(t) + n(t), (2)

where n(t) is additive white Gaussian noise [45].
Figure 5 shows a multipath scenario with one reflective surface, e.g., a wall (bold

black line).

1
2

1'2'

Figure 5. Direct and echo path of UWB transmission.

To enrich RTI with multipath, every sensor position is mirrored on each wall. This
results in virtual sensor positions of 1′ and 2′ for each wall. As an input vector for RTI,
we used the permutations of the physical and virtual sensor pairs (1, 2′), (1′, 2), and the
direct path (1, 2) (here: MPC0). For each reflection on a wall (incident and reflected ray),
we gained two MPCs that would be assigned the same MPC value. The difference to
conventional RTI systems is that the former only exploit the direct path. The MA approach
adds two additional paths for each wall that creates a reflection in the system.

The power of the incoming UWB signal is divided at each reflection [46]. Depending
on the signal’s angle of arrival, and the material of the reflector, parts of the UWB signal
are transmitted through the reflector, and the remaining part is reflected. This transmitted
portion is also referred to as reflection loss. The measurement environment of this work
consisted mainly of walls, which provided a good reflection behavior for UWB signals,
due to low reflection losses for all angles of incidence. Since, in the presented method,
MA-RTI only required the difference between two received signals, the exact amount of the
reflection loss was negligible.

For the i-th MPC, the measurement vector for the i-th MPC zi = z[i] is defined as:

zi = |PMPC,i,obs − PMPC,i,idle|, (3)

where PMPC,i,· is the signal power of the observed and idle CIR at τi, respectively [9].
When a person affects an MPC, either on the direct or an echo path, in comparison

to an idle target area, MA-RTI assigns pixels in the proximity of the signal paths a high
attenuation value. As in previous work, we used the absolute difference for each MPC as
input for our system (see (3) [9]).

4.1.2. Three-Dimensional Spatial Model

To include the influence of multipath propagation for MA-RTI, we created a simple 3D
spatial model of a room and performed raytracing. As shown in [47], a suitable raytracing
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model was able to estimate the CIR well enough for our purpose. The developed software
was structured in multiple steps.

1. Construction of the 3D spatial model: To construct a 3D spatial model, we analyzed
the general structure of the room. Based on a self-selected origin, we provided distinctive
points, such as corners of the room or larger pieces of furniture, with their respective
coordinates in x-, y- and z-dimensions. These points served as vertices for the spatial model.
The corresponding walls of the structure (including horizontal walls e.g., ground or ceiling)
were defined as surfaces, delimited by a subset of the set of defined vertices. At least
three vertices are required to delimit a surface, whereas real walls (as in our given office
environment) generally have at least four vertices. By definition of the surfaces, the 3D
spatial model was described fully.

To keep the model applicable, we required centimeter–decimeter accuracy of the
determined coordinates. We welcomed a higher accuracy, but omitted this for practical
reasons. Typically not all walls have a perfectly smooth surface, whiteboards attached to
the wall and other structures, such as door frames, stick out 1–2 cm. The effort required
to model all objects was too high. In addition, the UWB CIR in this work resolved with a
time-domain resolution of approximately of 1 ns, and, therefore, it could only resolve MPCs
that were 30 cm apart from each other. After defining the room’s geometry, we placed the
sensor nodes on their respective coordinates.

2. Calculation of the Echo Paths: To map MPCs to the target area, we determined the
paths of all valid important signal echo paths of the setup. Note: In the following, each
node can represent both the Tx and Rx with respect to whether it is the sensor’s turn to
transmit or to receive.

This general procedure is shown in Figure 6. First, the node that represents Tx
was mirrored three-dimensionally on each wall of the room (see Figure 6a). For this
purpose, the vertical line on the respective wall that ran through the coordinates of Tx
was determined. The resulting route between the wall and Tx was continued in the same
direction and length behind the wall. The end of this route then corresponded to the virtual
node Tx′. For (I − 1) walls, we calculated (I − 1) virtual nodes {Tx′i}.

TxTx 'i

Rx

i-
th

 W
al

l

(a)

TxRx

Tx 'i
valid:

TxRx

iTx '
invalid:

(b)

Figure 6. Modeling of raytracing. (a) Determination of the i-th virtual node Tx′i . (b) Valid and invalid
echo paths.

Not all virtual nodes Tx′ lead to reflection of the signal and, thus, to a valid echo path.
Figure 6b shows an example of a valid path and an invalid path. For each virtual node
Tx′i , we defined a flag fval,i. Then, the virtual node Tx′i was linked to Rx. The echo path
was valid when the intersection of this signal path was inside the delimited surface of
the corresponding 3D spatial model’s wall. In this case, the corresponding flag was set
to fval,i = 1. When the intersection did not fit this condition, the flag was set to fval,i = 0.
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Finally, all signal paths with set flags fval,i = 1 were valid, and the remaining ( fval,i = 0)
were neglected for further analysis. The intersection with the wall was geometrically
identical to the reflection point of the signal echo path. So, each path was describable
unambiguously by the start position Tx the reflection point, and the end position Rx.

Figure 7 depicts all valid 1st-order echo paths for the room geometry of our test
environment, including four sensor nodes. Note: multiple walls on the northern side of the
room structure did not result in valid signal echo paths.
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Figure 7. Raytracing for evaluation setup. (a) Three-dimensional room geometry of the evaluation
setup with MPCs. (b) Top view of the 3D room geometry with MPCs.

3. Determination of the Transmission Delays: To extract the MPCs of the CIR, we
needed to determine the transmission delays τi of the i-th MPC, i = 1, . . . , I − 1. Due to
geometry, the length of the i-th echo path was the distance between the virtual node TX′i
and Rx. Since the coordinates of both positions were known, the distance was calculated
using the Euclidean distance. With the speed of light c0, the transmission delay τi follows:

τi =
di
c0

=
||Rx− Tx′i ||

c0
, (4)

where || · || is the Euclidean distance.
Note: As described, a 3D spatial model is required to determine the valid MPCs and

the corresponding τi for the permutation of the sensor pairs. Options for calculating the
MPCs were hand-written programs, commercial RF propagation tools, or open-source
programs, such as proposed in [48].

4.2. Signal Measurement

The task of the signal measurement function block is to extract and aggregate the
channel measurement and forward it logically to the signal processing block.

Note: all function blocks are connected to the MQTT broker, where the extracted and
aggregated channel measurements are published into the topic. This enables, on the one
hand, subscribing by the signal processing function block and, on the other hand, other
functions, such as logging by subscribing to the same topic.

There are two approaches for the extraction of the channel measurement: In infrastruc-
ture networks, sensor nodes may be connected directly to the MQTT broker e.g., via WiFi.
In this case, we require an API that enables publishing the channel measurement directly
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to the broker. Furthermore, not all sensor nodes that measure a channel measurement have
an additional WiFi radio, due to energy or cost constraints.

4.2.1. Node Configuration

In this work, we set up the system with a different approach. In order to utilize multi-
path propagation for DFL, we placed sensor nodes equipped with an UWB radio chip in the
target area. In the firmware of the sensor nodes, we read out the UWB CIR and the required
metadata. On receipt of a UWB message, the CIR, which was the channel measurement,
was measured and saved. To propagate the measured UWB CIRs, the data was contained
inside the exchanged messages. One sensor node acted as a listener, and listened to the
UWB radio communication, extracted the UWB CIR measurements, and forwarded the
data to the broker.

4.2.2. Signal Measurement with DW1000 Firmware for UWB CIR Measurements and
MQTT Adapter

Table 1 provided the payload of the exchanged UWB messages. The payload contained
metadata (first 26 Byte), followed by the complex CIR values.

Table 1. CIR payload adapted from [9].

Variable Type Meaning

srcID uint16_t ID of the source node
nodeID uint16_t ID of the originating CIR measurement
intPart uint16_t integer part required for time alignment
fracPart uint16_t fractional part required for time alignment
maxNoise uint16_t maximum noise level
stdNoise uint16_t standard deviation of noise level
maxGrowthCIR uint16_t max. value
rxPreamCount uint16_t preamble count Ncnt
fppl double PMPC,0
rxlvl double PRxlvl
CIR uint16_t[] CIR data

The binary serialized metadata and CIR data were sent within a CIR frame via one
listener node in the DFL system, which was connected to a computer via a serial commu-
nication interface. On the computer, the received CIR frame was forwarded as a MQTT
message to the topic /raw. The payload for messages published to the topic /raw was still
binary, which increased the performance of further processing blocks. Binary serialization
and deserialization avoided computationally expensive parsing and rounding errors. Note:
serialization and deserialization on different hardware architectures require handling of
the correct byte order.

To interpret the received serial buffer, the binary serialized structure had to be known.
Therefore, necessary information, such as the length of the metadata and the cir, were
stored as parameters in the global /conf topic.

4.3. Signal Processing

The signal processing block processed the raw data from the signal measurement and
prepared the data for the localization algorithm.

4.3.1. Pre-Preprocessing of UWB CIR

For our proposed MA-RTI system, we had to process the raw UWB CIR measurements
and extract the magnitude of each MPC. Therefore, we increased the resolution of the
CIR by a suitable sinc-interpolation. Furthermore, we aligned the CIRs in time. After
subscribing to the raw UWB measurements, we received the payload described by Table 1
in Section 4.2.2. After deserialization, the data would be processed further.
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In the following, we briefly summarize the pre-processing we proposed in [7]:
The raw CIR hraw(kTs1) was a series of K I/Q values with k = 0, 1, . . . , K − 1. The

bandwidth of the IEEE 802.15.4.a channel was B = 499.2 MHz. This resulted in a CIR that
was sampled with Ts1 ≈ 1 ns. Within the firmware, we aimed to measure a CIR with a
maximum length of approximately 50 ns, and, therefore, we set K = 50 samples.

We resampled the raw CIR with Ts2 and applied the sinc-interpolation. This resulted
in a fine-grained CIR hIP(nTs2) (n = 0, 1, 2, . . .).

To align the CIRs in time, we used the timestamp from the leading edge detection of
the Decawave DW1000. The timestamp was provided on an integer value with an accuracy
of approximately 1 ns and a fine-grained fractional part that narrowed the timestamp down
in steps of 1/64 ns. Our firmware saved and transmitted the CIRs’ five samples before the
reported integer part. By the combination of the time alignment and the protocol, which
captured the UWB CIRs, we reduced possible synchronization errors.

After sinc-interpolation and time alignment, we scaled the CIR with its reported PRxlvl,
which was given by (6). Then, we cropped each CIR to exactly N samples, resulting in
h(kTs2), with n = 0, 1, . . . , N − 1. For detailed information and example source codes for
the pre-processing, refer to [7].

4.3.2. Extraction of MPCs

In the following, we describe the extraction of MPCs from the pre-processed CIR h(kTs2):
Equation (5) provided the magnitude of the MPC in dBm [49]:

PMPC = 10 log10

(
F2
−1 + F2

0 + F2
1

N2
cnt

)
− APRF, (5)

where F−1, F0, and F1 are the magnitude values of the CIR at time {tMPC− 1 ns, tMPC, tMPC +
1 ns}. Ncnt was the preamble accumulation count, and the constant APRF = 121.74 dB was
valid for the pulse repetition rate of 64 MHz [49].

PRxlvl in dBm was calculated as [49]

PRxlvl = 10 log10

(
C · 217

N2
cnt

)
− APRF. (6)

To process the extracted MPCs for MA-RTI, we determined the input vector z as follows:

z[i] = zi (7)

= |PMPC,i,obs − PMPC,i,idle| (8)

For this, we extracted for the idle reference CIR and the observation CIR the power of
each MPC PMPC with (5).

Note: the complex-valued CIR enabled the extraction of the phase for each MPC with
the following equation [7]

φ = arctan
(
I{h(kTs2)}
R{h(kTs2)}

)
[rad]. (9)

After extraction, we unwrapped φ and determined the phases at the corresponding
MPCs. Then we unwrapped φ and read the phases at the corresponding MPC positions.
MPC0 typically carried the information of the direct link between Tx and Rx. To com-
pensate for unknown phase offset, we calculated the relative phase ∆φi of the i-th path
using [7]:

∆φi = φi − φ0 (10)
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4.3.3. Localization Algorithm: MA-RTI

The localization algorithm function block subscribed the result from the signal pro-
cessing and estimated the position of the person.

In the following, we briefly introduce the principle of RTI. For detailed information
that includes, for example, figures for illustration of the weight function (12), refer to [9].
The target area A was divided into J equally sized pixels. RTI determined the attenuation
value for each pixel, based on the measurement. The vector v represented the heat map.
The matrix W of size I × J assigned weights wij to the heat map. z was the measurement
vector of length I, with I being the number of the direct and echo paths (in our MA case, all
the valid 1st-order MPCs of all sensor pairs (see Figure 7a,b)).

RTI systems are based on a simple linear model [17]:

z = Wv + n, (11)

where n is I-dimensional normally distributed noise.
We determined the weight wij for each path i and each pixel j with the following

equation [9,17]:

wij =

{
1/
√

di if dij(1) + dij(2) < di + λ

0 otherwise
, (12)

where dij(1) + dij(2) is the distance from Sensor 1 to Sensor 2 on the i-th path over the
center of pixel j. di is the distance of the i-th path, and λ is a tuning parameter in R+ [9,17].

Solving (11) with L2-minimization was an ill-posed inverse problem, which required
regularization of the pseudo-inverse with a covariance matrix of v Cv weighted by σ−2

J .
The elements of the covariance matrix were defined as in [9,17]:

Cv[k, l] = σ2
v e−dkl/δc , (13)

where dkl is the distance from pixel k to l, δc a space constant, and σ2
v is the pixel variance

of the estimation error.
Including the covariance matrix in the calculation resulted in:

v̂ =
(

WTW + C−1
v σ2

J

)−1
WTz (14)

We determined the estimated position of the person r̂P by searching the maximum
value in v̂ [9]:

r̂P = Pos

(
arg max

j∈{0...J−1}
v̂j

)
, (15)

where operator Pos(j) returned the position vector of the j-th pixel.
Figure 8 shows the block diagram for the localization algorithm MA-RTI. After initial-

ization, we recorded the raw UWB CIRs hraw(kTs1), together with the metadata. The raw
CIRs would be sinc interpolated and aligned in time h(kTs2 )

, then the corresponding signal
values PMPC,i at the respective MPCs τi would be extracted. All signal values from valid
MPCs formed the measurement vector z which was required for heat map calculation v̂ and
position estimation r̂P, by finding the position of the pixel that had the maximum value.

Next to the estimated position r̂P, we published the heat map v̂ to the MQTT broker.
Then, the visualization function block visualized the estimated position and the heat map.

4.3.4. Localization Algorithm: MAMPI

In the following, we briefly provide the details for a fingerprinting approach MAMPI
that we used for comparison. For detailed information, refer to [7].

Assume the target area A contained P positions. We referenced each position with the
position indicator rp. For each of the person’s positions rp with p = 1, . . . , P, we determined
a reference feature vector sp. sp served as a fingerprint and contained overall Ls values to
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characterize rp. In addition, we recorded an observation feature vector so that contained a
person at an unknown position.

Sensor Nodes
Map Information 
Idle Measurement

CIR Measurement
Meta Data

MPC Extraction 

Heat Map Calculation Position Estimation

rS

hraw(kTs1)

h(kTs2)Sinc Interpolation
Time Alignment

Measurement Vector
Composition

PMPC,i z

hidle(kTs2)

v rP̂

Initialization Signal Measurement

Signal Processing

τi

Localization Algorithm

^

Figure 8. Block diagram of the localization algorithm.

MAMPI exploits the magnitudes and phase differences that are extracted from the
UWB CIR to form the feature vector [7]:

sp =



PMPC0,p
· · ·

PMPCI−1,p
∆φ1,p
· · ·

∆φI−1,p

. (16)

For localization, we determined the similarity of so to the reference feature vectors sp
of all positions p. To do so, we calculated the `1-norm d`1 [7]:

d`1(so, sp) =
Ls

∑
l=1
|so(l)− sp(l)|. (17)

To determine the likeliest position r̂p as position estimation, we followed the near-
est neighbour approach. The best fitting estimate minimized the calculated `1-distance
d`1(so, sp) of all positions p [7]:

r̂p = arg min
p

(d`1(so, sp)). (18)

4.4. Test Setup

In the following, we describe the test setup for the evaluation of our proposed system.

4.4.1. MQTT Broker

We selected Mosquitto v.2.0.15. as an MQTT broker. Although other MQTT brokers
were available, the performance of local MQTT brokers was comparable to each other [50].
The broker ran locally on a laptop with Windows 10, i7-6600U, 16 GByte RAM.

In the future, we will deploy an MQTT broker connected to the Internet and connect
the sensor node that acts as the listener on a small computer to forward the raw values to
this publicly available broker. Then, we will run the signal processing and localization on a
server and log the data for long-time evaluation.

4.4.2. Scenario

We set up our proposed MA-RTI system in a typical office building room that provided
a multipath-rich environment. Figure 9 provides a photograph of the room.
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Figure 9. Photograph of the room.

The size of the room was approximately 6 × 7 m. One side contained a window front,
the other walls were various tables and superstructures. The center of the room was kept
free for the measurement. We attached the sensors to the ceiling with a holder.

Figure 10a provides the top view of the room, together with the sensor and reference
positions. We chose the reference positions to cover the majority of the room, while keeping
approximately 0.5 m distance from obstacles, such as tables. The reference positions were
0.5 m apart from each other.
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Figure 10. Theoretical MPCs calculated by raytracing. (a) Room with reference positions. (b) Sensor
node plattform uLoc.

We placed four sensor nodes at a height of 1.418 m, which was half the height of the
room. The sensor nodes were mounted magnetically from the ceiling with PVC tubes.
The magnetic holder allowed the sensors to be moved easily. The (x,y)-coordinates of the
sensors were as follows: Sensor 1 was placed at (0.4, 1)m, Sensor 2 at (0.8, 5)m, Sensor 3
(5, 6.2)m, and Sensor 4 at (4.2, 1.8)m.
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4.4.3. Sensor Nodes and Radio Settings

Figure 10b shows a photograph of our sensor nodes uLoc. The uLoc utilized a De-
cawave DWM1000 UWB radio module that operated the Decawave DW1000 UWB radio
chip. The sensor node was controlled by an ATXMega128A1.

We adapted the firmware in [9] to utilize four sensor nodes. Additionally, another
sensor node acted as the listener. The listener listened to the UWB radio communication
and forwarded the transported CIR measurements via a serial interface to a computer
that forwarded the data toward the MQTT broker. The radio settings of the Decawave
DW1000 were as follows: We utilized IEEE 802.15.4.a channel 3 with a center frequency of
4.4928 GHz. The bandwidth B for the chosen channel was 499.2 MHz. The pulse repetition
frequency was set to 64, the preamble length to 128, and the preamble acquisition chunk
size to 8. The Tx and Rx preamble code was 9, and the nodes transmitted with a data rate
of 6.8 MBit/s. As the frames that transported the CIR, together with the metadata, were
242 Byte, we set the PHY header mode to extended-length data frames.

In the following, we provide more information about the Decawave DW1000 UWB
radio chip. The DW1000 supported 6 RF bands from 3.5–6.5 GHz, with channel bandwidths
of 500–900 MHz. The typical output power spectral density was programmable and its
typical value was −39 dBm/MHz [51]. The cost of the used DWM1000 module was about
10–20 $. Due to the bandwidth of approximately 500 MHz, the time-domain resolution of
the CIR was approximately 1 ns. With proper time alignment, using the fractional part of
the leading edge detection, the time-domain resolution was improved to sub-nanosecond
accuracy (see Section 4.3.1).

4.5. Calibration Phase

During the calibration phase, we recorded 5000 CIR frames, while the target area was
idle. Based on the idle measurements, we determined the idle magnitudes PMPC,i for each
MPC. To enable fast processing for the localization algorithm, we calculated the terms in
front of the measurement vector z from (14), namely the covariance matrix Cv and the
weight matrix W. The calibration results were sent to the system configuration functional
block that published the results on the /conf topic.

5. Evaluation

In this section, we evaluate our proposed DFL system.

5.1. Measurements of CIR Frame and Localization Rate

To evaluate the throughput of our proposed live system, we measured the raw CIR
frame rate and the localization rate during the operation of the system. For this, we
subscribed to the respective MQTT topics and logged the timestamps during transmission.
Namely, for the CIR frame rate, we subscribed on the topic /raw, and for the localization
rate, we subscribed on the topic /loc. For evaluation of the localization algorithm, refer to
Section 5.3.

The CIR frame rate was mainly dependent on the firmware of our nodes. In 3623 s we
measured 167,965 CIR frames, which resulted in a CIR frame rate of 45.99 Hz.

The localization rate depended on the CIR frame rate and the number of frames that
were required for localization. In 3652 s our system calculated 7880 localization estimations,
resulting in a localization rate of 2.16 Hz.

In previous work, we evaluated the performance of a local MQTT broker for devices
connected via WiFi or Ethernet. Depending on the provided bandwidth of the network
connection, we achieved a message throughput of more than 5000 msg/s for payloads
between 100–1000 Bytes [52]. Therefore, we assumed that the message throughput would
be sufficient for further setups.

In the following, we discuss possible improvements for future work: Currently, we
transmit the raw CIR measurements together with the metadata. One CIR frame has
242 Bytes of data, which could be reduced significantly if the signal processing took place
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directly on the sensor nodes. Parameters required for extraction of the MPCs, especially
the expected τi, could be published in a separate MQTT topic and sent to the sensor nodes
via UWB from the listener.

The following approaches would improve the localization rate: Our firmware mea-
sures and transmits the CIR from Tx to Rx and vice-versa. For localization, we currently
only utilize the CIR measurements from Tx to Rx. Using both values significantly reduces
the number of required CIR frames required for localization. Furthermore, our localization
algorithm waits for a batch of CIRs measurements and then performs the localization. In
the future, we will implement and evaluate either a sequential or sliding window-based
processing, and, therefore, update the heatmap each time a CIR frame arrives.

5.2. Comparison of Simulated with Measured MPCs

We set up and calibrated the system solely with a simple 3D spatial model and idle
measurements. Our test setup reassembled a typical office, filled with furniture and other
objects that were not modeled in the 3D spatial model (see Figure 7a). Note: modeling
furniture and other objects is possible but it increases the installation effort of the system.
In the following, we evaluated the system calculated τi, required for extraction of the MPCs
within the CIR measurements, although many obstacles were not modeled.

Figures 11 and 12 provide the reference CIRs for all unique permutations of the sensor
nodes, together with the position of the MPCs τi extracted from raytracing of our 3D spatial
model. The blue line is the pre-processed idle reference CIR. The vertical lines represent
the i-th MPC at τi, determined from the 3D spatial model. The red line is the direct path
(MPC0), and the black line represent MPCs from the other walls. Note: Although the
ground and ceiling reflection affected the CIR, we did not extract those values; however,
they might interfere with neighboring MPCs [53]. For all the idle CIRs, the MPCs were
either at a peak or in close proximity. Deviations might come from inaccuracies of the 3D
spatial model, e.g., unmodeled furniture, placement of sensor nodes that were a few cm
apart from the ground truth position, or interference from neighboring MPCs. Nevertheless,
the resolution of the 3D model was enough to extract the relevant MPCs with sufficient
accuracy. We saw similar deviations of the MPCs in an outdoor scenario. For an evaluation
of the MA-RTI algorithm in an outside environment, refer to our previous work in [9].
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Figure 11. Idle CIRs for different sensor pairs. (a) CIR with MPCs from (1,2). (b) CIR with MPCs
from (1,3). (c) CIR with MPCs from (1,4).

5.3. Localization Results

We calculated the Euclidean distance to evaluate the localization accuracy:

e = ||r̂p − rp|| (19)

where || · || is the Euclidean distance, r̂p the estimated position, and rp the ground truth
position of the person.
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Figure 12. Idle CIRs for different sensor pairs. (a) CIR with MPCs from (2,3). (b) CIR with MPCs
from (2,4). (c) CIR with MPCs from (3,4).

For each sensor pair, we determined a reference idle value href(t) from the idle mea-
surements that had its PRxlvl close to the mean of PRxlvl [8].

Differing from previous work [9], where we calculated the mean CIR from 100 mea-
surements, we took single snapshot measurements. In our case, we waited for 20 CIR
frames, extracted the MPCs, and calculated v̂.

For each of the 53 reference positions shown in Figure 10a, we recorded 2300 CIR
frames. To access localization accuracy, we batch-processed 100 position estimates from
20 CIR frames at a time.

For the proposed MA-RTI algorithm, we used the following parameters, which were
close to the values we deployed in our previous work [9]: We divided the target area into
pixels with a distance of 0.1 m, the width of the weighting ellipse wasλ = 0.01 m, and we set
the pixel variance σ2

v and the regularization parameter σ2
J to 0.5 dB2. The pixel correlation

constant was increased from δc = 0.5 m to δc = 0.7 m.
Figures 13 and 14 show exemplary localization results for our MA-RTI system. The red

dots are the sensor nodes, the white cross indicates the ground truth position rp, and the
red cross indicates the estimated position r̂p. The bold black lines indicate the walls of
the room, extracted from the 3D spatial model. The color map depicts the heatmap v of
MA-RTI: Positions that are dark blue have a low probability of the person being located at
that pixel, and a bright yellow color indicates a high probability.

The ground truth position in Figure 13a was close to the estimated position. The
person affected many MPCs in the CIR of (1, 4) and (3, 4). The ground truth position in
Figure 13b was close to Sensor 2. The position estimate tended toward the middle of the
room because many MPCs of different sensor pairs were affected that passed through those
pixels. When the person was close to the middle of the room (see Figure 14a), the position
estimation was close to the ground truth position. Figure 14b the person stood at a position
that was mostly covered by MPCs from two sensor nodes (1,3). As the MPCs crossed
mostly the middle of the room, the maximum of the heatmap was located there, resulting
in large localization errors.

For the localization algorithm MAMPI, we divided the data measured at the 53 refer-
ence positions into training and test data seta. Different from machine learning applications,
that typically use 80% of the data for training and 20% for evaluation [54], we used 10% of
the data for training and the rest for evaluation as in [7]. We used the mean of the training
set for each position as reference fingerprints.

Figure 15 provides the empirical cumulative distribution function (ECDF) for all
localization results for MA-RTI (blue line) and MAMPI (red line). From the ECDF we
determined the 50% and 80% percentile: For MA-RTI, we achieved a localization error
below 1.0 m in 50% of the cases, and a localization error below 1.8 m in 80% of the cases.
Positions that were in the vicinity of several MPCs had a localization accuracy of less
than 1 m. This was sufficient for our envisioned applications of DFL systems, although
still subject to further improvement. In the future, we will improve the weight function
and systematically evaluate the information content for each MPC to gain insight on an
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optimal sensor node placement and improved localization results. Furthermore, we will
investigate solutions based on `1 minimization, as proposed in [55]. In comparison to
MA-RTI, the MA fingerprinting approach MAMPI estimated the correct position in 97% of
all cases. This was due to the fact that we evaluated with data where a person was standing
at the exact positions that we used for training. We expected that the fingerprints would
deteriorate over time and that the localization error would increase when the person qas
not standing in proximity of a trained reference position [56]. Still, fingerprinting provided
high localization accuracy with the main drawback of the tedious training phase that had
to be repeated or updated after changes in the environment. Future research includes the
automatic creation of the passive radio map, e.g., by ray-tracing [15], or by applying a radio
propagation model, as proposed in [13].
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Figure 13. Exemplary MA-RTI results. (a) Exemplary Pos. 1. (b) Exemplary Pos. 2.
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Figure 14. Exemplary MA-RTI results. (a) Exemplary Pos. 3. (b) Exemplary Pos. 4.

5.4. Discussion

In this paper, we proposed a DFL system based on an architectural model. To connect
the different function blocks and to build a modular distributed system, we proposed the
MQTT architecture. MQTT implements a publish and subscribe pattern and enables simple
access to required values by publishing configuration parameters and measurement data.
MA DFL requires map information to determine the virtual sensor positions and to extract
the information for MA-RTI. We showed how to extract this information with a simple 3D
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spatial model and raytracing. This enables easy calibration of the system, together with
idle measurements that are performed when the target area is idle. We achieved a high CIR
frame rate of approximately 46 Hz that could be significantly increased in the future, when
the signal processing is implemented directly on the sensor nodes. The localization rate was
better than 2 Hz, which is subject to improvements. Our goal was to develop a DFL system
with a minimum number of sensors. To cover the target area with a sufficient amount of
MPCs, we placed four sensor nodes that were equipped with a UWB radio in the target
area. With four sensors, we could localize positions that were in the vicinity of several
MPCs with an accuracy of less than 1 m. In addition, with a more realistic weight function
for MA-RTI (such as proposed in [18]), the localization accuracy would be increased in
the future.

0 1 2 3 4 5

localization error [m]

0
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0.4

0.6
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1
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C

D
F

MA-RTI
MAMPI

Figure 15. Photograph of the room.

Fingerprint approaches, such as MAMPI, result in higher localization accuracy. In
our case, where the person stood at the same positions that were trained, we estimated
the exact position in 97% of the cases. However, we expect that this accuracy would
deteriorate over time and the effort of the training phase prevents large-scale distributions
of fingerprint approaches.

The proposed and implemented online and modular system would help to improve
the function blocks one by one, as one could immediately see the changes. Further-
more, the publish/subscribe pattern enables subscribing to the topics and implement-
ing/providing results for different algorithms without higher effort. The following steps
must be performed to transfer the MA-RTI system to a new environment, e.g., a different
room: The 3D spatial model has to be adapted for the new room and idle measurements
recorded for calibration. We expect the localization accuracy to remain in the same or-
der of magnitude as long as all objects are in the 3D model significantly responsible for
multipath propagation.

6. Conclusions and Future Work

In this paper, we proposed an architectural model for real-world DFL systems. Fur-
thermore, we proposed MQTT for communication and configuration of the function blocks.
Based on the architectural model, we set up an MA DFL system that localized a person
within a typical office room, with UWB CIR measurements. To reduce installation and
maintenance costs, we configured and calibrated the MA DFL system with a simple 3D spa-
tial model and idle measurements. The system provided a CIR frame rate of approximately
46 Hz and localization update rate of approximately 2 Hz. We achieved a localization
accuracy of 1.0 m in 50% of the cases and of 1.8 m in 80% of the cases with our setup. If
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higher localization accuracy is required, MA fingerprinting approaches, such as MAMPI,
may lead to lower localization errors. However, fingerprinting, in general, requires an
extensive training phase that we were aiming to avoid with our training-free approach.

The future work includes evaluations of other radio technologies in different setups,
i.e., installing the system in different rooms. Improving the localization accuracy of MA-
RTI, by replacing the RTI weight function and accessing the information content for each
extracted MPC, is still work in progress. Furthermore, we will implement and evaluate
other localization algorithms while having the system in operation. In this regard, our
focus lies on algorithms based on `1 minimization.

Author Contributions: Conceptualization, M.C. (Marco Cimdins) and H.H.; methodology, M.C.
(Marco Cimdins) and H.H.; software, M.C. (Marco Cimdins), S.O.S., F.J. and M.C. (Manfred Con-
stapel); validation, M.C. (Marco Cimdins), S.O.S. and F.J.; formal analysis, M.C. (Marco Cimdins);
investigation, M.C. (Marco Cimdins); resources, M.C. (Marco Cimdins); data curation, M.C. (Marco
Cimdins); writing—original draft preparation, M.C. (Marco Cimdins); writing—review and edit-
ing, M.C. (Marco Cimdins), S.O.S., F.J., M.C. (Manfred Constapel) and H.H.; visualization, M.C.
(Marco Cimdins), S.O.S. and M.C. (Manfred Constapel); supervision, H.H.; project administration,
H.H.; funding acquisition, H.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This publication is a result of the research of the Center of Excellence CoSA. We acknowledge
financial support by Land Schleswig-Holstein within the funding program Open Access Publikationsfonds.

Institutional Review Board Statement: Ethical review and approval were waived for this study as
no information about the state of health of a person is recorded. Only the functionality of the system is
to be checked so that there can be no findings in the medical sense. During experiments, we followed
all safety regulations, the person is asked to stand at specified positions in an indoor environment.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AP access point
CIR channel impulse response
COTS commercial off-the-shelf
CSI channel state information
CQI channel quality indicator
DFL device-free localization
ECDF empirical cumulative distribution function
MA multipath-assisted
MPC multipath component
MQTT message queueing telemetry transport
RF radio frequency
RSS receive signal strength
RTI radio tomographic imaging
UWB ultra-wideband

References
1. Youssef, M.; Mah, M.; Agrawala, A. Challenges: Device-free passive localization for wireless environments. In Proceedings of the

13th Annual ACM International Conference on Mobile Computing and Networking, New York, NY, USA, 9–14 September 2007;
pp. 222–229.

2. Palipana, S.; Pietropaoli, B.; Pesch, D. Recent advances in RF-based passive device-free localisation for indoor applications. Ad
Hoc Netw. 2017, 64, 80–98. [CrossRef]

3. Alam, F.; Faulkner, N.; Parr, B. Device-free localization: A review of non-RF techniques for unobtrusive indoor positioning. IEEE
Internet Things J. 2020, 8, 4228–4249. [CrossRef]

http://doi.org/10.1016/j.adhoc.2017.06.007
http://dx.doi.org/10.1109/JIOT.2020.3030174


Sensors 2023, 23, 2199 24 of 26

4. Denis, S.; Berkvens, R.; Ergeerts, G.; Weyn, M. Multi-frequency sub-1 GHz radio tomographic imaging in a complex indoor
environment. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo,
Japan, 18–21 September 2017; pp. 1–8. [CrossRef]

5. Kaltiokallio, O.; Bocca, M.; Patwari, N. Enhancing the accuracy of radio tomographic imaging using channel diversity. In
Proceedings of the 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012), IEEE, Las Vegas,
Nevada, USA, 8–11 October 2012; pp. 254–262.

6. Abdel-Nasser, H.; Samir, R.; Sabek, I.; Youssef, M. MonoPHY: Mono-Stream-based Device-free WLAN Localization via Physical
Layer Information. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE,
Shanghai, China, 7–10 April 2013; pp. 4546–4551.

7. Cimdins, M.; Schmidt, S.O.; Hellbrück, H. MAMPI-UWB—Multipath-Assisted Device-Free Localization with Magnitude and
Phase Information with UWB Transceivers. Sensors 2020, 20, 7090. [CrossRef] [PubMed]

8. Cimdins, M.; Schmidt, S.O.; Hellbrück, H. Comparison of I/Q- and Magnitude-based UWB Channel Impulse Responses for
Device-free Localization. In Proceedings of the 2021 International Conference on Localization and GNSS (ICL-GNSS), Tampere,
Finland, 1–3 June 2021; pp. 1–7. [CrossRef]

9. Cimdins, M.; Schmidt, S.O.; Bartmann, P.; Hellbrück, H. Exploiting Ultra-Wideband Channel Impulse Responses for Device-Free
Localization. Sensors 2022, 22, 6255. [CrossRef] [PubMed]

10. Wang, J.; Gao, Q.; Pan, M.; Fang, Y. Device-Free Wireless Sensing: Challenges, Opportunities, and Applications. IEEE Netw. 2018,
32, 132–137. [CrossRef]

11. Xu, C.; Firner, B.; Moore, R.S.; Zhang, Y.; Trappe, W.; Howard, R.; Zhang, F.; An, N. SCPL: Indoor Device-Free Multi-Subject
Counting and Localization Using Radio Signal Strength. In Proceedings of the 2013 ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), IEEE, Philadelphia, PA, USA, 8–11 April 2013; pp. 79–90.

12. Seifeldin, M.; Saeed, A.; Kosba, A.E.; El-Keyi, A.; Youssef, M. Nuzzer: A Large-Scale Device-Free Passive Localization System for
Wireless Environments. IEEE Trans. Mob. Comput. 2013, 12, 1321–1334. [CrossRef]

13. Cimdins, M.; Pelka, M.; Hellbrück, H. Sundew: Design and Evaluation of a Model-Based Device-Free Localization System. In
Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE, Nantes, France,
24–27 September 2018; pp. 1–8.

14. Sabek, I.; Youssef, M.; Vasilakos, A.V. ACE: An Accurate and Efficient Multi-Entity Device-Free WLAN Localization System.
IEEE Trans. Mob. Comput. 2015, 14, 261–273. [CrossRef]

15. Zhou, M.; Lin, Y.; Zhao, N.; Jiang, Q.; Yang, X.; Tian, Z. Indoor WLAN intelligent target intrusion sensing using ray-aided
generative adversarial network. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 61–73. [CrossRef]

16. Saeed, A.; Kosba, A.E.; Youssef, M. Ichnaea: A Low-Overhead Robust WLAN Device-Free Passive Localization System. IEEE J.
Sel. Top. Signal Process. 2014, 8, 5–15. . [CrossRef]

17. Wilson, J.; Patwari, N. Radio Tomographic Imaging with Wireless Networks. IEEE Trans. Mob. Comput. 2010, 9, 621–632. .
[CrossRef]

18. Li, G.; Lei, Q. Device-Free Localization Using Enhanced Channel Selection and A Distance-Based Elliptical Model. IEEE Access
2022, 10, 129531–129538. [CrossRef]

19. Schmidhammer, M.; Genter, C.G.; Siebler, B. Localization of Discrete Mobile Scatterers in Vehicular Environments Using Delay
Estimates. In Proceedings of the 2019 International Conference on Location and GNSS (ICL-GNSS), Nuremberg, Germany, 4–6
June 2019.

20. Schmidhammer, M.; Gentner, C.; Sand, S.; Fiebig, U.C. Multipath-enhanced device-free localization in wideband wireless
networks. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 453–457. [CrossRef]

21. Schmidhammer, M.; Gentner, C. Multipath-Enhanced Device-Free Localization using Low-Cost Ultra-Wideband Devices. In
Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April
2022; pp. 1–5. . [CrossRef]

22. Cimdins, M.; Schmidt, S.O.; Hellbrück, H. MAMPI–Multipath-assisted Device-free Localization with Magnitude and Phase
Information. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), IEEE, Tampere, Finland,
2–4 June 2020; pp. 1–6.

23. Cimdins, M.; Schmidt, S.O.; Hellbrück, H. Modeling the Magnitude and Phase of Multipath UWB Signals for the Use in Passive
Localization. In Proceedings of the 16th Workshop on Positioning, Navigation and Communication, IEEE, Bremen, Germany,
23–24 October 2019.

24. Ledergerber, A.; D’Andrea, R. A Multi-Static Radar Network with Ultra-Wideband Radio-Equipped Devices. Sensors 2020,
20, 1599. [CrossRef] [PubMed]

25. Ninnemann, J.; Schwarzbach, P.; Jung, A.; Michler, O. Device-Free Passive Localization based on Narrowband Channel Impulse
Responses. In Proceedings of the 2020 21st International Radar Symposium (IRS), IEEE, Warsaw, Poland, 5–8 October 2020;
pp. 88–93.

26. Ninnemann, J.; Schwarzbach, P.; Jung, A.; Michler, O. Lab-Based Evaluation of Device-Free Passive Localization Using Multipath
Channel Information. Sensors 2021, 21, 2383. [CrossRef]

http://dx.doi.org/10.1109/IPIN.2017.8115894
http://dx.doi.org/10.3390/s20247090
http://www.ncbi.nlm.nih.gov/pubmed/33322078
http://dx.doi.org/10.1109/ICL-GNSS51451.2021.9452299
http://dx.doi.org/10.3390/s22166255
http://www.ncbi.nlm.nih.gov/pubmed/36016015
http://dx.doi.org/10.1109/MNET.2017.1700133
http://dx.doi.org/10.1109/TMC.2012.106
http://dx.doi.org/10.1109/TMC.2014.2320265
http://dx.doi.org/10.1109/TETCI.2019.2892748
http://dx.doi.org/10.1109/JSTSP.2013.2287480
http://dx.doi.org/10.1109/TMC.2009.174
http://dx.doi.org/10.1109/ACCESS.2022.3228837
http://dx.doi.org/10.1109/LAWP.2021.3052438
http://dx.doi.org/10.23919/EuCAP53622.2022.9769046
http://dx.doi.org/10.3390/s20061599
http://www.ncbi.nlm.nih.gov/pubmed/32183003
http://dx.doi.org/10.3390/s21072383


Sensors 2023, 23, 2199 25 of 26

27. Santoboni, M.; Bersan, R.; Savazzi, S.; Zecchin, A.; Rampa, V.; Piazza, D. Wireless LAN sensing with smart antennas. In
Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), IEEE, Madrid, Spain, 27 March–1
April 2022; pp. 1–5.

28. Kianoush, S.; Raja, M.; Savazzi, S.; Sigg, S. A cloud-IoT platform for passive radio sensing: Challenges and application case
studies. IEEE Internet Things J. 2018, 5, 3624–3636. [CrossRef]

29. Kianoush, S.; Savazzi, S.; Rampa, V.; Nicoli, M. People Counting by Dense WiFi MIMO Networks: Channel Features and Machine
Learning Algorithms. Sensors 2019, 19, 3450. [CrossRef] [PubMed]

30. Yang, J.; Zou, H.; Jiang, H.; Xie, L. Device-free occupant activity sensing using WiFi-enabled IoT devices for smart homes. IEEE
Internet Things J. 2018, 5, 3991–4002. [CrossRef]

31. Kosba, A.E.; Saeed, A.; Youssef, M. RASID: A robust WLAN device-free passive motion detection system. In Proceedings of the
2012 IEEE International Conference on Pervasive Computing and Communications, IEEE, Lugano Switzerland, 19–23 March
2012; pp. 180–189.

32. Fink, A.; Beikirch, H. Device-Free Localization using Redundant 2.4 GHz Radio Signal Strength Readings. In Proceedings of the
the Fourth International Conference on Indoor Positioning and Indoor Navigation, Montbeliard, France, 28–31 October 2013; pp.
1–7. [CrossRef]

33. Xiao, W.; Song, B.; Yu, X.; Chen, P. Nonlinear Optimization-Based Device-Free Localization with Outlier Link Rejection. Sensors
2015, 15, 8072. [CrossRef]

34. Cimdins, M.; Pelka, M.; Hellbrück, H. Investigation of Anomaly-based Passive Localization with Received Signal Strength for
IEEE 802.15.4. In Proceedings of the Seventh International Conference on Indoor Positioning and Indoor Navigation, Madrid,
Spain, 4–7 October 2016.

35. Denis, S.; Berkvens, R.; Ergeerts, G.; Bellekens, B.; Weyn, M. Combining multiple sub-1 GHz frequencies in Radio Tomographic
Imaging. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Madrid,
Spain, 4–7 October 2016; pp. 1–8. [CrossRef]
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