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Abstract: Monitoring tire condition plays a deterministic role in the overall safety and economy of
an automobile. The tire condition monitoring system (TCMS) alerts the driver of the vehicle if the
inflation pressure of a particular tire decreases below a specific value. Owing to the high costs involved
in realizing this system, most vehicles do not feature this technology as a standard. With highly
robust and accurate sensors making their way into an increasing number of applications, obtaining
signals of varied types (especially vibration signals) is becoming easier and more modularized. In
addition, feature-based machine learning techniques that enable accurate responses to varied input
conditions have sought greater scientific attention. However, deep learning is gradually finding
greater applications pertaining to condition monitoring. One approach of deep learning is presented
in this paper, which instantaneously monitors the vehicle tire condition. For this purpose, vibration
signals were obtained through the rotation of the tire under different inflation pressure conditions
using a low-cost microelectromechanical system (MEMS) accelerometer.

Keywords: tire condition monitoring system; machine learning; deep learning; pretrained networks;
radar plots; image classification

1. Introduction

Transportation technologies and channels are global economic arteries that maintain
a supply–demand balance of consumer goods, bridge geographical barriers to support
point-to-point movements and accelerate infrastructural progress to improve quality of
living. The essence of locomotion lies in the ability of a vehicle to move. The develop-
ment of pneumatic tires was a revolutionary step forward in vehicular mobility. Constant
improvements in tire thread design, weight reduction and manufacturing processes have
resulted in higher consumer demand and, therefore, increased dividends for tire manufac-
turers. Fuel efficiency, ride quality and, most importantly, occupant safety are important
factors to be considered from two perspectives—a designer point-of-view and a consumer
perspective. Tires play a crucial role in guaranteeing driver and passenger safety under
adverse driving conditions. Therefore, priority must be given to robust tire design and
manufacturing. In addition, maintenance of the tire is equally critical to ensure long life of
usage, sustained fuel economy and persistent occupant safety in the vehicle.

Vehicle tires can run for thousands of kilometers before requiring replacement. How-
ever, improper pressurizing of tires below or beyond rated pressures and heavy-footed
driving can accelerate wear and tear, drastically reducing product lifetime. This affects
fuel economy through increased rolling resistance. This, in turn, leads to a cascade of
consequences, especially inducing a negative impact on the environment due to more fre-
quent refueling and premature disposal of tire sets, which accumulate and stagnate. Tires
pose a significant hazard to the environment due to the non-biodegradability of their base
materials and chemical additives. With the high initial cost for a set of fresh automobile tires
and fuel costs on the rise, consumers tend to prefer options with appropriate quality and
cost blend when in the market for new or used automobiles and auto components. These
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factors evidently substantiate the need to enhance the longevity of tires by monitoring
the current tire condition for preventive and predictive maintenance through tire pressure
monitoring systems (TPMSs). The currently available TPMSs include:

1. Indirect TPMS (iTPMS)—These systems rely on pre-existent sensors as part of the
electronic stability control (ESC) and antilock braking systems (ABSs) of the vehicle
and advanced spectral analysis techniques, which relay tire pressure level based on
current wheel diameter and wheel angular velocity.

2. Direct TPMS—Direct TPMS utilizes exclusive hardware, such as pressure sensors
mounted on the tire-valve stem or wheel hub of vehicles, which then convey pressure
information to the computer control unit of the vehicle.

Development in the field of TPMS is gradually gaining momentum. In 2017,
Silalahi et al. examined the design of a TPMS using a pressure sensor, microcontroller and
Bluetooth communication protocol [1]. This was based on the original approach adopted
by Hasan et al., encompassing a pressure sensor, signal conditioning unit, switch, RF
transmitter microcontroller and long-life battery [2]. In 2021, Lee et al. investigated the
development and implementation of an indirect TPMS based on adaptive extended Kalman
filtering of vehicle suspension systems [3]. Traditional machine learning requires explicit
feature selection and extraction processes to be performed before feature classification is
carried out. This proves to be a complicated task to handle with the increase in complexity
of the features to be recognized and classified. On the other hand, deep neural network
(DNN) learning strategies enable the machine to learn without explicitly extracting features
from image formats of data plots corresponding to mappable features. With the availability
of specialized sensors and computer systems that possess signal capture, sampling and
augmentation techniques, raw input data can be extracted from the experimental setup
with relative ease.

The deep neural network (DNN) strategy encompasses hierarchically stacked neural
layers that obtain input information from the user. With the raw data as input, the deep
learning network understands the structural makeup of a complex data set, enabling it
to ‘learn’ the most significant set of features through several layers. The term ‘deep’ is
used to suggest that the information received as input in the form of raw data is not just
passed on to a single successive layer for further processing but is rather allowed to per-
colate through numerous levels of layered procedures. In effect, deep learning has the
potential to present disruptive benefits over traditional machine learning and statistical
approaches in fault diagnosis and condition monitoring. The application of DNN in the
condition monitoring and fault diagnosis domain has remained in its premature stages
for a considerable time. However, increasing efforts are being made to deploy neural
network advantages to resolve a wider variety of challenges. A deep statistical feature
learning approach for diagnosing bearing and gearbox conditions based on statistical
features extracted in the frequency, time and time-frequency domains was proposed by
Li et al. [4]. On the other hand, Shao et al. performed roller-bearing fault detection through
an optimized deep belief network through 18 time domain features [5]. A convolutional
neural network (CNN) was proposed by Chen et al. to diagnose gearbox condition using
signals extracted in the time and frequency domain [6]. In these instances, deep learning
networks were used as conventional alternatives to traditional classifiers, and the complete
potential of a DNN was untapped (as depicted in Figure 1) until at least 2015. With pro-
gressively demanding condition monitoring situations, the feature learning and selection
simplicity of neural networks provided optimal choices for the computerized classification
of fault conditions within short time intervals. Some works related to the use of deep
learning methods in mechanical systems are presented in Table 1.
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Table 1. Implementation reference of deep learning methods in mechanical applications.

Reference Deep Learning Approach Application in Mechanical System

[7] Convolution Neural Networks with Wavelet Transform Motor Bearing

[8] Hierarchical Convolution Neural Network

Roller Bearing[9] Convolution Neural Networks with Wavelet Transform

[10] Deep Belief Network and Spare Autoencoder

[11] Recurrent Neural Network

[12] Stacked Autoencoder
Gear Box

[13] Generative Adversarial Network

[14] Convolution Neural Networks Centrifugal Pump

Roller bearing condition monitoring using DNN with two branches—one branch ac-
counting for feature engineering (pattern recognition and extraction) and the other branch
taking care of the final fault classification [15]—was performed by Guo et al. The convolu-
tional long short-term memory (C-LSTM) approach was employed by Zhao et al. to monitor
the condition of a tool [16]. Xiao et al. performed a study into the adoption of a novel joint
transfer network for unsupervised bearing fault diagnosis from the simulation domain to
the experimental domain [17]. Cai et al. examined a data-driven methodology for fault
diagnosis in a permanent magnet synchronous motor using Bayesian networks [18]. The
intelligence and condensed characteristics of DNN through its feature learning capabil-
ity have earned this network growing recognition and adoption as a largely automated
methodology (as depicted by Figure 1). The use of pretrained networks helps researchers
focus on the core problem to be solved using artificial neural networks rather than the
programmability of the network itself. Pretrained neural networks have found applications
in the field of medicine, more specifically, in ophthalmology for diabetic retinopathy detec-
tion, as examined by Mateen et al. [19]. Nogay et al. researched the detection of epileptic
seizures using a deep learning CNN (pretrained) advocating for transfer learning [20].
Kumari et al. examined the application of a pretrained CNN in forensics for offline signa-
ture detection [21], while Shibli et al. investigated the implementation of pretrained CNN
for artificial intelligent drone-based encrypted machine learning of image extraction [22].
In 2021, Rajadurai et al. examined the detection of cracks in concrete surfaces through deep
learning vision using AlexNet CNN [23], and Sharma et al. evaluated the identification of
vehicles using region-based CNN with an intelligent transportation focus [24].

Convolution neural networks (CNN) can learn complex features from the input im-
age information and, as such, are regarded as robust modus operandi in the domains
of fault diagnosis, natural language processing and object recognition. In the current re-
search, four pretrained networks, namely GoogLeNet [25], VGG-16 [26], AlexNet [27] and
ResNet-50 [28], were evaluated based on their ability to classify graphical counterparts of
tire conditions into one of four possible condition states: normal, idle, high and puncture.
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These four conditions of tire pressure were classified into Normal, Idle, High and Puncture,
respectively. Tire condition classification is based on the vibration signals obtained for each
condition of the running tire, which is subsequently translated into radar plots, which serve
as the basis for comparison and classification. Radar plots can be beneficial in cases when
the comparison of data trends is to be studied, making the process of feature extraction
even more intuitive. In this study, we try to verify whether DNN could effectively perform
condition monitoring of air-filled pneumatic tires and present better classification perfor-
mance compared to traditional feature-based statistical machine learning methods. The
effectiveness of the pre-trained networks was examined as a function of their respective
classification accuracies by varying hyperparameters such as batch size, train-test split ratio,
initial learning rate, solver type and epochs during the learning phase of each network.
The approach to the experiment is summarized below:

Technical Contributions of this Study:

• Figure 2 presents the overall process of this experimental study. Vibration data was
acquired using a low-cost MEMS accelerometer for each tire condition of an air-filled
pneumatic tire balanced using two 20 g weights. This vibration data was converted
into radar plots and resized into sizes compatible with each of the four pretrained
networks considered for this experiment—AlexNet, GoogLeNet, ResNet-50 and VGG-
16—for the classification of current tire state.

• Once the radar plots corresponding to each tire condition were obtained, the plots
were input to the pretrained networks under examination in image format. The
hyperparameters of each of the pretrained networks were varied sequentially, namely,
the training–testing split ratio value, solver algorithm, initial learning rate value and
the value of batch size.

• Pretrained networks classified input images into one of four possible tire conditions
—high, normal, low and puncture. After the classification results of each network were
obtained, the configuration and hyperparameter values of the network exhibiting the
highest accuracy under specific hyperparameter settings were tabulated, and the most
optimal DNN pretrained network was presented as the best choice for implementation
in tire condition monitoring using the transfer learning approach. In this experiment,
it was found that ResNet-50 exhibited the highest overall classification accuracy of
93.80%, with a train–test split of 0.80, initial learning rate of 0.0001 and batch size of
10, using the RMSPROP solver.

Novelty of the study:

• The experimental approach presented in this paper visualizes vibration data in the
form of easily interpretable radar plots in image format, generating user-friendly and
flexible word processing software. This approach is in contrast to the techniques of im-
age generation using fast Fourier transforms (FFT), Hilbert Huang transform, discrete
orthonormal Stockwell transform and empirical mode decomposition methods, which
require sound computer and mathematical knowledge on the part of the researcher to
be executed correctly.

• The current study makes use of a low-cost MEMS accelerometer, which is readily avail-
able and produces accuracies similar to that yielded by more expensive accelerometers
for large data sets. This has been achieved through the classification robustness of
pretrained neural networks.

• Additionally, this experimental study involves variations of hyperparameters for each
of the pretrained networks being studied to obtain the most optimal configuration for
each network operating on the same data set. This facilitates the highest possible clas-
sification accuracy by each pretrained network when producing the required results.
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2. Salient Features of the Experiment Setup

This section presents a detailed description of the experiment setup and procedure
employed to perform tire condition monitoring using pretrained neural networks.

2.1. Experimental Setup

For the purposes of this experiment, a vehicle with front-wheel drive was selected,
and the rear left wheel axis of the vehicle’s air-filled pneumatic tire was used to extract
vertical vibration signals. On the rear left wheel hub, a waterproof sealant was applied on
a tri-axial MEMS accelerometer (MMA7361L with a resonant frequency of 6 kHz, frequency
range of 1 to 400 Hz, and sensitivity of 206 mV/g). In order to measure vertical vibrations,
this study focuses on the Y-axis of the accelerometer data. Figure 3 represents the MEMS
accelerometer used for obtaining vibration data for this study.

2.2. Method of Data Acquisition

A data acquisition device (DAQ)—suitable to turn analog signals into digital signals
and subsequent signal conditioning—was connected to the output of the accelerometer. The
NI USB-6001 featuring a resolution of 14 bits, 12 input channels and a maximum sampling
rate of 20 kS/s, was selected for data acquisition in this study. The NI LabVIEW software
interface was used to link the DAQ output to the computer system. In principle, analog
vibrations from the accelerometer were input into the DAQ system, which are subsequently
converted into digital signal outputs. As an added precaution against external electronic
interference, data from the accelerometer were sent to the DAQ through a shield wire. Using
NI Lab VIEW software, the DAQ output was connected to the monitoring computer system.
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2.3. Experimental Procedure

In the current experiment, under normal driving conditions, running speed limits
ranged between 10 kmph and 100 kmph. The vibration signals to be analyzed were obtained
as per the following specifications:

• Sampling Frequency: The lowest and highest tire rotation speeds used to collect data
were 10 kmph and 100 kmph, respectively. For the 165/80 radial pneumatic air-filled
tire examined in this study, 30.1 cm was observed to be the tire radius (R). With respect
to the current experimental study, it was observed that the maximum frequency of
signals obtained from the accelerometer stood at 14.73 Hz. Along similar lines, the
minimum frequency was measured to be approximately 1.47 Hz. A sampling rate of
1 kHz was suggested and selected for this investigation since the Nyquist Sampling
Theorem states that a frequency rate of more than or equal to 29.46 Hz should be
regarded as the minimum sampling rate [14].

• Sample length: Consistency of the available data plays a crucial part in the balancing
of the computational load in this study covering four tire conditions. Thus, an effective
sample length of 5000 was chosen.

The wheel considered for this experiment was initially balanced by adding 40 g
weights to its rim. The pneumatic tire of the wheel was then inflated to the rated pressure
value of 31 psi with air. The term “Normal” was used to describe the vibrational signals
obtained under this circumstance. Then, 40 psi pressure was induced in the tire, and the
obtained vibrational signals were labeled as being in a “High” state. The tire was deflated
from 40 psi to 19 psi in order to achieve the “Puncture” condition. Since signals attained at
speeds less than 10 kmph did not possess enough amplitude, they were categorized under
‘Idle’. A total of 60 data points for each signal were extracted and converted into radar plots
corresponding to each of the 240 signals. Here, 1200 samples altogether were gathered
for various balance circumstances, while the frequency of sampling for each sample with
5000 data points was taken at 1 kHz. Figure 1 presents an overview of the experimental
workflow from vibration signal measurement to fault classification.

The tire condition data were obtained from a data acquisition system (DAQ) in the
form of comma separated variable (CSV) files comprising amplitude–time data in numeric
form. The numeric data in each instance of the target classes were subsequently visual-
ized into radar graphs through the execution of a macro on Microsoft Excel over Visual
Basic. The radar plots were then natively stored and resized either into 224 × 224 or
227 × 227 pixels using a resizing algorithm on MATLAB based on the input requirements
of each of the pretrained networks under study. These resized images were then fed as
input to the pretrained networks for training and classification.
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3. Convolutional Neural Networks as a Deep Learning Strategy

Convolution neural networks are a deep learning approach that function on an auto-
matic feature learning algorithm, which establishes a connection between fed images and
features in each of these images based on the biases and weights created and constituted
by the CNN. In feature learning and recognition processing of a CNN comprising multi-
ple hidden layers, weights are a measure of signal strength passed between layers of the
CNN, while biases are constants that offset passed signal values through arbitrary amounts
before passing onto the next layer for computational progress. Ultimately, it is the nature
and discreetness of the learned features during convolutions that define the classification
ability of the pretrained network advocating the CNN approach for purposes of image
classification. From the schematic provided in Figure 4, it is evident that a general CNN
architecture generally comprises convolution, pooling and fully connected layers, which
are sequentially stacked one after the other. The functionality of a CNN lies in the specific
actions that occur in each of the constituting layers, as mentioned below:

1. Image pixel values representing the size of the image are stored by an input layer,
which then feeds the same into the convolution layer.

2. The convolution layer is constituted by various weights and biases among the neurons
stacked next to the input layer of the CNN. To sustain nonlinearity in the problem, we
decided to use rectified linear units (ReLU) as activation functions.

3. The pooling layer or down-sampling layer is the layer next to the convolution layer.
To achieve spatial dimensionality and decrease computing complexity, features of
higher dimensions are sampled down.

4. The CNN architecture is completed by fully connected layers that yield the results
of classification according to the problem being solved. Extracted image features in
the data matrix form are flattened. Vectors are obtained from these matrices using the
fully connected layers of the CNN.
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In effect, CNN transforms the initial input fed into the input layer and quantifies it
into class scores that assist the purposes of regression and general classification through
downsampling and convolution. This reinforces the fact that determining the overall
CNN architecture might not be sufficient to understand the complete functionality of this
subset of deep learning. A description of the layers and layer-interconnectivity constituting
a general CNN architecture is provided below in Figure 4.
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3.1. Convolutional Layer

In any network adopting the CNN approach, the process of learning is actuated by
the convolution layer. Parameters assigned to layers determine the effective state of several
learnable kernels, also called filters, which spread across a wide input range with lower
spatial dimensionality at the same time. For each picture the filter receives, activation
maps of two dimensions are created during convolution. Every data point that makes up
an input picture and goes through the kernel in the convolution layer is thereby converted
into the scalar product of weights and volume. The pretrained network being considered is
thereafter triggered to acquire available significant features in space through values created
by each filter. The weighted sum of the kernel and that of neighboring pixels are calculated
and replaced through the input vector over which the midpoint of the kernel is posi-
tioned. The complexity of computation can be further reduced by convolution layers using
an optimized choice of hyperparameters. Three hyperparameters have a direct and tangible
influence on the performance optimization of convolution layers. These include:

• Depth—the total number of filters in the convolution layer.
• Stride—the movement of filters in a particular direction in the convolution layer.
• Zero-Padding—the addition or ‘padding’ using zeros around an input image border.

3.2. Pooling Layer

In deep learning approaches, especially in the context of CNN applications, dimen-
sionality reduction of data can be achieved as a specific objective of the pooling layer to
eventually reduce the overall computational complexity. This is carried out by shrinking
the effective number of computational parameters by acting on every value constituting
the input activation map. This layer realizes the dimensionality scaling process through
the “MAX” functionality. Depending on their functionality, pooling layers can be classi-
fied as “MAX” or “AVERAGE” pooling, with “MAX” pooling being widely adopted as
a pooling methodology due to its efficient performance on different types of data. The
common setting for the filter size and stride length is 22, which permits pooling layer
growth throughout the whole input spatial dimensions.

3.3. Fully Connected Layer

Fully connected layers constitute the ultimate computational layers of convolutional
neural networks. As the outputs of convolution and pooling layers of CNN (which serve
as inputs to the fully connected layer) are generally in matrix form, they must be flattened
before being included in the fully connected layer. For this purpose, fully connected
activation functions such as sigmoid or softmax are adopted to carry out classification for
the given input data. This architecture is an effective approach that augments traditional
fault diagnosis methodologies by automating originally redundant intermittent processes in
the process of experimentation and subsequent result estimation, owing to the classification
and feature selection potential of DNN.

4. Experimental Preprocessing and Pre-Trained Network Analysis

Vibration signals acquired for the four different tire conditions of the pneumatic tire
equipped on the test vehicle were stored in the form of radar plots as images. A radar plot
corresponding to vibration signals measured under normal tire conditions is presented in
Figure 5. This was followed by resizing and preprocessing the acquired images into size
batches of either 224 × 224 pixels or 227 × 227 pixels. In this research, the networks trained
on ImageNet’s initial weights were restored through the transfer learning approach. At
the same time, to deploy these pretrained networks to handle a user-customized data set,
additional layers in line with the number of user-defined classes replaced the pre-existing
output layers. A comparative analysis of the structural makeup of the four different
pretrained networks employed in this study is presented in Table 2.
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Table 2. Characteristics of networks (pretrained) that implement transfer learning.

Network Name Number of Layers Learnable Parameters (in Millions) Image Input Size (in Pixels)

VGG-16 16 137.00 224 × 224

GoogLeNet 22 7.10 224 × 224

AlexNet 8 60.00 227 × 227

ResNet-50 50 25.70 224 × 224

4.1. Data Set Constitution and Data Preprocessing

In the current scope of the study, data sets of images comprising tire conditions were
made from the vibration signals captured. The four test circumstances, idle, high, puncture
and normal, comprised 240 images (with 60 images per class—Idle, High, Puncture and
Normal)—essentially, vibrational plots in radial graph form created based on the acquired
vibration signal data. These plots/images were subsequently resized to a pixel size of either
224 × 224 or 227 × 227 as per the acceptable configurations for the pretrained network
adopted for the computation process in this experiment.

4.2. AlexNet Pretrained Network

The AlexNet network, introduced by Alex Krizhevesky in the annual ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), comprises 61 million learnable parameters
and eight layers, over a preset 1.2 million images with 1000 image classes. Images of
size 227 × 227 are accepted as legal entries by this network where the first convolution
layer receives input (contains 96 different 11 × 11-pixel filters) that attempt to normalize,
max pool and convolve it into 55 × 55 pixels. The second convolution layer accepts the
output of the first convolution layer. This second layer is marked by 256 receptive filters,
then a layer with a maximum pool size of 3 × 3 pixels. It might be useful to note that
rectified linear units (ReLU) are utilized as the roles of activation in each layer to address
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non-linear conditions. Subsequently, the pixel size of the output image is reduced to
27 × 27 pixels and, upon passing through the third, fourth and fifth convolution layers,
is further reduced to a size of 13 × 13 pixels. To ensure that model overfitting does
not affect subsequent computations and classification results, a 0.5 ratio dropout layer
is augmented prior to a fully connected layer. It is critical to convert spatially intensive
matrices into flattened vectorial forms, which are carried out by two fully connected layers
stacked on one another, with 4096 learnable parameters in all. Finally, the classification for
the considered problem statement is eventuated through means of an output layer with
a softmax activation function in the architecture.

4.3. VGG-16—Visual Geometry Group-16 Network

In the annual ILSVRC 2014, Karen Simonyan and Andrew Zisserman developed
VGG-16, also known as Visual Geometry Group-16 or Oxford Net, which was subsequently
hailed as the best-performing network. VGG-16 included a classification layer, three fully
connected layers, five max-pooling layers, and 13 convolution layers. The convolution
layers were arranged in an image-classification-centric pattern. To further understand
the functioning of the VGG-16 model, two learnable parameters termed “A”, and “D” of
3 × 3 filter size can be considered. Naturally, the value of stride coupled with the size value
of 3 × 3 pixels can collectively and even individually impact the nature of a convolution
layer image output. To prevent model overfitting, each convolution layer has a ReLU
activation function enhanced by a dropout ratio of 0.5 (added before the fully connected
layer). When an image traverses by means of the convolution layer, the filter is forced to
relocate the “x” pixel image whenever a mathematical operation is actuated. This occurs
such that the convolution operation produces an output image “z”. The functionality of
a convolution operation can be mathematically condensed and interpreted through the
medium of the following equation:

z = F(Ax + D)

Max pooling assists in the deconstruction and resizing of input images to augment the
extraction of high-importance features with optimized memory utilization. On a general
note, the initial layers of the VGG-16 architecture are involved in learning simple image
features (for example, edges). On the other hand, the learning of more complex image
features is reserved for the deeper layers of this network.

4.4. GoogLeNet Pretrained Network

The GoogLeNet Pretrained Network architecture was introduced for application in
facial recognition, robotics and adversarial training in the 2014 annual ILSVRC by Szegedy
et al. GoogLeNet comprises nine inception modules. These modules are connected to
four convolutions, five fully connected, three average pooling, three softmax layers and
four max pooling. ReLU is used in fully connected layers as the activation function and
is supplemented by a dropout layer with a ratio of 0.5. The solution of more complex
computer vision problems by GoogLeNet is enabled through Inception modules present in
its architecture, generally by altering the size of the convolution layer filter. This is a major
benefit of this network in general and inception modules, in particular, as this assists in
a drastic reduction in dimensional complexity and computational time. The drawback is
that although GoogLeNet comprises 22 layers and thereby makes it look robust, in practice,
the volume of trainable parameters is relatively lesser, especially when compared with the
structure of the AlexNet pretrained network.

4.5. ResNet-50—Residual Pretrained Network

Developed by He et al., Residual Network (ResNet) was found to be the maximum
efficient and successful neural network in the annual ILSVRC 2015. ResNet-50 featured the
benefits of a high convergence rate and more accurate classifications. This network was
trained on 224 × 224-pixel size color images and applied identity shortcuts characterized
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by the output identity values being mimicked by the input identity values. The ResNet
architecture was constituted by the stacking of residual units. Considering the quantity
of residual units and layers present, ResNet designs are available in different forms. The
ResNet-50 architecture deployed for this experimental study encompasses a fully connected
layer and 49 layers of convolution. While the ResNet architecture also comprises fully
connected layers and convolution pooling—as is the case with other pretrained networks
discussed and, in fact, also resembles the VGG network architecture—it is found that the
ResNet architecture at large is eight times deeper than that of VGG-16, the result of which is
a greater number of learnable features and thence, a greater probability for higher degrees
of classification accuracy.

5. Results and Discussion

The main objective of the present section is to evaluate and comparatively surmise the
performance of four pretrained networks for the condition monitoring of an automotive-
grade pneumatic air-filled tire, namely, VGG-16, GoogLeNet, AlexNet and ResNet-50.
Variations in the training–testing data split ratio, optimizer algorithm, initial learning rate
and batch size were carried out using the personal computer version of MATLAB R2020d
with the aid of computer vision, transfer learning packages and deep learning toolbox
corresponding to each pretrained network. A detailed description of the experimental
observations is presented below.

5.1. Impact of the Test-Train Ratio

The training–testing data split ratio (or train–test split ratio) is the proportion in which
the input data is split into testing and training data sets. The training data set is employed
for training the pretrained network by adding to its pre-existent learning, while testing
and evaluation are conducted using the testing data set of this trained network. For each
of the pre-trained networks, five various training–testing data split ratios were tested
by adjusting the additional hyperparameters, including batch size value (10), the solver
method (SGDM) and initial learning rate value (0.0001). This assists in the identification
of the most optimal train-test split ratio for a given pretrained network being deployed
through uniform evaluation. From Table 3, the dependence of the classification performance
on the value of the train–test split ratio is evident. Statistically, we observed that AlexNet
(Table 3) produced a maximum classification accuracy of 86.10% for a training–testing data
split ratio of 0.70:0.30. VGG-16 and GoogLeNet rendered 91.70% and 94.40% accuracy
for 0.80:0.20 and 0.85:0.15 train–test split ratios, respectively. The ResNet-50 pretrained
network produced a maximum of 89.60% accuracy for the 0.80:0.20 training–testing data
split ratio. Thus, the overall classification accuracies of AlexNet, VGG-16, GoogLeNet and
ResNet-50 stood at 82.84%, 85.96%, 77.98% and 85.20%, respectively, with the maximum
overall accuracy exhibited by the VGG-16 network. It could, therefore, be inferred that
the VGG-16 network produced a higher overall classification accuracy of 85.96% with
a maximum accuracy of 91.70% for the 0.80:0.20 train–test split.

Table 3. Pretrained networks performance summary for different training: testing data split ratios.

Pretrained Model
Classification Accuracy for Different Training: Test Data Ratios (%) Overall Accuracy

(%)0.60:0.40 0.70:0.30 0.75:0.25 0.80:0.20 0.85:0.15

VGG-16 85.40 87.50 81.90 91.70 83.30 85.96

GoogLeNet 83.30 76.10 76.30 62.50 91.70 77.98

AlexNet 84.40 86.10 83.30 77.10 83.30 82.84

ResNet-50 84.40 84.70 86.70 89.60 80.60 85.20
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5.2. Effect of Solvers

Solvers (also referred to as optimizers) are algorithms adopted to minimize the training
loss value for model performance improvement during the training process. For the
purposes of this study, three main solvers, namely, the root mean square propagation
method (RMSprop), adaptive moment estimation method (ADAM) and stochastic gradient
descent method (SGDM), were individually adopted to evaluate the performance of each
model. With respect to the results of Section 5.1, for each of the four pre-trained networks,
the optimum train–test split ratios yielding individually higher classification accuracies
were as follows:

1. AlexNet—a split ratio between training and testing of 0.70:0.30;
2. VGG-16—a split ratio between training and testing of 0.80:0.20;
3. GoogLeNet—a split ratio between training and testing of 0.85:0.15;
4. ResNet-50—a split ratio between training and testing of 0.80:0.20.

The effectiveness of the pretrained networks may be affected by adjusting the optimiz-
ers, and the change of optimizers adopted, as suggested by Table 4. It is evident that the
highest classification accuracy in this comparison was obtained by the ResNet-50 network
at 93.80% for the RMSprop solver, also amounting to the highest overall classification
accuracy of 82.93%. The VGG-16 pretrained network rendered the lowest classification
accuracy of 75% for the ADAM solver (which, in its domain, yielded the higher accuracy
when compared with the results post-adoption of SGDM and RMSprop) and subsequently
the least overall classification accuracy of 63.10%, suggesting that VGG-16 was the worst
performing network in this comparison.

Table 4. Performance of pretrained networks for different solvers.

Pretrained Model
Classification Accuracy for Different Solvers (%) Overall Accuracy

(%)SGDM ADAM RMSPROP

VGG-16 70.80 75.00 43.50 63.10
GoogLeNet 86.10 75.00 83.30 81.47

AlexNet 86.10 72.20 70.10 76.13
ResNet-50 69.60 85.40 93.80 82.93

5.3. Effect of Learning Rate

During every instance that involves an update of the model weight, examining and
monitoring the alterations to the training model in accordance with a predictable error
is a crucial field to analyze. This can prove to be a challenge as the selection of an ideal
learning rate is not directly feasible at face value. This is because a lower value for the
learning rate will severely increase the time for computation, while a greater value of initial
learning rate might result in a higher error and, therefore, improper training of the model.
In this experiment, three initial learning rate values of 0.0001, 0.0003 and 0.001 were set to
examine the classification performance of each network, keeping various hyperparameters,
including solver and train–test ratio, fixed along the following lines.

1. AlexNet—SGDM solver and 0.70:0.20 train-test split ratio;
2. VGG-16—ADAM solver and 0.80:0.20 train-test split ratio;
3. ResNet 50—RMSprop solver and 0.80:0.20 train-test split ratio;
4. GoogLeNet—SGDM solver and 0.85:0.15 train-test split ratio.

Every pretrained network performs differently depending on the learning rate. This is
evident from Table 5. The model has likely learned the features well if the classification
accuracy is higher, indicating that the error value is lower. It is, therefore, suggestive
that for the hyperparameter choices made so far, the highest classification accuracy was
exhibited by ResNet-50 for a learning rate of 0.0001 at 93.80%, rendering the maximum
overall accuracy in this comparison at 86.83%.
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Table 5. Performance variation of pretrained networks with change in initial learning rates.

Pretrained Model
Accuracy of Classification for Various Learning Rates (%) Overall Accuracy

(%)0.0001 0.0003 0.001

VGG-16 72.90 79.20 52.10 68.07

GoogLeNet 50.60 86.00 86.10 74.23

AlexNet 72.20 83.20 83.30 79.57

ResNet-50 93.80 77.10 89.60 86.83

5.4. Impact of Batch Size

The batch size indicates the number of input samples that percolate in batches into
a training work during the model training process. This occurs just before the model weight
upgradation is carried out. In the current study, five batch sizes—8, 10, 16, 24 and 32—were
each coupled with the most optimal choice of hyperparameters obtained so far through the
experimental outcomes discussed in earlier sections by fixing the train–test ratio, optimizer
and learning rate values. This has been depicted as follows:

1. AlexNet—0.70:0.20 train–test split ratio, SGDM solver, initial learning rate of 0.001;
2. VGG-16—0.80:0.20 train–test split ratio, ADAM solver, initial learning rate of 0.0003;
3. GoogLeNet—0.85:0.15 train–test split ratio, SGDM solver, initial learning rate

of 0.0001;
4. ResNet-50—0.80:0.20 train–test split ratio, RMSprop solver, initial learning rate

of 0.0001.

From Table 6, it can be observed that the selection of mini-batch size of 10 rendered
higher classification accuracies for the VGG-16, GoogLeNet and ResNet-50 pretrained
networks, while a batch size of 32 favored higher classification accuracy for the AlexNet
network. Specifically, the highest overall accuracy was exhibited by ResNet-50 at 85.44%,
with a maximum accuracy of 93.80% observed for a mini-batch size of 10. The setting of
an optimal batch size is accompanied by a trade-off between training progress, training
time and the generalization capacity of the pretrained network under study. The larger
the batch size, the lower the training time, which naturally eventuates into an accelerated
and expedited training progress. This is unsafe in the sense that this acceleration in train-
ing progress eventuates at the cost of the capability of the network to generalize, which
decreases as the values of batch sizes are increased. In summary, an optimal batch size of
10 is suggested for the experimentation of the ResNet-50, GoogLeNet and VGG-16 pre-
trained networks, and a batch size of 32 is suggested for the analysis of the performance of
the AlexNet pretrained model.

Table 6. Performance of pretrained networks for different minibatch sizes.

Pretrained Model
Accuracy of Classification for Various Mini-Batch Sizes (%) Overall Accuracy

(%)8 10 16 24 32

VGG-16 66.70 91.70 25.00 70.80 68.80 64.60

GoogLeNet 88.90 91.70 69.44 80.60 86.10 83.35

AlexNet 84.70 83.30 81.90 81.90 87.50 83.86

ResNet-50 79.20 93.80 91.70 75.00 87.50 85.44

5.5. Comparative Examination of Trained Models

The overall effectiveness of the pretrained networks is covered in this section, and
the choice of optimal hyperparameters that yield maximum classification accuracy is
presented. Table 7 prescribes optimal hyperparameter settings that assist the improved
effectiveness of pretrained models utilized in this experimental research. Table 8 presents
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a comparative analysis of the overall performance of pretrained networks with the op-
timal hyperparameter configurations. In summary, it can be inferred from Table 8 that
VGG-16 exhibited the highest performance for its setting of optimal hyperparameters. It
is therefore suggested that ResNet-50 be adopted and deployed for tire condition moni-
toring in automotive applications, owing to its superior classification accuracy and lower
computational complexity.

Table 7. Optimal hyperparameters for pretrained model.

Pretrained Network

Hyperparameter Configuration
Overall Accuracy

(%)Train–Test
Split Ratio

Optimizer/Solver
Algorithm

Initial Learning
Rate Batch Size

VGG-16 0.80:0.20 ADAM 0.0003 10 91.70

GoogLeNet 0.85:0.15 SGDM 0.0001 10 91.70

AlexNet 0.70:0.30 SGDM 0.001 32 87.50

ResNet-50 0.80:0.20 RMSPROP 0.0001 10 93.80

Table 8. Performance comparison of pretrained models with optimal hyperparameters.

Pretrained Network VGG-16 GoogLeNet AlexNet ResNet-50

Classification Accuracy (%) 91.70 91.70 87.50 93.80

The training progress of the ResNet-50 network is shown in Figure 6. As the training
progress curve saturates by flattening after the sixth epoch, it could be interpreted that
the ResNet-50 pretrained network adopted for this study has been trained effectively, and
model weights have been successfully upgraded. Additionally, the overall reduction of
data losses during the process of network training (in general, for all networks under study)
suggests that the optimal choices of hyperparameters have been obtained.
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The confusion matrix corresponding to the classification result for the ResNet-50 archi-
tecture deployed in tire condition monitoring is presented in Figure 7. A confusion matrix
presents a graphically intuitive approach to interpreting the pretrained network classifi-
cation performance level. This is evident through the principal diagonal elements of the
matrix, which represent correctly classified instances, while incorrectly classified instances
(also referred to as misclassified instances) are represented by the non-principal diagonal
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matrix elements. The absence of misclassified instances infers that the network presents
effective transfer learning by the adopter network and minimizes data loss throughout the
learning process. The confusion matrix in Figure 7 shows that the ResNet-50 architecture
yielded a classification accuracy of 93.80% with no misclassification instances except for
Normal (two instances were misclassified as High) and Idle (one instance was misclassified
as Puncture), which could have instantiated due to poor signal quality, interruption by
noise and discrepancy in similarities between the acquired signals. In summary, Table 8
surmises the performances of optimized pretrained models comparatively and suggests
that ResNet-50 can serve as the best-performing and adoptable deep learning pretrained
network for the purposes of tire condition monitoring.
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5.6. Comparison with State of the Art Techniques

To assess the superiority in the performance of the proposed TCMS system fault
diagnosis, several state of the art techniques present in the literature were compared.
Table 9 presents the overall performance of various state of the art techniques proposed in
the literature in comparison to the proposed method. From Table 9, one can observe that
the proposed method to diagnose faults in TCMS systems had a maximum classification
accuracy of 93.80%.

Table 9. Comparison of tire condition monitoring approaches with our proposed method.

Reference Tire Condition Monitoring Approach Sensor Used Classification
Accuracy (%)

[29] Statistical Feature Extraction and K-Star Algorithm MEMS accelerometer 89.16
[30] Statistical Features and Support Vector Machine Algorithm MEMS accelerometer 90.00
[31] Statistical Analysis and Regression Algorithm MEMS accelerometer 91.25
[32] Statistical Analysis and Logistic Model Tree MEMS accelerometer 92.50
[33] Statistical Analysis and Rotation Forest Algorithm MEMS accelerometer 93.33

Proposed Method—Radar Plots and Pretrained Neural Networks MEMS accelerometer 93.80
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6. Conclusions

Four pretrained deep learning networks, GoogLeNet, VGG-16, AlexNet and ResNet-50,
were used to determine the tire condition in this study. Three primary tire conditions—high,
low and puncture—and one normal reference state were examined in the research. In this
experiment, it was evident that an end-to-end machine learning approach was formulated
as these pretrained networks featured layers of CNN and performed feature extraction,
feature selection and classification in an integrated approach. Vibration radar graphs were
analyzed to deliver classification results based on the hyperparameter configuration of each
network. This study serves two purposes in the sense that it not only establishes the fact
with evidence that a transfer learning approach for integrated feature selection, extraction
and classification could be advocated to execute the regular task of vehicle tire condition
monitoring, but also that this approach bears respectable accuracy in classification which,
when coupled with ease of experimentation, could serve as a viable commercial alternative
to tire condition monitoring. This can be established statistically as the attained experi-
mental outcomes suggest that the considered networks are indeed well accomplished in
not just learning complex features but also establishing acceptable classifying results for
the purposes of tire condition monitoring. Evidently, hyperparameters such as optimizer,
the train–test split ratio, initial learning rate and mini-batch size values were strategically
varied, and the best hyperparameters were found for all the networks. As a result, it was
observed that ResNet-50 stood as the most optimally performing network with 93.80% ac-
curacy when compared with AlexNet, which produced a classification accuracy of 87.50%,
GoogLeNet and ResNet-50, both of which yielded 91.70% as their respective classification
accuracies. Among the other networks taken into consideration in the study, ResNet-50 is
chosen as the network with the greatest performance, and therefore, ResNet-50 is recom-
mended for performing tire condition monitoring economically. The execution of a program
macro to generate radar plots for a single class took 50 s for 60 different signals. Thus,
0.833 s were elapsed for the visualization of each signal. The resizing procedure extended
over 2 s, and the generation of a confusion matrix after trained network execution took
just under 5 s. Thus, a driver could be alerted about a fault in as low as 6–7 s. The training
time for the ResNet-50 network elapsed after 1 min and 30 s (90 s). The future scope of this
experiment could include an additional detailed examination of where the accelerometer is
located and the performance of said accelerometer in accurate condition classification to en-
sure higher degrees of classification accuracy through optimal hardware–software synergy.
Applications of this conclusion can find their way into commercially available automobiles
in the form of modular and user-friendly fault diagnosis and monitoring systems for tire
condition monitoring for the purposes of real-time on-the-fly onboard diagnosis.
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