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Abstract: Recently, deep learning has been widely used to solve existing computing problems
through large-scale data mining. Conventional training of the deep learning model is performed on
a central (cloud) server that is equipped with high computing power, by integrating data via high
computational intensity. However, integrating raw data from multiple clients raises privacy concerns
that are increasingly being focused on. In federated learning (FL), clients train deep learning models
in a distributed fashion using their local data; instead of sending raw data to a central server, they
send parameter values of the trained local model to a central server for integration. Because FL does
not transmit raw data to the outside, it is free from privacy issues. In this paper, we perform an
experimental study that explores the dynamics of the FL-based Android malicious app detection
method under three data distributions across clients, i.e., (i) independent and identically distributed
(IID), (ii) non-IID, (iii) non-IID and unbalanced. Our experiments demonstrate that the application of
FL is feasible and efficient in detecting malicious Android apps in a distributed manner on cellular
networks.

Keywords: federated learning; deep learning; privacy; malicious android app detection; FedAvg
algorithm; stream order imaging; independent and identically distribution (IID)

1. Introduction

Currently, smartphones have become some of the most common and popular electronic
devices due to the rapid development of cellular wireless communication technology and
mobile operating systems. According to Gartner’s 2022 report, the market share of Android
OS, which is adopted by most smartphones, except for Apple’s iPhone (iOS), has steadily
increased and has recently reached nearly 90% [1]. Android’s rapid growth is driven by
openness; Android apps can be developed and distributed by anyone as long as they are
adopted by the market.

Unfortunately, Android’s openness does not provide pure functionality. The nature of
open platforms involves accelerating the emergence of new malicious Android applications.
According to Kaspersky Lab’s Q2 2022 IT Threat Report [2], 5.5M mobile malware, adware,
and riskware attacks were blocked, of which, 405,000 were installed on clients. It contains
approximately 55,000 mobile banking Trojans and 4K mobile ransomware.

Conventional malicious application detection is based on unique signature matching
based on static/dynamic analysis of malicious code [3]. However, this signature matching-
based detection technique can be easily defeated by techniques such as application code
obfuscation, manifest cheats, and dynamic code loading. To make matters worse, the rapid
proliferation of malicious applications makes it nearly impossible to quickly collect unique
signatures for new malicious applications [4].

Recently, in various computer science fields, such as communication and information
security, machine learning (ML) technology has been widely used as a tool to solve existing
computing problems through large-scale data learning. Efficient and accurate training of
ML models depend almost entirely on the quality of the training data and the computing

Sensors 2023, 23, 2198. https://doi.org/10.3390/s23042198 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042198
https://doi.org/10.3390/s23042198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23042198
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042198?type=check_update&version=2


Sensors 2023, 23, 2198 2 of 15

power of the server performing the training. Therefore, in most cases, it is implemented
to maximize efficiency in terms of power/time by collecting data from various clients in
a high-performance centralized data server and training the model through the server’s
powerful computing resources [5].

However, centralizing all raw data to train and test ML models inevitably faces
challenges, such as (i) resource constraints, (ii) security and privacy concerns, and (iii)
securing communication bandwidth to transmit raw data [6]. In particular, in the case of
a cellular network, transmitting a smartphone user’s application installation and usage
status, website access record, contact information, multimedia, etc., to a central server not
only consumes bandwidth but also causes serious personal information leakage. In this
case, the user may not cooperate with the process of collecting raw data from the central
server to protect personal information. Even worse, malicious users could also exploit this
raw data collection process to compromise data integrity, intentionally preventing effective
ML model training [7,8].

In a context where privacy and data integrity are important, federated learning (FL)
has been highlighted as a distributed collaborative ML paradigm [9]. In FL, instead of
sending raw data to a central data server to train global ML models, clients use local data to
train each local ML model in a distributed fashion. Trained local ML model parameters are
sent to a central server for integration into the global ML model. A unified global model is
deployed to each client and is used to augment the local model in the next local training
process. By repeating this process, each client participates in a decentralized global model
training process. In FL, data privacy is guaranteed by design because the client’s raw data
are not shared with the outside, and the client only needs to transmit fixed ML model
parameters regardless of the size of the raw data, so it is free from the problem of securing
communication bandwidth.

Despite the various strengths of FL, there are several issues to consider when applying
FL to real-world environments. The exploration of how to train an accurate global ML
model under a statistically unbalanced distribution of learning data across clients is the
most universal but important research topic [10–13]. Even without direct transmission
of raw data, the communication cost for model updates is high because many clients are
involved and each client sends a massive number of parameters of deep neural networks.
In order to reduce the communication cost, a method of transmitting parameters in a
compressed form [14] or minimizing the number of model updates [15] has been pro-
posed. Considering that deep neural networks are vulnerable to adversarial attacks in
the domain of image classification, the problem is exacerbated in FL, where the attack
target increases significantly. Accordingly, in the information security field, discussions are
actively underway to secure resilience against such adversarial attacks [8,16,17].

In this paper, we conducted an experimental study to investigate the feasibility and
efficiency of a malicious Android app detection method through FL under the practical
challenges raised above. To this end, we first propose an FL model that simultaneously
considers computing/communication resource limitations and privacy issues in a cellular
network environment. In order to extract features required for deep learning, we present
an imaging technique for malicious Android app samples in the form of APKs. Finally,
we perform extensive FL learning experiments using real smartphone data under three
data distributions; FL over independent and identically uniform distributed (IID) local
data, FL with non-IID local data, and FL with non-IID and imbalanced local data. The
experiments include explorations of the impacts on client availability, local computing
costs, and communication overhead (between the center and local). The main findings
obtained through the experiments are summarized as follows.

• Application of privacy-preserving FL is feasible in detecting malignant Android apps
in a distributed fashion in actual cellular networks.

• Fewer global training rounds for the FedAvg algorithm [15] typically translates into
increased efficiency.
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• However, we could not observe any clear correlation in training efficiency with
changes in client availability and/or local training intensity. Rather, the biggest factor
affecting efficiency is the communication overhead of updating model parameters.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the system model and briefly describes the parameter update process
and FedAvg. Section 4 describes the experimental setup in detail, and in Section 5, the
experimental results and corresponding analysis are presented. Section 6 discusses various
practical issues. Finally, Section 7 concludes this paper.

2. Related Work

For the past several years, ML technology research has been conducted, such as deep
learning used to detect malicious codes. In general, ML technology must go through a pro-
cess of learning an ML model that reflects the statistical characteristics of the target through
a large amount of training data. The detection performance of a trained model depends on
the process of identifying and extracting features, in which case domain knowledge of the
data is important. This process, called feature engineering, is a fundamental part of ML
applications and is an important factor affecting the performance of ML algorithms. De-
pending on the kind of features extracted, related studies fall into two categories: signature-
or behavior-based techniques.

2.1. Signature-Based Detection

Signature-based detection is frequently used in the traditional information security
field, which emphasizes a clear correlation between malicious code and signatures. It
detects malware using known malicious code signatures. For this, it is necessary to search
for the signature unique to the malicious code through static analysis. Therefore, signature-
based methods can detect known malicious apps with high accuracy. However, detection
of zero-day vulnerabilities is fundamentally impossible because detection is possible only
by knowing the unique signature of the malicious code. In addition, attackers can easily
bypass detection by obstructing the discovery of unique signatures with techniques, such
as code obfuscation. Reference [18] introduced the concept of data mining for malware
detection and proposed a detection technique that applied the Ripper algorithm to three
static features of the PE (portable executable), string, and byte sequence. In the study by
Kong et al. [19], the function call relationship of malware was expressed as a graph, and a
graph-based malware detection technique was proposed. In this technique, the distance
between malware is quantified through the ensemble value of the model, and malware is
effectively classified based on this. Li’s study [20] was conducted on a mobile environment,
and based on the statistical similarity of API calls and code structures in Android APKs,
malware operating in the mobile environment is classified.

The ultimate way to find unique signatures of malicious code using static analy-
sis is to utilize a technique called reverse engineering. In general, since it is very dif-
ficult to obtain the source code of the malicious code that exists in the form of a PE
file, the malware analyst disassembles the malicious code binary and applies feature
engineering at the assembly level. Reference [21] proposed a method utilizing op-
code sequences to construct vector representations of executable files. Many studies
have been conducted to classify malware by converting the malware binary into an im-
age [8,22–24]. Specifically, Reference [22] proposed a method of classifying malware by
applying simple hashing to the opcode sequence. Moreover, in [23], the malware was
classified by visualizing the malware binary as a grayscale image and applying the K-
nearest neighbor algorithm. Reference [24] proposed a method for detecting malware
through image entropy quantification. Reference [8] showed that the Convolutional
Neural Network (CNN)-based malware detection algorithm can be neutralized by the
adversarial examples (AEs) generated using Generative Adversarial Networks (GAN),
and suggested a robust training method for a deep learning model resilient to these AEs.
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Reference [8] is complementary to this paper in that it provides a countermeasure against
adversarial attacks to the proposed method, which is discussed artificially in Section 6.

2.2. Behavior-Based Detection

Signature-based techniques are usually combined with static analysis to find malware-
specific signatures. However, in this way, it is impossible to capture unique signatures
generated only during the execution of malware, such as network packets, API calls, opcode
sequences, etc. Even static analysis of obfuscated or encrypted malware is fundamentally
impracticable. The collection of these features must be accompanied by the execution of
malware, which is performed through artificial and/or bystander execution of malicious
codes in a virtual machine environment thoroughly isolated from the external network, e.g.,
the internet. That is why these kinds of features are called behavioral features, so detection
techniques based on these features are called behavior-based detection.

Bayer et al. [25] proposed a method of clustering PE files based on behavior and
detecting/classifying malware. Reference [26] created a graph based on the opcode trace
and presented a malware detection technique through graph analysis. Fujino et al. [27]
presented a measure to quantify the similarity of malware based on the API function calls,
and a detection method applying the non-negative matrix factorization technique.

Various practical applications using dynamic analyses have been proposed due to
their advantages of finding malware features that are inherently impossibly analyzed with
static analyses. However, clever attackers have evolved to circumvent malware detection
techniques built upon the dynamic analysis. For example, if malware is designed to be
latent for a certain period of time before it actually performs malicious behavior, sandboxes
can never detect malware before it becomes active. As another example, some malware
can only be activated through a network connection and, therefore, in a sandbox operating
in isolation from the internet, malware of this kind is not activated forever. As such, the
dynamic analysis does not always guarantee the extraction of malware features.

In the field of federation optimization, several studies have been conducted on the
convergence and efficiency of FL under statistically non-IID and imbalanced training
data [10–13]. Reference [12] presented a mathematical definition of the heterogeneity
of data. In [13], the conditions for ensuring convergence and the asymptotic bound re-
quired to reach the optimum were derived through mathematical analysis. Reference [15]
experimentally showed the dominance of the communication costs for model updates
and proposed the FedAvg algorithm, which opened up the door to one of the federated
optimization studies. In [13], it was mathematically shown that the FedAvg algorithm can
ensure convergence by choosing an appropriate sampling method. FedPer [28] uses the
concept of multi-task learning to deal with statistical heterogeneity. The personalization
layer is trained by mutually sharing the trained base layer using the FedAvg algorithm.
FedProx [29] adds a proximal term to the local loss function to prevent the local and global
models from being too different in heterogeneous network environments. However, this
study is differentiated in that it experimentally analyzed the feasibility and efficiency of FL
application in the actual cellular environment from various angles.

3. A Privacy-Preserving Cross-Silo Federated Learning Framework
3.1. System Model

In this paper, as shown in Figure 1, we assume a cross-silo FL model [30] for the
purpose of detecting malicious Android apps in cellular networks. In the proposed FL
model, the (cloud) data server acts as a central entity. The central entity cooperates with
edge entities to train the global ML model and update the local ML model parameter
values. In our cross-silo FL model, an edge entity means some representative clients or
a base station (BS). In cellular networks, most terminals are smartphones, and since the
number of users is very large, it may seem reasonable to apply the cross-device FL model.
However, from a global training perspective in FL, users’ personal data are often not
enough to train local ML models, and more importantly, model updates require excessive
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communication bandwidth between the central server and clients. It is unnecessary and
unwelcome for individual smartphone users. Therefore, in our model, the BS with relatively
better computing and communication performance compared to the client becomes the
edge entity (silo 2 in Figure 1). Or, it is assumed that clients form a coalition and some of
them act as the edge entity on behalf of the coalition (silo 1 or 3 in Figure 1).

Preserving privacy within the coalition: By forming a coalition between the edge en-
tity and the client in the proposed model, the personal information leakage problem seems
to become an issue again. In the proposed FL model, it is assumed that the local differential
privacy (DP) mechanism [31,32] is applied in the process of collecting raw data within the
coalition. The DP algorithm adds perturbation to raw data while maintaining statistical
characteristics, making it completely different from the original raw data, thus preserving
privacy. However, since deep learning operates based on the statistical characteristics of
data, it is possible to learn models without performance degradation by properly designed
perturbation.

Figure 1. The cross-silo FL model assumed in this paper consists of one central entity and a plurality
of edge entities. The edge entity is a form of a coalition between the client(s) and the base station, and
a representative part of the component terminals communicates directly with the central entity to
participate in global model learning.

3.2. Parameter Update

In this paper, using a controlled environment suitable for experiments, we examine
the impact of client availability, local computing intensity, and data distribution across
edge entities in depth. In our FL model, synchronous parameter update is performed
every epoch time. We assume there are K edge entities over which the data are partitioned,
with Di the set of indexes of data points on edge entity i, with ni = |Di|. In every update
round, K × C edge entities are randomly selected out of K edge entities, and the central
entity transmits the current global model state (i.e., current global model parameters) to the
selected edge entities. Here, C can be viewed as an experimental parameter implying the
availability of edge entities. Each edge entity trains a local ML model based on global model
parameters (distributed from the central entity) and local data. It then sends parameter
updates to the central entity. The central entity then aggregates the received updates and
integrates them into the global ML model to complete synchronous parameter updates
during one epoch.

3.3. Federation Algorithm

State-of-the-art methods for neural network (NN)-based ML algorithms typically
use stochastic gradient descent (SGD) to train model parameters. Over the past years,
several studies have been conducted to develop effective algorithms for applying SGD
to FL [15,33]. In this paper, we apply the state-of-the-art FL algorithm, federated averaging
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(FedAvg) introduced in [15], and conduct an extensive experimental study to verify the
effectiveness of Android malicious app detection in FL environments. Note that the main
contribution of this paper is not to propose a new FL algorithm, but to experimentally
examine the feasibility and efficiency of the FL technique in a real cellular environment.
FL is a method of physically distributing the training process performed on a central data
server, so the maximum performance that can be achieved is bounded by the performance
of the centrally trained ML model.

Baseline: Chen et al. [34] presented a decent approach to a centralized setup, namely
FedSGD, which outperforms previous asynchronous approaches. An algorithm that is
mathematically equivalent to this method can be performed in a federated setting. In each
round, we select K × C edge entities and compute the gradient of the loss for the local
data. Therefore, C can be seen as controlling the global batch size, and when C = 1, it is
non-stochastic full-batch gradient decent, mathematically equivalent to FedSGD. Therefore,
if the communication cost is not taken into account, the performance target of a model
trained with FL is the same as that of FedSGD. The main difference between FedSGD and
FedAvg is that FedSGD allows the client to train only one step before sending the updated
weights to the server, so FedSGD is called ‘baseline’.

4. Experimental Setup
4.1. Experiment Environment and Dataset

The experimental dataset used in this paper is CICMalDroid 2020 [35]. The Maldroid
dataset was collected from third-party sources, such as VirusTotal and Contagio blogs
in the form of an APK, which is an Android app installation file from December 2017 to
December 2018. It consists of a total of 17,341 samples, including both malignant and
benign Android app samples. In Apple’s iOS, it is impossible in principle to install apps
other than apps certified in the App Store without rooting (jailbreak). On the other hand,
in the Android environment, security threats are inherent because users can freely install
apps as they wish.

Our experiments were implemented utilizing the PyTorch framework and were per-
formed on a MAC laptop with an Apple M1 Pro CPU and 32B RAM. The M1 laptop does
not have a separate GPU installed other than the CPU’s built-in GPU. Therefore, the GPU
acceleration using the built-in GPU is called MPS (metal performance shader) and has quite
usable performance.

4.1.1. Android App Imaging

APK File Pre-processing: Since the APK file is in the form of a ZIP compressed file,
if it is converted to an image without pre-processing, there is a possibility that important
features for ML model learning will be compressed and lost. In this paper, the following
three files are extracted from the APK file and used.

• AndroidManifest.xml: This file is the first file read when running the application. It
stores application-essential information, such as components, hardware capabilities,
and user rights.

• classes.dex: Dalvik opcodes compiled to be executable on the Dalvik virtual machine.
• resources.arsc: These are xml files compiled into binaries that are necessary for

APK execution.

Stream Order: A CNN or MLP (multi-layer perception) network architecture is com-
monly used to apply deep learning to non-sequential data. Since this architecture is usually
applied to training data in the form of images, we need to convert the Android app sample
in the form of an APK to an image. We convert the APK file into an image file using
the stream order (SO) method as follows. We concatenate the three files extracted in the
APK file pre-processing process. Let S be the byte size of the merged file; S determines
the size of the generated image in the form of a square. Moreover, 2 bytes (16 bits) are
sequentially read from the merged file, and every 2 bytes read is converted into a number
from 0 to 255, which is mapped to a grayscale image color. A total of S/2 readings are
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performed. Specifically, the size of an image is given as b
√

S/2c × b
√

S/2c. So, the coordi-
nates of the vertices of the square-shaped Android app image are (0, 0), (0, b

√
S/2c − 1),

(b
√

S/2c − 1, 0), (b
√

S/2c − 1, b
√

S/2c − 1). For example, if the read value is 0x00, 0xFF,
0x00, . . . the image coordinates (0, 0), (0, 1), (0, 2), . . . must be white (0x00) , black (0xFF),
white (0x00), . . . , respectively. Since the size of S is different for each Android app, the
Android app image size is also different. Therefore, the final image is re-sized to 256 × 256.
Figure 2 is a sample Android app image created using an APK file.

Figure 2. This is the result of converting APK files of five classes (benign and four malignant classes;
adware, banking, riskware, and sms) constituting the CICMaldroid dataset into image files using
Stream Order (SO). A single image was randomly selected for each class. If an image is chosen
from the entire dataset, it is almost impossible to visually identify which class the selected image
belongs to.

4.1.2. Separation of Training/Testing Data

For fair learning and evaluation of the global FL model, 14,000 samples are randomly
selected out of a total of 17,341 Android app samples and used as training data, and the
remaining 3341 samples are used as evaluation data. Here, random selection is performed
for each experiment (FL model learning instance), so the four types of malicious and
non-malicious Android app samples vary in each experiment.

4.1.3. Data Distribution over Edge Entities

The three data distributions (IID, non-IID, and non-IID—imbalanced across edge enti-
ties) in which the FL algorithm operates are mathematically described in Section 3.2. We im-
plement actual data distribution by allocating Android app images to edge entities through
the following sampling process. Note that we now have a total of 14,000 training samples.

• IID: The training samples are shuffled, and then 14, 000/K samples are allocated to
each entity.

• Non-IID: First, we sort the data by label (android app type), divide them into
200 shards at a size of 70, and allocate 200/K shards to each K edge entity. As a
result, most edge entities only have training samples for two classes of applications,
this is a so-called pathological non-IID partition of the data. Note that IID and non-IID
partitions are balanced.

• Non-IID and imbalanced: It is similar to non-IID. First, we sort the data by label and
divide them, e.g., into 1400 shards at a size of 10. We allocate at least one shard and a
maximum of Shardmax shards to each K edge entity. Similar to non-IID, it constitutes a
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pathological non-IID partition of data, and there are many allocation methods that
lead to sufficient imbalance.

4.2. FL Training Setup
4.2.1. Deep Learning Networks

Our experiments are conducted using convolutional neural network (CNN) architec-
ture, which is simple and widely used.

• Convolution L1: 3 × 2 convolution with a 5 × 5 kernel, a stride of 1, ReLU activation.
• Max pooling L1: followed by convolution layer 1, with a 2 × 2 kernel and a stride of 2.
• Convolution L2: 6 × 16 convolution with a 5 × 5 kernel, a stride of 1, ReLU activation.
• Max pooling L2: followed by convolution layer 2, the same with max pooling layer 1.
• Fully connected L1: 59,536 input features are connected fully to 120 out features.
• Fully connected L2: 120 input features are connected fully to 84 out features.
• Fully connected L3: 120 input features are connected fully to 5 out features.
• Softmax: performing classification.

The CNN is a structure with two convolution layers connected to a 2 × 2 max pool-
ing layer and three fully connected layers connected after the second max pooling layer.
The last fully connected layer finally classifies images into five classes of Android apps
using Softmax.

4.2.2. FL Hyperparameters

Parameters were fine-tuned to provide optimal performance for the FL model on the
CICMaldroid dataset and deep neural networks used in all experiments. Table 1 shows the
federation hyperparameter values finally used in our experiments. We only control C and
E. Here, the local batch size, B, is also a hyperparameter related to the training amount of
edge entities (it increases when B decreases or E increases). In our experiments, the dataset
is distributed among 100 edge entities; thus, the data that each edge entity can hold are
restrictive. Experiments with B as a controlling variable are also restrictive. Therefore, we
do not control B in our experiment, and are directly related to the federated optimization to
explore their impacts on the performance of the trained FL model. Here, C means the ratio
of edge entities participating in global training, i.e., the availability of edge entities, and E
means the number of local training rounds, i.e., the degree of local training at edge entities.
Moreover, we validated learning rate values over a sufficiently wide range and at a fine
granular level. It is impossible to prove that a learning rate value of 0.01 is mathematically
optimal, but experiments have shown that it converges quickly to the optimal point in
most cases. Therefore, we use this value regardless of changes in C and E throughout the
remainder of our experiments.

Table 1. Parameters used in our experiments.

Notation Values Meaning Remarks

C 0.1, 0.2∼1 The fraction of edge entities
E 10, 20, 30 The number of local epochs
K 100 Number of users Not controlled
B 10 Local batch size Not controlled

N/A 0.01 learning rate Not controlled
N/A 0.5 SGD momentum Not controlled

5. Experimental Results
5.1. Feasibility of Applying FL

Our initial experiments aim to show the feasibility of our FL-based distributed mali-
cious Android app detection method. Figure 3 shows the performance of deep learning
models trained using CNN. In this experiment, the FL hyperparameter values were set to
C = 0.1, B = 10, and E = 10. We observed that the three schemes converged almost the
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maximum performance after a relatively small number of training rounds, except for the
most challenging training, with non-IID data distribution. This means that with FL, one
can obtain a distributed trained model with comparable performance to a model trained
on a central data server.
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Figure 3. The figure shows the test accuracy of four schemes, i.e., the centralized CNN-based
deep learning model (baseline) and the CNN-based deep learning model with FL on three data
distributions—IID, non-IID, and non-IID imbalanced. Training rounds ran up to 1000 epochs. The
horizontal gray dotted line indicates 0.91%.

With pathologically partitioned non-IID data, the FL training process did not converge
to target accuracy within one thousand rounds of training. Applying the sampling process
described in Section 4.1.3 to form non-IID, assigning training data to edge entities, each
edge entity is usually assigned two classes of Android app data. This is an attempt to train
an entire deep neural network with the local training of edge entities that even observe a
(biased) part of the overall data. It never converges to the global optima. We conjecture that,
in the modeling process, the gradient descent cannot easily deviate from the local optima.

This claim is also supported by Figure 4, a graph of the change in training loss
according to training rounds. The training losses for the non-IID data are unexpectedly
close to the baseline, meaning that the FL trainer is already performing the best. Since
the baseline scheme uses the entire data to train the ML model, it is surprising that the
training loss graph comes closest to training with Non-IID using partial and biased data.
Considering the characteristics of the SGD optimizer, we conjecture that the optimal
point (although this may not be global optimal) search by gradient descent is effectively
performed in a given convex data plane.

Interestingly, when the data are non-IID and disproportionately distributed among
the edge entities, the test accuracy curve of the FL model becomes significantly close to
that of FL under IID data distribution. This can be explained as follows; as described in
the Section 4.1.3, if different amounts of non-IID data are allocated to each edge entity
(of course, the edge entity to which each data shard is allocated is selected uniformly at
random), some edge entities are allocated shards to contain all Android app class labels
because the number of shards far exceeds the number of edge entities. In this case, it can
be understood that the degree of non-IID [13] decreased while grouping non-IID data
chunks, and this phenomenon was also reported in [12]. In federated optimization, the
global loss is given as a weighted sum of local losses. During sampling, some edge entities
are allocated more data shards, resulting in a lower degree of non-IID. These edge entities
are likely to dominate other edge entities due to their relatively higher weight during the
aggregation process.
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Figure 4. The figure shows the training loss of four schemes, i.e., the centralized CNN-based
deep learning model (baseline) and the CNN-based deep learning model with FL on three data
distributions—IID, non-IID, and non-IID imbalanced. Training rounds ran up to 1000 epochs.

The encouraging fact here is that the quantitatively imbalanced non-IID data distribu-
tion is most mimic to the real mobile environment. In cellular networks, the distribution of
local data of a specific user is different from that of global data because it is based on the
user’s use of a mobile device. In addition, some heavier users use certain services or apps
far more than others depending on activity categories such as user interests or occupations,
leading to non-IID and an imbalance of local training data between edge entities. Our ex-
periments show that FL using FedAvg works fairly well for most realistic data distributions.
In conclusion, we show that FL is a very feasible solution for detecting malignant Android apps in a
distributed fashion.

5.2. Efficiency Gains through Distributed Computing

A second discussion of the experimental results involves the efficiency gains that can
be achieved by distributing the computational load from the central entity to the edge
entity. We investigated the number of training epochs required to achieve the target test
accuracy, i.e., 0.91 for CNN. Moreover, we compute the wall-clock time required to achieve
the above accuracy goal by considering the parallelism of local training proportional to
the number of edge entities participating in global training and the communication time
required for parameter updates. We assume a communication bandwidth of 54 Mbps,
which is a fairly conservative value considering that the current cellular network has gone
beyond the popularization of 5G and is approaching 6G.

Table 2 shows the results. Overall, training deep learning models in parallel increases
efficiency; efficiency gains range from 1.5× to 4.27×. In FL, even if more edge entities
participate in global training, it is predicted that the wall-clock time required for local
training will not be significantly affected due to the parallelism of edge entities. Our
experimental results, however, show that this is not always the case.

The number of parameters of the simple CNN in the experiment is 7.1M (See
Section 4.2.1), and under the above-mentioned assumptions, updating the parameters
of one edge entity takes approximately 8.09 s. Moreover, the central entity must receive
updates from all participating edge entities in every round of aggregation. In fact, in
experiments with C = 0.1 and E = 10, the local training time and parameter update of one
edge entity take 10.59 s and 8.09 s, respectively. Here, since parameter update is not subject
to parallel processing, communication overhead increases as more edge entities participate
or central/edge entities have better computing power. In the same vein, the reduction in
the number of training rounds to reach the target test accuracy is not significantly affected
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by an increase in C, thus reducing the efficiency gain (see Table 2, when C = 0.3 speed-ups
is less than 1).

Table 2. This table presents the number of training rounds, training time, and speed-ups compared to
the baseline for the four schemes covered in this paper to achieve a target test accuracy of 0.91. Among
the four schemes, FL on non-IID data never achieves a test accuracy of 0.91 even for 1000 rounds and
converges around 0.87, setting the target test accuracy for this method to be 0.87.

Scheme C E
# of

Training
Round

Training Time Speed-Ups

Baseline (FedSGD) - - 84 9 h 6 m 20.81 s -

FL (IID)

0.1
10

203 5 h 9 m 32.50 s 1.76×
0.2 131 5 h 53 m 16.95 s 1.54×
0.3 150 10 h 6 m 46.96 s 0.90×

0.1
10 203 5 h 9 m 32.50 s 1.76×
20 133 2 h 59 m 20.28 s 3.04×
30 95 2 h 8 m 05.92 s 4.27×

FL (Non-IID)

0.1
10

253 5 h 58 m 12.25 s 1.52×
0.2 189 8 h 29 m 41.85 s 1.07×
0.3 144 9 h 42 m 30.69 s 0.93×

0.1
10 253 5 h 58 m 12.25 s 1.52×
20 195 4 h 22 m 56.35 s 2.08×
30 119 2 h 40 m 27.62 s 3.40×

FL (Non-IID-imbalanced)

0.1
10

146 3 h 16 m 52.04 s 2.77×
0.2 129 5 h 47 m 53.33 s 1.57×
0.3 189 12 h 44 m 32.78 s 0.71×

0.1
10 146 3 h 16 m 52.04 s 2.77×
20 124 2 h 47 m 12.14 s 3.27×
30 151 3 h 23 m 36.56 s 2.68×

In summary, a reduction in training rounds in the FL setting usually leads to an increase
in efficiency. Given FL’s strengths in terms of privacy, it is quite attractive for smartphone
users to unite (just install the app) to protect their privacy while detecting rogue Android
apps installed on their phones. Still, the communication overhead due to global parameter
updates has a significant impact on efficiency, which will be explored in more detail in the
next subsection.

5.3. Impact of Hyperparameters

The availability of edge entities: In FL, as the availability of edge entities increases,
the number of edge entities selected for the local training process increases. Physically,
more smartphone users have increased their voluntary participation in the collaborative
detection of malicious Android apps. Figure 5a,b show the results. As also observed in
Section 5.2, an increase in C did not have a clear effect on the number of training rounds
to reach the target test accuracy for all three data distributions used in the experiment. In
addition, the (wall clock) time required for local training is independent of the number of
edge entities participating in training, but the parameter update time is at least proportional
to the number of entities.

Increasing local training: In FL, we can expect better fitness of the local model to
the local data by increasing the number of training rounds on edge entities. If training is
excessive compared to the data and model structure, you may run into the local overfitting
problem. In our experiment, C was fixed at 0.1, and based on the fact that the network
model converged to the target before and after about 200 training rounds, the experiment
was conducted while changing the E value to 10, 20, and 30.
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Figure 5. This figure shows the test accuracy and training loss of FL as the edge entity’s availability
(C) varies under three different data distributions.

Figure 6a,b show the results. As in the experiment on the change in C, it was difficult
to find out the specific effect of the increase in E on the number of training rounds. Since
many edge entities are involved in global training, we conjecture that the fitness of each
model to the local data is neutralized during aggregation. This claim is also supported by
Figures 5b and 6b, which will be discussed in detail in the following two paragraphs.
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Figure 6. This figure shows the test accuracy and training loss of FL as the number of local training
rounds (E) varies under three different data distributions.

The mitigation of fluctuation: We observed significant fluctuations in both the test
accuracy (Figure 3) and training loss (Figure 4) graphs. This oscillation is more evident in
the loss graph; See Figures 5b and 6b. In general, there are two reasons for severe oscillation
in the test accuracy and training loss curves during centralized training. (i) If the local
batch size (B) is too small, (ii) and if the sizes of the dataset and the training network are
too different.

In FL, in addition to the factors mentioned above, the difference in fitness to the local
model is a major factor in oscillation in the aggregation process. As the local models trained
under non-IID data are predicted to be the most dissimilar, and the corresponding evidence
is easy to be observed in Figures 5b and 6b (schemes under non-IID data are plotted as blue
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lines.). Encouragingly, increasing local training (whether through increasing C or E) reduces
the oscillation. Even under non-IID data distribution, the data are not completely different
between the edge entities, which means that the convergence performance degradation
due to non-IID data can be mitigated by increasing the local training intensity.

We could not observe a clear correlation between changes in FL hyperparameters and the
number of update rounds in the test accuracy and training loss curves. Training more locally, such
as increased availability of edge entities or more computations on edge entities, does not directly affect
efficiency gains, but the overhead for communication of update parameters does have a relatively
large effect. On the other hand, in Section 5.2, we observed speed-ups from a minimum
of 1.5× to a maximum of 4.27× for most FL settings. However, on the graph shown in
Figures 5a and 6a, this tendency towards speedup cannot be asserted. We conjecture that
the oscillation observed in FL’s global training process, i.e., parameter aggregation, is the
basis for this phenomenon. When the deep learning model is trained to a certain extent,
the training can be ended probabilistically by oscillation. However, this is not a completely
random point in time, it is a point that is close to the target accuracy. This is why there
are some state-of-the-art studies on reducing the communication overhead for parameter
updates [14,15].

6. Discussion
6.1. Is 91% of Test Accuracy Sufficient?

Recently, AI-based technologies, such as deep learning, are actively underway in the
information security field. Still, commercial vendors employ a rule-based detection method
for their information security products, such as intrusion prevention systems (IPSes), web
application firewalls (WAFs), and virus scanners. This is because the detection of malicious
codes usually requires a conservative approach. For example, suppose the precision of the
AI-based malware classification algorithm is 0.95. This is a fairly high number, but it is
ambiguous to use as a final step in malware detection. If this method is used as the final
stage of malware detection, even under ideal circumstances, 5% of malware bypasses this
method and is not completely free from political and economic damage.

Ironically, this article is not an argument that AI-powered technologies should not be
used. This is because the rule-based detection method in the final stage can be applied to
data or network traffic whose volume has been drastically reduced after being primarily
filtered through AI-based technology. It is labor-intensive to analyze the S/W that is mass-
produced every day, and it is not even necessary to do so. This is an example of the effective
use of AI technology in consideration of the domain characteristics of the information
security field. Although the purpose of this study is not to optimize the performance of
the FL technique, considering the accuracy of 91%, it is inappropriate to be used alone,
and it should be cooperated with the strict malware detection technique in the final stage,
possibly installed in clients.

6.2. Countermeasures against Adversarial Attack

In FL, model training performed on a central cloud data server is distributed to clients,
making them more vulnerable to adversarial attacks by extending the target of adversarial
attacks on clients. One known countermeasure against adversarial attacks is to train
deep learning models based on training data containing artificially generated adversarial
examples (AEs), which is called adversarial training. However, creating an effective AE on
the client side renders a new challenge in FL, as the client’s computing power is limited
and global data visibility is not secured. This ultimately leads to the problem of efficient
distribution of computing and is being actively studied [36].

7. Conclusions

Our experiments show that FedAvg can be adopted to make federated learning fea-
sible and efficient while preserving the client’s privacy. The impacts of client availability,
local computing costs, and communication overhead between the center and local were
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investigated in depth. While federated learning offers many practical privacy advantages
in real mobile networks, problems such as the algorithmic distribution of computational
resources for adversarial training or differential computations are extended to FL-based
distributed environments, opening up interesting and worthy future research directions.
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