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Abstract: Multi-robot exploration means constructing a finite map using a group of robots in an
obstacle chaotic space. Uncertainties are reduced by distributing search tasks to robots and computing
the best action in real time. Many previous methods are based on deterministic or meta-heuristic
algorithms, but limited work has combined both techniques to consolidate both classes’ benefits
and alleviate their drawbacks. This paper proposes a new hybrid method based on deterministic
coordinated multi-robot exploration (CME) and the meta-heuristic salp swarm algorithm (SSA)
to perform the search of a space. The precedence of adjacent cells around a robot is determined
by deterministic CME using cost and utility. Then, the optimization process of the search space,
improving the overall solution, is achieved utilizing the SSA. Three performance measures are
considered to evaluate the performance of the proposed method: run time, percentage of the explored
area, and the number of times when a method failed to continue a complete run. Experimental
results compared four different methods, CME-GWO, CME-GWOSSA, CME-SCA, and CME, over
seven maps with extra complexity varying from simple to complex. The results demonstrate how
the proposed CME-SSA can outperform the four other methods. Moreover, the simulation results
demonstrate that the proposed CME-SSA effectively distributes the robots over the search space to
run successfully and obtain the highest exploration rate in less time.

Keywords: robot path planning; optimization; algorithm; salp swarm algorithm; coordinated multi-
robot exploration

1. Introduction

In mobile robotics, “exploration” refers to the operation when one or multiple robots
work together to explore an unknown environment and quickly construct a finite map
with various applications from indoor to outdoor settings. Multi-robot exploration of an
unknown space is a fundamental task for mobile robot systems. A wide range of applica-
tions for mobile robot exploration using a group of robots can be mentioned, including
autonomous transportation [1], industry [2,3], healthcare [4], rescue [5–7], and agricul-
ture [8–11]. A robot must be able to navigate in a known or unknown environment [12]
without human assistance. The most critical challenge for many mobile robots is to safely
navigate from source to destination without colliding with their counterparts or other
obstacles in the workspace. An unknown environment could be simple or complex and de-
pends on the obstacle’s complexity. In both cases, exploring a simple or complex unknown
environment starts with zero knowledge about the surrounding. Robots start the search
operation without having any idea where obstacles are located and end up with a finite
map. All the path planning applications could consider the exploration process as a first
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step, so that planning the next path becomes easier since the environment is known and
has a map.

The main objective of this paper is to develop a new hybrid space exploration method
that combines deterministic and meta-heuristic algorithms to quickly outline a definable
map in an unknown environment. The proposed hybrid method combines deterministic
coordinated multi-robot exploration (CME) and the SSA meta-heuristic. The rest of the
paper is organized as follows:

Section 2 provides an in-depth literature review of the related work in path planning.
Section 3 presents the proposed method. The results and discussions are given in Section 4.
Finally, Section 5 concludes the work and suggests future directions.

2. Related Work

The single-robot exploration method was previously proposed based on the concept of
frontiers between open space and unexplored space [13]. Another coordinated multi-robot
exploration CME is based on a team of robots simultaneously exploring different regions of
an unknown environment [14]. Both methods consider the cost of reaching a target point
as well as its utility. The utility of the unfamiliar area visible from the target position is
minimized whenever a target point is assigned to a specific robot. The most significant
downsides of the centralized CME method are as follow, CEM is a deterministic approach
and will always repeat the same search pattern; therefore, escaping local optima is not an
option. The only way to solve this problem is to change the environment’s setting, which is
impossible. Furthermore, ensuring a waypoint is not guaranteed, which has a huge impact
on the robots as individuals, leading them to forget their assigned tasks and will result in a
breakdown in coordination.

Deterministic CME is a popular approach that deterministically seeks to construct
a definable map in an unknown space. A process of exploration aims to cover the entire
environment in the least amount of time possible. The robots must, therefore, constantly
monitor which portions of the environment have already been visited using a centralized
technique [15]. To plan their trajectories and coordinate their operations [16], robots require
the creation of a global map. The robots can always communicate with one another about
their positions on the map and share the area they have investigated and the map itself so far.
The occupancy grid [17] is used for communication between robots. Communication occurs
by sensing and simultaneously searching the space and sharing their progress. Coordinated
multi-robot exploration has been heavily used in mobile robot path planning [11,18–20].

In coordinated multi-robot exploration, a map is represented using the occupancy
grid map [21]. The robot is given a standard vision of a 360-degree sensor view starting
from its initial position. The robot is situated indoors and does not know its surroundings
(unknown environment).

Robots use sensors to explore the unknown search space, gaining as much local
knowledge as possible. It takes action to obtain the intended objective by learning from the
sensor how to identify occupied spaces from unoccupied ones. The sensors’ detection range
for the surroundings is limited. This is referred to as a frontier-based approach to exploring
mobile robots, and this edge is known as a frontier [13]. The issue of allocating exploration
assignments represented by frontier cells to the various robots is brought up because a
map often comprises several unknown places. In case multiple robots are engaged in the
search space, there must be a way to prevent them from moving to the same spot. In [22],
multiple robots were used to explore and map an environment simultaneously. A global
map was created by combining the robots’ individual maps. Frontiers were identified as
the boundaries between explored and unexplored areas, and the robots navigated toward
them using the frontier-based multi-robot approach. A robot operating system (ROS) was
used for implementation, while the stage simulated the robots and their environments.

The above-mentioned papers show that the communication link between the robots
breaks down as their distance grows, making it impossible for them to communicate quickly.
In such circumstances, the centralized CME technique does not ensure clear waypoints on
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the map. This will have an impact on the tasks that have been allocated to certain robots
and lead to a breakdown in coordination if any robots forget their tasks. Additionally,
because CME is inefficient under all map conditions, an ideal solution can only be found
by completely altering the map, which is not always feasible. Meta-heuristics can alleviate
drawbacks as they are reliable optimization techniques.

Many researchers have addressed the problem of ground and aerial vehicle trajectory
planning and obstacle avoidance using an optimization algorithm that mimics the behavior
of living things such as fish, ants, bees, whales, wolves, and bats [23,24].

Over the past two decades, meta-heuristic optimization techniques have gained much
traction. Most of them, such as genetic algorithm (GA) [25], ant colony optimization
(ACO) [26], and particle swarm optimization (PSO) [27], are quite well-known among
scientists from a variety of disciplines in addition to computer science. Such optimiza-
tion techniques have been used in numerous academic fields of study in addition to the
vast number of theoretical publications. Meta-heuristics have proliferated so widely be-
cause of four primary factors—simplicity, flexibility, derivation-free mechanisms, and local
optima avoidance.

Meta-heuristics are rather easy to use. The sources of inspiration are frequently natural
phenomena, animal behavior, or evolutionary theories such as the grey wolf optimizer
(GWO) [28], antlion optimizer (ALO) [29], ant colony optimization (ACO) [24], sine cosine
algorithm (SCA) [30], simulated annealing algorithm (SA) [31], salp swarm algorithm
(SSA) [32], and gravitational search algorithm (GSA) [33]. Computer scientists can replicate
various natural notions, suggest new meta-heuristics, combine two or more meta-heuristics,
or enhance the existing meta-heuristics because of their simplicity. Additionally, the
simplicity makes it easier for other researchers to readily learn meta-heuristics and use
them to solve optimization problems.

The GWO algorithm is a bio-inspired algorithm that mimics grey wolves’ natural
leadership structure and hunting strategy. Four different varieties of grey wolves, including
alpha, beta, delta, and omega, are used to mimic the leadership hierarchy. The ALO
algorithm imitates an antlion’s natural hunting strategy. There are five basic processes in
the process of hunting prey: setting up traps, entrapping ants in them, catching prey, and
setting up new traps. This optimizer was primarily inspired by moths’ natural transverse
orientation navigational strategy. Moths use an extremely efficient system to fly at night
that keeps them at a fixed angle to the moon and allows them to cover great distances in a
straight line.

The salp swarm algorithm (SSA) is a novel bio-inspired algorithm proposed by Mira-
jalili et al. [32]. The SSA’s main inspiration is salps’ swarming behavior when navigating
and searching the ocean, looking for food. The optimized SSA uses a mathematical model
that mimics the social behavior of swarming salps; its functions generate many initial
random candidate solutions and vary either outwards or towards the best answer. This
algorithm additionally incorporates several random and adaptive variables to promote the
exploration and exploitation of a search space at certain optimization milestones.

Typical stochastic algorithms have been found to have relatively low accuracy and ran-
domness in the outcomes discovered, leading to near-optimal solutions. Although there are
currently meta-heuristic approaches in space exploration, they have been heavily applied to
single-robot applications [34] but limited in applications in multi-robot environments; thus,
it is yet unclear how it will affect the multi-robot setup. Since meta-heuristic algorithms
can produce distinctive solutions in real-time, it is therefore an attractive area for research
in multi-robot environment settings.

A new collaborative coverage technique for mobile robot path planning based on
a multi-robot system is provided in [35], by evaluating a cost function to maximize the
exploration gain from the motion control. Additionally, a mechanism was designed to
facilitate a collaborative map exploration for a single- and multi-robot system. A simulation
successfully demonstrated the efficiency of the proposed technique, which produced a new
deep space exploration method for rolling and jumping spherical robots [36]. The structure
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design was described, and its viable motion was tested through an established dynamic
model. The system achieved a high level of performance and opened a future route of
investigation for deep space exploration.

The main objective of this paper is to develop a new hybrid space exploration method
that combines both deterministic and meta-heuristic algorithms to quickly outline a de-
finable map in an unknown environment. The proposed hybrid method combines both
deterministic coordinated multi-robot exploration (CME) and the meta-heuristic algo-
rithm SSA. Related studies proposed by different researchers have been based CME [14],
meta-heuristics [37], and hybrid methods combining meta-heuristic with deterministic
algorithms [38–40]. Some studies focused solely on static sensor coverage faults and robot
movements in uncharted surroundings [41–43] as well as exploration with deep reinforce-
ment learning for mobile robots [44]; however, they coincide in meaning but the goal of
both studies is to create a finite map. The rest of the paper is organized as follows:

Section 3 presents the proposed method. The results and discussions are given in
Section 4. Finally, Section 5 concludes the work and suggests future directions.

3. Problem Formulation and Proposed Method

This paper proposes a new approach that combines the metaheuristic SSA with deter-
ministic CME. Distant grids are used to divide up the entire map. The CME technique is
used to assess the priority of neighboring cells. Each cell has its own utility and its cost
value. CME takes care of assessing cells in relation to the robots. The total solution is then
improved by optimizing the path using the SSA technique. Meta-heuristic SSA combined
with deterministic CME can be considered a stochastic exploration that alleviates CME’s
drawbacks. This study’s main formulated problem is exploring an unknown environment
with a multi-mobile robot with sensor coverage to create a finite map. In the following
paragraphs, CME is first proposed. There will be a discussion on the cost functions, SSA,
and the process of hybridizing CME and SSA.

3.1. Coordinated Multi-Robot Exploration

The exploration procedure using more than one mobile robot, known as “multi-
robot exploration,” starts with total ambiguity and ends with a defined map. Different
algorithms are available for exploration based on the data obtained. Two approaches can
be considered to create a map based on robot communication. The first is the centralized
exploration approach, when all the robots share the same single map, and simultaneously
sensing the environment enables them to keep track of each other’s progress. Second is the
decentralized approach, based on individual map construction [45]. Data exchange needs to
be coordinated only when robot positions overlap. In this paper, the centralized technique
is used, which calculates the utility values that all robots update through iterations, as well
as the real-time cost of travelling for each robot.

In coordinated multi-robot exploration, a map is represented using an occupancy grid
map [21]. The robot is given a standard vision of a 360-degree sensor view starting from
its initial position. The robot is situated in an indoor setting, and it does not know its
surroundings (unknown environment). The occupancy grid map stores the utility and the
cost of traveling in its cells as numerical values, showing the likelihood that an obstruction
occupies the grid cell. Because of the limitation of sensor range to cover the entire space
and find an optimal path at once for the robot, it is used to sense the frontier cells [46,47].
Frontier cells are the most important objective when it comes to building a finite map in an
unknown space [48]. On the occupancy grid map, only nine cells are covered by a robot
with a sensor view (Figure 1).
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Figure 1. Senor view range in the grid cells: (a) sensor range cover [V1, . . . , V8] around the robot;
(b) eight cells around the robot and cell 9 is the robot position; (c) robot moving from right to left
showing the sensor range does not cover the cost V1, V7, V8.

3.1.1. Cost Function

The best route from the robot’s present position to all frontier cells is computed using
a deterministic version of the value iteration to calculate the cost of reaching the current
frontier cells. Through initialization (Equation (1)), occupancy grid probability, sensor
view, and Euclidean distance (Equation (2)), when a cell has already been discovered, the
prior step’s cost for this cell is added to the current position’s cost. Otherwise, the cell is
designated as a frontier cell without the backward costs of the earlier phases of the ray
beams which open it predominantly (Equation (3)). The x-th cell in the direction of the
x-axis and the y-th cell in the direction of the y-axis of the two-dimensional occupancy grid
map are represented by the tuple (x, y). The cost of moving through a grid cell (x, y) is
inversely correlated with its occupancy probability value P(occxy). The following two steps
are used to calculate the minimum cost path [14]:

1. Initialization.

V(x, y) =
{

0, if (x, y) is the robot position
∞ , Otherwise

(1)

2. Update loop for all grid cells (x, y).

V(x, y) = min
{

Vx+∆x,y+∆y + (
√

∆x2 + ∆y2 )× P(occx+∆x,y+∆y)

}
(2)
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V(x, y) = min
{
(
√

∆x2 + ∆y2 )× P(occx+∆x,y+∆y)

}
(3)

where P(occxy) is the maximum occupancy probability value of a grid cell the robot can
travel through, ∆x, ∆y ∈ [−1, 0, 1], and P(occx+∆x,y+∆y) ∈ [0, max(occ)] and max(occ) is
the maximum occupancy probability. Three possible values are assigned to the occupancy
probability [0, 0.5, 1]. A zero value explains that the cell is assumed empty and free of
obstacles. A value of 0.5 is the probability of an unknown cell compared to the cell occupied
by a barrier, which is about equal to one. Finding the lowest value across neighboring cells
is ideal for a robot moving to the next position. A single mobile robot system may just
need to conduct a low-cost search to locate itself. However, the interaction of the collective
organization is necessary for the multi-robot system throughout the investigation. The
CME technique introduced a capability for workload distribution among robots [14].

3.1.2. Utility Value

Utility value is a number assigned equally to each cell in a grid map that measures if a
cell has been utilized. Every grid cell on the map has the same initial utility values. As can
be seen in Equation (4), the utility values of the robots’ frontier cells decrease as they explore
the map toward a new position. Robots ignore visiting cells with few utilities and only
explore new positions on a map by going to grid cells with greater utility values. In order
to optimize utility values, the robots look for new places they have not yet visited. The cell
cost for each robot is proportional to the distance between the robot and the cell. The utility
of a frontier cell depends on how many robots are migrating to it or an area nearby.

Ucell
i = Ucell

i−1 −
n−1

∑
i=1

P
(
‖occc

x,y − occr
x,y‖

)
(4)

where Ucell
i is the utility of the current grid cell, Ucell

i−1 is the utility of the same cell in the
previous stat during the exploration process, and P represents the probability of the current
cell i. The utility of the maximum value is iteration i, as in Equation (5).

(i, cell) = argmax
{

Ucell
i −Vx,y

}
(5)

The maps’ dimension is maintained at 20 m × 20 m, and the sensor ray length is
1.5 m. On the maps, the white region denotes the area that has been examined, while
the dark-occupied region indicates the presence of an obstruction. To aid cooperative
exploration, to diverge the directions of the robots at the start, their initial positions must
be close to each other, and this way their sensors scan each other, and the next move will
result in decreasing utilities of the selected targets and a divergence in different directions
(Figure 1).

3.2. Salp Swarm Algorithm

The salp swarm algorithm (SSA) is a meta-heuristic algorithm recently proposed by
Mirjalili et al. [32]. SSA is a swarm intelligence technique that mimics the intelligence of
salp swarms in nature. This algorithm (Algorithm 1) was inspired by the collective behavior
of a group of salps as a chain. Salps belong to the family of Salpidae and have a transparent
barrel-shaped body. Their tissues and movements are very similar to jellyfish. Figure 2a
depicts the structure of a salp. In deep oceans, salps often form clusters called a salp chain
(Figure 2b). This swarming behavior helps salps to quickly coordinate changes and find
more food. SSA has the advantages of fewer parameters and easy implementation.
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The primary characteristic of SSA that differentiates it from other well-known swarm
meta-heuristic algorithms is its hierarchical chain, as shown in Figure 2b. The salp popu-
lation is initially divided into two family groups: the leaders and followers. The salp at
the front of the chain is the leader, while the other salps are referred to as followers. These
salps have a leader who directs the swarm, and the followers follow each other and obey
the leader. The location of the salp is characterized by an n-dimensional search area where
n is the no. of variables. The food source F is the target for the salp in the search boundary.

To update the position of the leader, the following equation is represented by:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0.5

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
c3 < 0.5

(6)

where x1
j j and Fj denote the positions of the leader and food source, respectively, in the jth

dimension. The leader updates its position with respect to the food source. ubj and lbj are,
respectively, the upper bound and the lower bound of the jth dimension. c1, c2, and c3 are
random numbers.

c1 = 2e−(
4i

MaxIter )
2

c2, c3 ∈ [0, 1] (7)

where i is the current iteration and MaxIter is the maximum number of iterations. c2 and c3
are numbers in the interval of [0, 1] and are randomly generated. The presence of random
vectors c1,c2, and c3 makes the SSA meta-heuristic. They provide the step size and whether
the next position in the jth dimension should be towards positive or negative infinity.

Newton’s law of motion is used in the following equations to update the positions of
the followers:

xi
j =

1
2

at2 + v0t (8)

where i is the current iteration when i ≥ 2, xi
j is the position of the ith follower salp in the

jth dimension, v0 is the initial speed and t is the time. The parameters a and v0 are found,
respectively, by:

a =
v f inal

v0
, v0 =

x− x0

t

Time in optimization is considered to be iteration and v0 = 0 equal to 1 because the
discrepancy between iterations equals 1; therefore, Equation (8) can be modified to:

xi
j =

xi
j + xi−1

j

2
i ≥ 2 (9)
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where i is the current iteration when i ≥ 2, xi
j is the position of the ith follower salp in the

jth dimension.

Algorithm 1 Salp Swarm Algorithm SSA

1: Initialize the salp population Xi (i = 1, . . . , n) considering upper and lower bounds
2: while iteration is not over do
3: Calculate the cost f unction o f each search agent (salp)
4: Food = the best search agent
5: Update c1 by Equation (7)
6: f or each salp (Xi)
7: i f (i <= Xi/2)
8: Evaluate Equation (6) to update the salp leader position
9: else
10: Evaluate Equation (9) to update the position of the salp follower
11: end
12: end
13: Amend the salps based on the upper and lower bounds of variables
14: end while

The SSA’s ability to direct salps towards the food source while updating it through
iterations illustrates such a strong optimization that it may be applied among a wide range
of fields. SSA’s hierarchical structure is an additional element that sets it apart from other
well-known swarm intelligence algorithms in terms of effectiveness. In this paper, the
SSA is employed to solve the exploration problem for the multi-mobile robot system. The
main benefit of the SSA is the high probability of local optima avoidance in the context of
composite functions. This is because the SSA stores the best solution produced thus far and
assigns it to the food source variable. Thus, the best solution never gets lost, even if the
whole population deteriorates. Additionally, it has only one main controlling parameter
(c1), decreasing adaptively throughout iterations, first exploring the search space and then
exploiting it. This is in addition to the primary advantages of SSA; characteristics include
the simplicity of its implementation due to its structure as well as its low computational
requirement compared to other techniques. Additionally, it has a faster convergence rate
due to a continuous search space reduction and lower judgement parameters (leaders
and followers). Potentially, all the above-mentioned benefits of SSA play a great role in
outperforming other algorithms, such as GWO, WOA, MFO, ABC, SCA, etc.

3.3. Hybrid CME-SSA

The process has been optimized to build a finite map with a multi-robot system using
the meta-heuristic SSA. It generates random parameters that help the robot with its next
move by identifying the robot’s best next positions. Consequently, the SSA selects the
robot’s next move position. When the CME cannot continue real-time processing, SSA,
without prior information about the environment, can continue and find the best optimal
solutions for exploring an unknown space for mobile robot sensor systems.

Algorithm 2 is the pseudo-code of the proposed hybrid method. Initially, the grid map
is initialized with a value equal to 1 as a utility for the whole cells. Only eight cells around
the robot that are covered by the sensor, as shown in Figure 1a, are the candidates for the
next move, and only one cell can be selected. Since each cell has a cost and utility value,
CME computes the cost and deducts the utilities from the cost of the surrounding 8 grid
cells using Equation (5). Then, the proposed stochastic method defines 4 maximum utility
values as four leaders and assigns them. The priorities between the 4 leaders changes based
on the random (c1 and c2) Equation (7), and the values of occupancy probability of the four
dominated cells.

Xsalpleader,i =

{
Pi
(
occx+∆x,y+∆y

)
+ c1((ubi − lbi)c2 + lbi) c3 ≥ 0.5

Pi
(
occx+∆x,y+∆y

)
− c1((ubi − lbi)c2 + lbi) c3 < 0.5

(10)
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where Xsalpleader,i i denotes the positions of the leader and food source, respectively, in the
ith dimension. P(occx+∆x,y+∆y) is the maximum occupancy probability value of a grid cell
the robot can travel through, ∆x, ∆y ∈ [−1, 0, 1], and P(occx+∆x,y+∆y) ∈ [0, max(occ)] and
max(occ) is the maximum occupancy probability. The leader updates their position with
respect to the P(occx+∆x,y+∆y). ubi and lbi, which are, respectively, the upper bound and
the lower bound of the ith dimension. c1, c2 and c3 are random numbers.

The grids orientation function is as follows:

gridsOrientation (x, y) = [V1, V2, V3, V4, V5, V6, V7, V8, V9] (11)

where the decision variable x, y is the current robot position and V1, . . . , V9 are the
costs of the nine cells around the robot, including the cost of its current position using
Equations (1)–(3).

Algorithm 2 Coordinated Multi-Robot Exploration with Salp Swarm Algorithm CME-SSA

1: Initialization


Number o f Robots N, sensor range

Iteration i, Initial position
Set the utility o f all cells to 1

2: While iteration is not over do
3: For N robot
4: Set coordinates o f cost VCell
5: Calculate cost o f VCell
6: Update Utilityiteration

cell and cost of VCell
7: Calculate c1, c2 and c3
8: Find leaders salpLeader1, salpLeader2, salpLeader3, salpLeader4 (Line 7 Algorithm 1)
9: Find XLeader1, XLeader2, XLeader3, XLeader4
10: Find the next position for Roboti as max (XLeader1, XLeader2, XLeader3, XLeader4)
11: Reduce utility on a new position
12: end for
13: end while

Driving towards the source of food is defined by Equation (10). In the SSA, Newton’s
law of motion is used to update the positions of the followers, which is related to the natural
behavior of the salp swarm. However, in the proposed method, it is not required as the
selecting process is based on choosing the maximum Xsalpleader,1, Xsalpleader,2, Xsalpleader,3 or
Xsalpleader,4.

After the robot makes the next move based on the maximum value of the leaders’
positions (line 10 in Algorithm 1), Equation (4) is used to reduce the utility value of the
neighbor grid cells. Then, the randoms (c1, c2 and c3) are regenerated using Equation (7) for
the subsequent iteration. The proposed CME-SSA method aims to explore the unexplored
areas in the grid map. That is because the utility of the unexplored cells has greater values
which makes them more attractive to the salps’ leader to select more than the explored ones,
and since there are four candidates to select from, the chances of exploring new different
areas with each iteration are high. Additionally, it should be noted that the computational
complexity is O(Iter(d× n + CostF× n)) where Iter is the number of iterations, n is the
number of solutions, d is the dimension and CostF is the cost of the objective function.

The main benefit of the CME-SSA is the high probability of local optima avoidance
because one of the SSA’s advantages is represented by the implemented memory feature
that allows SSA to save the best optimal solution obtained to date and set it as the best food
source. Thus, the best solution of the CME-SSA never gets lost. Additionally, exploration
and exploitation over the number of iterations are well controlled because of one main
parameter (c1). Moreover, it is easy to implement and has lower memory requirement
compared to other techniques, making the exploration process achievable in less time.
Finally, because the SSA mimics the salp’s behavior in the chain of leaders and followers,
it is easier for the robots to explore tight corridors and corners efficiently. Its main cons
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are when the exploration space is free of obstacles, it requires extra 10 to 20 iterations to
explore most of it.

4. Results and Discussions

Several test cases should be employed to confirm an algorithm’s performance in the
optimization field using bioinspired and meta-heuristics algorithms. This is due to the
stochastic nature of these algorithms, in which a proper and sufficient set of test maps is
divided into two categories. The simple environment consists of at least one obstacle along
with the map borders, and the complex environment consists of more obstacles. This is to
test the exploration in a different environment.

This section presents the simulation of the proposed CME-SSA method. Two different
environments, with different complexities, are being utilized to assess the algorithm’s
performance. The map complexity can be changed by including barriers and altering their
relative direction. To prove the efficiency of the proposed method CME-SSA, four other
algorithms are used:

• Original coordinated multi-robot exploration (CME);
• Coordinated multi-robot exploration and grey wolf optimizer algorithms (CME-

GWO);
• Coordinated multi-robot exploration and the sine cosine algorithm (CME-SCA);
• Coordinated multi-robot exploration and grey wolf optimizer algorithms combined with

salp swarm algorithm (CME-GWOSSA) has been implemented under similar conditions.

The results of the proposed method CME-SSA are compared then with CME-GWO,
CME-GWOSSA, CME-SCA, and the original deterministic CME, to analyze and determine
its potential benefits.

To ensure a fair comparison between all algorithms, in the simulation section, the
dimension of all the maps was maintained the same at 20 m × 20 m. On the maps, the
white region denotes the area that has been examined, while the black zone indicates the
presence of an impediment. To aid cooperative exploration, and to diverge the directions
of the robots at the start, their initial positions were close to each other so that their sensors
scanned each other, and the next move resulted in decreasing utilities of the selected targets
and a divergence in different directions (see Figure 3).
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Because the robots can move in any direction arbitrarily, the main goal of this simu-
lation analysis was to take care of and obtain the percentage of the explored area using a
different approach. The percentage of the explored area was calculated using the following
Equation (11) (Totalegc ).

Totalegc =
Tunexpu − Texpu

Tunexpu

× 100 (12)

where Totalegc is the total explored grid cells, and possible values vary between 0% and
100%. Zero is the minimum value where the area is not being explored, and 100% is
the maximum value and represents a fully explored area. Tunexpu represents the value of
unexplored utility values in the obstacle-free zone, while Texpu represents the explored
utility values. Three different key aspects were considered for the comparison between the
proposed CME-SSA method and the other methods after the simulation was completed:
Totalegc , time consumption for exploring a map, and the number of cases where a technique
failed to complete a full run.

The same parameters were set to use across the different approaches used in this
simulation. The number of iterations, obstacles positions, number of robots and their initial
positions, map dimension, and sensor range was the same for all algorithms and across all
simulations to ensure a fair comparison.

Because the optimization algorithms are stochastic and cannot run forever to obtain
reliable results, the population was also picked randomly; therefore, to ensure that the
results were optimized correctly across multiple algorithms, a strategy based on the central
limit theorem [49], which suggests that single-problem and multi-problem analyses are
frequently used to contrast the findings of computational intelligence experiments, high-
lighted sample sizes of around 30 to 50 randomly, which were deemed sufficient for the
distribution to be fairly normally distributed. A sample size of 30 is the minimum number
to be considered a normal distribution; hence, in this simulation, the sample size was 30.
Samples were collected by running each algorithm with 100 iterations 30 times. Taking into
account the new stochastic technique must find the optimal result. Therefore, the number
of samples was 30. Since SSA is stochastic, it should be noted that each run generated
different results. In contrast, the deterministic CME simply needs to run once, meaning that
the robot’s motion trajectory remains unchanged when the examined areas are unchanged,
Figure 4 illustrates the stability and constancy of the CME simulation over the course of
the 30 runs. Each color on the map represents a single robot regardless of the symbol
(Figures 5 and 6) same applies to the rest of the maps in complex environments. Since
three robots were used in this simulation, there will be three different colors to differentiate
between them.
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Figure 5. Percentage of the explored area after implementing the CME-SSA and the other approaches
on simple map 1. Simple map 1: (a) CME 93%, (b) CME-SSA 90%, (c) CME-GWO 84%, (d) CME-SCA
73%, (e) CME-GWOSSA 80%.
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4.1. Simple Map

A simple map is an environment almost free of obstacles. In this simulation, two types
of simple maps were introduced (Figures 5 and 6). This type of environment makes it more
feasible for robots to make easy moves and stay away from each other because the map has
fewer obstacles and more free spaces.

Figures 5 and 6 illustrate the exploration results obtained from five different algorithms,
including one deterministic, where each path color indicates a different robot. Despite
the slightly better exploration provided by CME in the exploration average (which shows
93% in simple map 1 and 97% in simple map 2) than the proposed method, including the
other different approaches, Figure 4 shows how CME-SSA outperformed CME 16 times
with better results; the rest were very close. Different results were obtained through the
stochastic approaches.

Due to the random values of C1, C2, and C3 in the SSA, the total exploration values
differed in each run. After 30 completed simulations, with 100 iterations each, the proposed
CME-SSA approach achieved an exploration average of 89.72% in simple map 1 with an
std of 3.1 and 96.21% in simple map 2 with an std of 2.9. However, the exploration results
of the other stochastic methods are as follows and in Table 1:

• CME-GWO showed an exploration average of 88.44% in simple map 1 with an std of
2.5 and 91.7% in simple map 2 with an std of 3.2

• CME-GWOSSA provided an exploration average of 87.84% in simple map 1 with an
std of 5.2 and 87.63% in simple map 2 with an std of 7.4

• CME-SCA delivered an exploration average of 82.94% in simple map 1 with an std of
7.4 and 88.48% in simple map 2 with an std of 8.3

Table 1. Average of the percentage of the explored area after 30 runs, with 100 iterations each.

MAP
CME-SSA CME-GWO CME-GWOSSA CME-SCA CME

ave std ave std ave std ave std ave std

Map 1 89.72 3.13 88.45 2.54 87.84 5.27 82.95 7.42 93.08 0.00
Map 2 96.22 2.58 91.75 3.28 87.63 7.47 88.49 8.32 97.31 0.00

In the deterministic CME method, the robots always make the next move decision
based on the maximum utility value, so it follows the same pattern every time. Therefore,
the same results will be generated when running CME more than one time. In the hybrid
stochastic method, the output results vary with each run due to the random parameters
used in their equations. The prediction of the next move for a robot depends on the utility
value stored in each cell, which sometimes results in obstacle collision. This issue occurs
when two or more cells that are candidates for the next move have the same utility value,
and at least one of them is occupied by an obstacle; however, because SSA continuously
generates random C1, C2, and C3 parameters, it helps CME-SSA to find and select the best,
new, less risky position.

In Figure 5, simple map 1 shows the implementation of CME-SSA in an obstacle-free
area, and then the obstacle is introduced in Figure 6, which is simple map 2.

As shown, the proposed CME-SSA has greater map coverage than the original CME,
at least 16 times larger. Additionally, Table 1 shows how the percentage average of the
proposed CME-SSA method’s explored area was greater than all the other stochastic
approaches: CME-GWO, CMEGWOSSA, and CME-SCA. It has also been observed that the
proposed approach performs even better when the number of iterations is raised to 110
or 130.

Table 2 shows the average time spent in seconds for each approach to complete one
full run (100 iterations). Additionally, it is clear that the proposed method showed an
average of 10.9 s for map 1 and 11.01 s for map 2, which was the minimum time compared
to the other methods, including CME.
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Table 2. Average time taken to explore a map.

MAP
CME-SSA CME-GWO CME-GWOSSA CME-SCA CME

ave std ave std ave std ave std ave std

Map 1 10.97 0.10 12.98 0.14 13.08 0.38 14.22 0.50 15.26 0.00
Map 2 11.01 0.29 13.12 0.24 13.10 0.25 14.59 0.78 13.40 0.00

The number of failed simulations across two simple maps in Figures 5 and 6 are
presented in Table 3. A single run that could not complete 100 iterations successfully
due to neighbor cells being occupied by obstacles or another robot is considered a failed
simulation. The number of failed runs for the proposed stochastic method CME-SSA
was zero for both simple map 1 and map 2. Additionally, this shows how the combined
deterministic meta-heuristic CME-SSA gave its best performance in simple complexity
environments (map 1 and map 2).

Table 3. The number of failed simulations before completing 100 iterations of exploration on two
simple environments (map 1, map 2).

MAP CME-SSA CME-GWOSSA CME-GWO CME-SCA CME

Map 1 0 5 2 5 0
Map 2 0 3 2 8 0

4.2. Complex Space Map

An environment with more than one obstacle is considered a complex map. In this
section, the five complex maps were introduced to evaluate the performance of the proposed
CME-SSA method against the deterministic CME and the other hybrid meta-heuristic
methods: CME-GWO, CME-GWOSSA, CME-SCA (as shown in Figures 7–11).
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Low map coverage was recorded for the deterministic CME over the five complex
maps (Figures 7–11). This algorithm could not complete the full 100 iterations on any of
them, possibly due to neighbor cells being occupied by obstacles and another robot. Because
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of the nature of the deterministic algorithm, when given a specific input, it will always
produce the same output passing through the same set of states; therefore, improvement
in the next iteration cannot happen. In contrast, it is evident from Figures 7–11 that the
proposed hybrid stochastic CME-SSA approach produces better results than the other
meta-heuristic hydride techniques: CME-GWO, CME-GWOSSA, and CME-SCA.

Different types of narrow tunnels and corridors were introduced in the five complex
maps. The proposed CME-SSA moved efficiently between them with the highest coverage
rate. Although complex map 1 (Figure 7) has more obstacles than the others and small
zones, CME-SSA was able to explore it with a rate of 98.36%, as well as map 2 (Figure 8) with
a rate of 96.45%. Moreover, another crucial factor in map 3 (Figure 9) was the tight tunnel
on the upper-left side of the map, which was only explored successfully by the proposed
CME-SSA, and the total coverage was 98.49%. Similarly, in map 4 (Figure 10), with narrow
corridors, the result was 97.25%, and the CME-SSA could efficiently explore the middle
zone. Lastly, map 5 (Figure 11) was one of the most difficult environments because the
initial positions of the robots were very close to the barriers. Additionally, the tiny tunnel
made it very hard for them to escape and not collide with each other, which caused a
high number of failures to continue the 100 iterations successfully in the the CME-GWO,
CME-GWOSSA, and CME-SCA, but not the CME-SSA with 96.59% of coverage. Table 4
summarizes the results and shows the average performance of each method and how stable
it is through the average and standard deviation. The proposed hybrid stochastic CME-SSA
showed an innate ability to maneuver around obstacles, tunnels, and corridors without
getting stuck.

Table 4. Avg and std of the percentage of the explored area in a complex environment for each algorithm.

MAP
CME-SSA CME-GWO CME-GWOSSA CME-SCA CME

ave std ave std ave std ave std ave std

Map 1 92.84 2.62 85.57 11.57 87.31 9.11 87.13 8.95 39.24 0
Map 2 95.66 2.39 90.77 6.52 92.79 8.70 87.88 10.57 52.17 0
Map 3 95.20 2.52 88.80 8.11 87.45 7.68 87.04 8.70 36.48 0
Map 4 92.66 3.41 82.82 8.73 89.71 6.19 86.46 11.66 69.46 0
Map 5 96.34 1.90 73.42 12.23 70.34 14.48 65.30 15.93 54.23 0

4.3. Results, Analysis, and Discussion

The proposed CME-SSA delivered a high space exploration, and the qualitative results
demonstrated that; however, they could not measure its efficiency. Therefore, in this section,
two performance indicators have been employed to measure the efficient performance of
CME-SSA. Average and standard deviation are the two indicators. Furthermore, the same
indicators have been applied on four different algorithms after successfully completing a
full run of 100 iterations, independently repeated 30 times. The average indicator shows
the explored area’s average, which explains the mediocre performance. In contrast, the
standard deviation indicator shows the proposed method’s stability compared to similar
algorithms (Table 4).

Average and standard deviation are not able to measure individual runs. They can only
measure the overall performance. Comparing single runs and ensuring the significance of
the results is very important, which can be achieved through a statistical test. Therefore, this
section uses the Wilcoxon rank-sum test to efficiently compare and analyze the statistical
results. Two hypotheses are defined H0 and H1. H0 assumes the exploration rate and the
time consumption obtained by the proposed CME-SSA fall behind the other four methods,
whereas H1 assumes that the CME-SSA outperformed the other methods. A p-value of
less or equal to 0.05 is statistically significant to reject the null hypothesis. The statistical
test was applied as follows: The best method’s results in each test function were chosen
and independently compared with other methods. For instance, if CME-SSA results were
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the best, then a pairwise comparison was performed between CME-SSA and CME-GWO,
CME-SSA and CME-SCA, and so on. Throughout the paper, the same approach was used.

The same test maps utilized in the previous section were employed here but in a
different complexity setup. Considering that the CME deterministic algorithm could not
complete a full run on each map in the complex environment, that was considered strong
evidence against the null hypothesis. Therefore, the p-value was not calculated in Table 5.

Table 5. p − values for the exploration results in Tables 1 and 4 as calculated by the Wilcoxon
rank− sum test (N/A stands for not applicable, Null no result).

Map Type Map No CME-SSA CME-GWOSSA CME-GWO CME-SCA CME

Simple Map 1 2.92 × 10−9 7.47 × 10−10 1.43 × 10−8 1.33 × 10−8 N/A
Map 2 0.6411 1.21 × 10−12 1.21 × 10−12 1.21 × 10−12 N/A

Complex

Map 1 N/A 0.0138 0.0315 0.0035 Null
Map 2 N/A 0.00 0.24 0.01 Null
Map 3 N/A 0.00 0.00 0.00 Null
Map 4 N/A 0.0261 0.0271 0.0451 Null
Map 5 N/A 5.57 × 10−10 3.02 × 10−11 1.46 × 10−10 Null

The hybrid CME-SSA was compared against a different set of hybrid methods of
CME-GWO, CME-GWOSSA, CME-SCA, and the original deterministic algorithm CME. To
ensure a fair comparison between all algorithms, in the simulation section, the dimension
of all the maps was maintained the same at 20 m × 20 m. The main parameters of these
algorithms were the number of robots, which was three, a maximum number of iterations
of 100 and a 1.5 m sensor range. Additionally, the number of obstacles and their positions
differed from one map to another, but the same map was set for all algorithms. For example,
map 1 and map 2 are different, but the same map 1 was employed to test all the algorithms
and collect their data, with same for map 2, and so on. Each of the algorithms ran 30 times
on each complex map, and the results are presented in Tables 1 and 4.

It should be noted that in complex maps, CME could not complete 100 iterations and
failed before getting to 60. Additionally, since it is deterministic, it will repeat the same
pattern over and over unless the map changes to a lesser complexity. Moreover, because
the other methods were able to complete 100 iterations, it would not be fair to calculate
the p-value of the deterministic CME when it comes to exploration and time in less than
100 iterations, even though its exploration results were much less efficient than the other
methods (Figures 7–11).

Towards the end of the simulation, the obtained results showed how the proposed
CME-SSA outperformed the other deterministic and hybrid methods on five different test
maps. The average indicator demonstrates that CME-SSA performed better than the other
methods on average exploration. On the other hand, standard deviations illustrate the
stability of CME-SSA among the other methods. Moreover, the generated exploration
p-values from the Wilcoxon rank-sum test demonstrate that CME-SSA ‘s superiority is
statistically significant. As a result, these findings demonstrated the efficiency of the
exploration of CME-SSA, and that is because the proposed method benefits from SSA
exploitation, exploration, and convergence speed.

Because most of the p-values are less than 0.05, the Wilcoxon rank-sum statistical test
findings demonstrate that the obtained results are statistically significant. The average and
standard deviation show superior outcomes, demonstrating how effectively and reliably
CME-SSA solves these challenges, especially in high-complexity maps.

Additionally, the run times reported in Table 6 show that the CME-SSA outperforms
other algorithms on most test maps as it requires less time when exploring the same map
compared with the other methods.
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Table 6. Time consumptions results of algorithms in the complex environment.

MAP
CME-SSA CME-GWO CME-GWOSSA CME-SCA CME

ave std ave std ave std ave std ave std

Map 1 10.89 0.39 12.62 0.42 12.55 0.34 14.07 1.26 ∞ 0.00
Map 2 10.54 0.43 13.11 0.44 13.10 0.43 13.16 0.54 ∞ 0.00
Map 3 10.10 0.21 13.17 0.35 13.11 0.35 13.77 0.76 ∞ 0.00
Map 4 9.95 0.18 12.98 0.26 12.98 0.17 13.84 0.84 ∞ 0.00
Map 5 10.42 0.24 12.83 0.36 12.98 0.42 14.74 1.23 ∞ 0.00

The lower mean values demonstrate that the CME-SSA outperforms others on average
speed, and the lower standard deviations mean approximately every run needs the same
amount of time to complete. The generated p-values of the time consumption by the
Wilcoxon rank-sum test in Table 7 show the superiority is statistically significant. These
findings demonstrated that the CME-SSA consumed less time to explore a map. That is
another key factor accomplished and proved the high speed of the CME-SSA compared
with the other similar methods.

Table 7. p− values for the time consumption results in Tables 2 and 6 as calculated via the Wilcoxon
rank− sum test (N/A stands for not applicable, Null, no result).

Map Type Map No CME-SSA CME-GWO CME-GWOSSA CME-SCA CME

Simple Map 1 N/A 4.20 × 10−10 2.61 × 10−10 3.02 × 10−11 1.17 × 10−7

Map 2 N/A 0.00 0.00 0.00 0.00

Complex

Map 1 N/A 0.00 0.00 0.00 NULL
Map 2 N/A 0.00 0.00 0.00 NULL
Map 3 N/A 0.00 0.00 0.00 NULL
Map 4 N/A 1.21 × 10−10 2.37 × 10−10 1.96 × 10−10 NULL
Map 5 N/A 1.10 × 10−8 6.72 × 10−10 3.34 × 10−11 NULL

The number of runs for the five complex maps in Figures 7–11 is presented in Table 8.
A single run that cannot complete 100 iterations successfully due to neighboring cells being
occupied by obstacles or another robot is considered a failed simulation.

Table 8. The number of failed simulations to complete 100 iterations of the hybrid exploration
methods on five complex environment maps.

Complex MAP CME-SSA CME-GWOSSA CME-GWO CME-SCA CME

Map 1 0.00 54.00 47.00 44.00 ∞
Map 2 0.00 5.00 3.00 5.00 ∞
Map 3 0.00 14.00 12.00 17.00 ∞
Map 4 1.00 125.00 98.00 167.00 ∞
Map 5 2.00 97.00 183.00 415.00 ∞

The number of uncompleted full runs of the proposed CME-SSA was zero for complex
map 1, map 2, and map 3. For map 4 and map 5, it failed once and twice, respectively.
Compared to other similar approaches, CME-SSA had the lowest number of failures
when completing a full run. Finally, the third key was successfully achieved, besides
space exploration and time consumption. Additionally, that shows how the proposed
deterministic meta-heuristic CME-SSA delivered its best performance in five complex
environments (map 1 to map 5).

4.4. Analysis Results Summary

The entire Section 4 results are summarized and collected as follows for the audience’s
better understanding.
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• Tables 1 and 2 are the percentage of the explored area, and the p-value of their results
is in Table 5.

• Tables 2 and 6 are the time consumption results, and the p-value of their results is
in Table 7.

• Tables 3 and 8 are the numbers of failed simulations.

All comparisons between the proposed hybrid method CME-SSA and the referenced
approaches: CME-GWO, CME-GWOSSA, CME-SCA, and CME, are presented in each of
the above tables. In addition, the tables refer to the figures in which the simulations are
observed. Additionally, the figures show the seven different maps and their complexity.
The CME-SSA delivered a high space exploration, and the qualitative results showed
that the lower mean indicator values demonstrate that CME-SSA outperforms others in
exploration and speed averages, and the lower standard deviations demonstrate stability
in exploration and time consumption. The generated p-values of the time consumption and
exploration from the Wilcoxon rank-sum test show the superiority is statistically significant.
Furthermore, the proposed CME-SSA method requires fewer trials to successfully complete
a full run, whereas the other four methods need multiple attempts.

Another metric that determines the effectiveness of algorithms is their time consump-
tion. The primary goal of any algorithm is to complete the desired task completed in the
shortest amount of time. As a result, an algorithm that takes less time is considered energy
efficient. The CME-SSA’s time consumption and the other three methods are computed
for evaluation, and the results are recorded in Tables 2 and 6. The results show that the
proposed CME-SSA is computationally efficient because it takes less time to maximally
explore the entire space. All the other methods take a much longer time and explore less
space. The deterministic method CME in some maps was not even able to complete a full
run, and since it is deterministic, the only way to solve this issue is to change the map,
which is not possible in some cases.

4.5. Implementation on Hardware

It should be mentioned that the proposed method is implemented virtually, and simu-
lation is conducted through MATLAB using the Robotic System Toolbox and Navigation
Toolbox. To implement this method on hardware in the real-world, a Turtlebot [50] could
be employed as a mobile robot with a Hokuyo laser range scanner [51] and a laptop with
an installed Robotic System Toolbox to create the integration between MATLAB and the
robot operating system (ROS) [52]. The reading laser sensor data with 240 to 360 degrees
will go through MATLAB. The proposed method will calculate the next move and pass
through the input sensor data. The system will have unknown measurement noise without
using any external filter. A potential challenge could be the connectivity between the robot
and the PC. However, that can be achieved via wireless routers with a strong Wi-Fi signal.
The number of routers will depend on the indoor space size that needs to be explored.
Several new frameworks designed a finite time that may be utilized to make the robot’s
observation error uniformly constrained, as well as to reach a finite time convergence and
reconstruct its external disturbances and uncertainties [53–55].

5. Conclusions

This paper proposed a new hybrid deterministic meta-heuristic method called CME-
SSA for solving and optimizing the exploration problem in an unknown space environment
using a multi-robot system. This system is based on a deterministic coordinated multi-robot
exploration and the meta-heuristic salp swarm algorithm that mimics the swarming be-
havior of salps when navigating and foraging in oceans. The proposed method performed
efficiently and improved the search space. Initially, CME takes care of the cost and utility
values on the grid map. Then, the SSA efficiently selected the next move of each robot
and improved the overall solution. A simulation was conducted over seven maps in a
simple and complex environment and compared with four different methods: CME-GWO,
CME-GWOSSA, CME-SCA, and CME. The results demonstrated the high performance of
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the proposed method in a different type of environment, with respect to three main key
factors: high exploration rate, less time consumption, and also high success in navigating
safely and avoiding obstacles in the workspace.

Future work will be conducted on multi-robot exploration based on a multi-objective
metaheuristic algorithm to achieve two goals: the search for a new place and improving
the map accuracy by avoiding the robot visiting an explored cell more than once.
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