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Abstract: The application of wearable devices for fall detection has been the focus of much research
over the past few years. One of the most common problems in established fall detection systems
is the large number of false positives in the recognition schemes. In this paper, to make full use of
the dependence between human joints and improve the accuracy and reliability of fall detection, a
fall-recognition method based on the skeleton and spatial-temporal graph convolutional networks (ST-
GCN) was proposed, using the human motion data of body joints acquired by inertial measurement
units (IMUs). Firstly, the motion data of five inertial sensors were extracted from the UP-Fall dataset
and a human skeleton model for fall detection was established through the natural connection
relationship of body joints; after that, the ST-GCN-based fall-detection model was established to
extract the motion features of human falls and the activities of daily living (ADLs) at the spatial and
temporal scales for fall detection; then, the influence of two hyperparameters and window size on the
algorithm performance was discussed; finally, the recognition results of ST-GCN were also compared
with those of MLP, CNN, RNN, LSTM, TCN, TST, and MiniRocket. The experimental results showed
that the ST-GCN fall-detection model outperformed the other seven algorithms in terms of accuracy,
precision, recall, and F1-score. This study provides a new method for IMU-based fall detection, which
has the reference significance for improving the accuracy and robustness of fall detection.

Keywords: fall detection; multiple inertial sensors; skeleton; spatial-temporal graph convolutional
networks

1. Introduction

Falling is an unpredictable and irregular human activity. It refers to the process
in which a person is suddenly affected by uncontrolled random factors during normal
physiological activities, leading to changes in body posture, and finally contact with a low
potential object (such as the ground). The physical and cognitive functions of the elderly
will deteriorate significantly with age, so when falls occur in the elderly population over
the age of 60, falls often cause serious consequences. Falls are the second leading cause
of unintentional injury deaths worldwide. Globally, an estimated 684,000 individuals die
from falls each year, with more than 80% of these deaths occurring in low-income and
middle-income countries. Adults older than 60 years of age suffer the greatest number of
fatal falls [1]. Therefore, it is important to develop a reliable and accurate fall-detection
system to send fall alert messages to guardians and medical personnel in time to reduce
the injury caused by falls to the elderly.

In recent years, research on fall detection has been more and more popular. Do-
mestic and international researchers have conducted many in-depth studies on human
activity recognition and fall-detection technologies. In terms of different implementa-
tion methods, fall-detection technologies are broadly classified into the following three
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types: fall-detection technology based on computer vision [2–6], scene sensors [7,8], and
wearable devices.

The most important feature of the approach based on computer vision is the simple
installation of equipment and intuitive vision. However, it is difficult for a two-dimensional
image to separate the subject without a unified background. In addition, the video surveil-
lance equipment can be constrained by the indoor environment, and there are certain
monitoring dead spots, and also problems such as leaking personal privacy. The approach
based on scene sensors can directly capture human actions without infringing user privacy,
but it is difficult to apply in outdoor environments.

The approach based on wearable devices is to wear the sensor devices for collecting
human kinematic data on certain parts of the user’s body, and to judge whether a fall has
occurred by processing and analyzing the collected human motion data. The development
of fall-detection technology based on wearable devices has been very rapid and there
are many kinds of devices, most of which are not affected by external factors such as
environmental sites and can also detect human movement at any time and any place.
In such studies of fall detection, most of the devices used by researchers are based on
accelerometers and gyroscopes. They can also protect personal privacy while collecting the
users’ movement data. At the same time, with the rapid development of computing chips,
wearable devices are becoming lower in cost, smaller in size, and lighter in weight, making
them more feasible to promote in real life.

2. Related Works

Fall-detection methods based on wearable sensors are currently developing rapidly,
and various wearable devices have been emerging, mainly due to their low deployment
cost, privacy protection, and lack of time and space constraints. With the development of
microelectronics, the size of integrated devices (such as inertial sensors) is getting smaller
and smaller, increasing the comfort level of wearable device users. Commonly used fall-
detection and daily behavior-classification algorithms can be classified into three main
categories: threshold-based methods (TBM), machine learning methods (MLM), and deep
learning methods (DLM). TBM has the advantages of computational simplicity and low
power consumption. DLM and MLM improve the accuracy and balance the false negatives
(undetected falls) and false positives (undetected activities of daily living, ADLs) better.

Hsieh et al. [9] suggested a new hierarchical fall-detection algorithm including threshold-
based and knowledge-based approaches to detect fall events. The threshold-based approach
efficiently detected fall events from continuous sensor data. The knowledge-based approach
used a multistage fall model that included free-fall, impact, and rest phases, which could
identify fall events more accurately. Al-Kababji et al. [10] proposed a novel IoT-based
fall-detection system that included a sensing device that transmitted data to a mobile
application through a gateway device connected to the cloud. Bhattacharjee et al. [11]
developed a smart walking assistant (SWA) for elderly care using an intelligent real-time
hybrid model, which was capable of identifying whether the faller had recovered within a
stipulated period of time. In the case of fall without recovery, an alert message along with
date, time, and location of fall would be sent. Sheikh et al. [12] established a wheelchair
fall-detection system based on low-cost embedded inertial sensors and unsupervised one-
class support vector machines (OCSVM). Nho et al. [13] presented a novel fall-detection
method based on the generative adversarial network (GAN) using a heart rate sensor and
an accelerometer. Wu et al. [14] constructed a fall-detection system based on wearable
sensors. The algorithm used in this system was based on thresholds of sum acceleration
and rotation angle information. Hashim et al. [15] designed and implemented a wearable
fall-detection system (WFDS) for Parkinson’s Disease (PD) patients based on the low-power
ZigBee wireless sensor network (WSN). The falls of PD patients were detected based on
the data event algorithm (DEA) results of two wireless sensor nodes, an accelerometer and
MyoWare mounted on the patient’s body. Wang et al. [16] proposed a novel cascade and
parallel multistate fall-detection algorithm using waist-mounted tri-axial accelerometer
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signals. The very low computational cost and small size not only enabled it to be embedded
in wearable sensors but also required very low system power, which could enhance the
autonomy of wearable fall-detection devices.

The threshold-based approaches have low computational complexity and can be
easily implemented on wearable devices [17]. Wang et al. [18] developed a fall detector
called NEON. NEON used the TBM algorithm to capture the entire fall process, including
the falling phase, impact phase and stationary phase. When all action signals matched
the characteristics of a fall, NEON would classify the event as a fall and raise an alarm.
However, it could only distinguish between a fall and non-fall ADL.

The performance of the MLM and DLM algorithms has been significantly improved
compared to the TBM algorithms. Martínez-Villaseñor et al. [19] compared the results
of four machine learning models for fall detection: random forest (RF), support vector
machines (SVM), multilayer perceptron (MLP), and k-nearest neighbors (kNN). RF and
MLP showed the best performance in the experiments of different window sizes, with the
highest accuracy of 95.39% and 95.49%, respectively. Delgado-Escano et al. [20] proposed
a fall-detection algorithm combining DL and SVM, in which features were extracted by
convolutional neural network (CNN) and a classifier of SVM was used to determine
whether a fall event had occurred. Torti et al. [21] embedded recursive neural network
(RNN) architecture in the micro controller unit (MCU) of a wearable device. García et al. [22]
combined a long-short term memory neural network (LSTM) together with a novel data
augmentation to classify falls and ADLs. The combination produced a more robust and
accurate fall-detection model. Alarifi et al. [23] proposed an effective and optimized fall-
detection system that used an approach based on a killer heuristics optimized AlexNet
convolution neural network with wearable IoT sensor devices.

However, these normal fall-detection methods based on inertial sensor data have
several limitations: (1) the robustness and accuracy of the fall-detection methods based
on IMU still need to be improved; (2) the natural connection relationship of human body
joints and the structure of the human skeleton are not fully considered. In general, TBM
have relatively low accuracy and are unable to balance sensitivity and specificity [24]. TBM,
MLM, and DLM are not only unable to express the dependence between joints during
the change in human posture, but also cannot effectively extract the spatial-temporal
information of human falls and ADLs. To address these issues, we proposed a skeleton-
based fall-detection method using spatial-temporal graph convolutional networks with
IMUs.

A spatial-temporal graph convolutional network (ST-GCN) [25] is used in the field
of video-based human action recognition. As ST-GCN can model dynamic skeletons, a
spatial-temporal graph convolutional network based on the human skeleton model was
established for fall detection. This network better captures the motion relationship between
joints during human action. It also can better mine the action features of human falls
and ADLs at spatial and temporal scales through graph spatial convolution and temporal
convolution and improve the robustness and accuracy of fall recognition based on IMUs.

The rest of this paper is organized as follows. Section 3 explains the dataset and the
proposed ST-GCN-based fall-detection method. Then, Section 4 presents the experiments
and results while Section 5 contains the discussion of the results. Finally, conclusion and
future works are laid out in Section 6.

3. Methods and Data

In this section, the dataset of falls and ADLs is introduced in detail; then, the ST-
GCN-based fall-detection method is proposed; finally, the overall structure of the ST-GCN
network used in this paper and three partition strategies are clearly described.

To evaluate the performance of the skeleton-based ST-GCN classification model for
fall detection, the UP-Fall dataset containing multiple inertial sensors data was used as the
experimental dataset.
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3.1. Dataset

The UP-Fall dataset [19], a large motion trajectory dataset mainly used for fall detec-
tion, contains 11 activities. Three trials were performed for each activity obtained from
17 subjects (9 males and 8 females) performing six simple ADL activities and five different
types of human falls. As shown in Table 1, these 17 healthy young subjects ranged in age
from 18 to 24 years, had a mean height of 166 cm and a mean weight of 66.82 kg.

Table 1. Individual characteristics of the experimental subjects.

Characteristic Range Average Standard
Deviation Median

Age [18–24] 20.47 ±1.66 20
Weight (kg) [53–99] 66.82 ±12.49 68
Height (cm) [157–175] 166.47 ±5.47 168

As shown in Table 2, all five human falls (falling forward using the hands, falling
forward using the knees, falling backwards, falling sideways and falling from sitting in
a chair) were performed over 10 s. Except for the sampling time of 30 s for jumping and
10 s for picking up an object, an activity easily mistaken as falling, the other four of the six
simple ADLs (walking, standing, sitting, picking up an object, jumping and lying) were all
conducted over 60 s.

Table 2. Activities performed by subjects in the experimental dataset.

Category Activity ID Description Duration(s)

Fall

1 Falling forward using the hands 10
2 Falling forward using the knees 10
3 Falling backwards 10
4 Falling sideways 10
5 Falling from sitting in a chair 10

ADL

6 Walking 60
7 Standing 60
8 Sitting 60
9 Picking up an object 10

10 Jumping 30
11 Lying 60

In contrast to other existing datasets, the UP-Fall dataset contained measurement data
from five sensors located at different parts of the body. These motion data included 3-axis
accelerometer and 3-axis gyroscope data captured simultaneously by five Bluetooth sensor
nodes, all with a sampling frequency of approximately 18 Hz.

When the data of all sensors were preprocessed, the skeleton model construction for
fall detection was performed based on the natural connection relationship of the human
body joints corresponding to the five sensors. Then the skeleton sequence was constructed
as a spatial-temporal graph and input into the ST-GCN fall-detection model. As shown in
Figure 1, five wearable sensors were used to collect raw data from the 3-axis accelerometer
and 3-axis gyroscope in UP-Fall dataset. These wearable sensors were worn on the left
ankle (S1), at the right pocket of the pants (S2), at the middle of the waist (S3), under the
neck (S4) and on the left wrist (S5).
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Figure 1. Distribution of IMU sensors located on the human body in the UP-FALL dataset.

3.2. ST-GCN-Based Fall Detection

In this part, the overall workflow of the ST-GCN fall-detection method is presented
in detail: the multiple inertial sensors data were windowed to build the spatial-temporal
graph; then, the data were used to train the ST-GCN model; finally, the model was used
to predict falls and ADLs in the testing experiment. The graph neural networks included
in our proposed model are introduced. The establishment process of the ST-GCN-based
fall-detection model is described.

3.2.1. Workflow of Fall Detection

The main workflow of fall detection is shown in Figure 2: the 3-axis acceleration and
3-axis angular velocity data collected by five inertial sensors in the UP-Fall dataset were
used to build the fall-detection model. Firstly, the skeleton model of fall detection was
established based on the natural connection between the human joints where the IMUs
were located; secondly, the raw data were windowed using different window sizes: (a) one-
second, (b) two-second, (c) three-second; thirdly, the appropriate ST-GCN model training
parameters and hyperparameters were analyzed and determined, and the experimental
results in different window sizes were discussed; finally, the fall-detection model based
on ST-GCN was established, and the experimental results of ST-GCN algorithm were
compared with those of seven other algorithms.
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3.2.2. Graph and Graph Neural Networks

A graph is a data structure consisting of a finite non-empty set of vertices and a set
of edges between vertices, denoted as G(V, E), where G represents a graph, V is the set
of vertices of the graph G, and E is the set of edges of the graph G. Generally speaking, a
graph is considered as an abstract network of vertices, in which vertices can be connected
to each other by edges, indicating that vertices are related. As non-Euclidean data, graph
data does not have translation invariance, and its complex spatial structure poses a great
challenge to existing ML and DL algorithms [26].

A graph neural network (GCN) is a hot area of machine learning research. The graph
convolutional network is one of the graph neural networks, which has been successfully
applied in traffic network analysis and text classification [27].

In the field of image processing, the ordinary convolution operation uses a number
of fixed-size convolution kernels (filters) to scan the input image. Near the central pixel
of each image, a pixel matrix with the same size as the weight matrix is extracted. This
pixel matrix is used to produce the inner product with the convolution kernel to obtain the
convolution output value of the central pixel. The neighborhood pixels can be defined as a
neighborhood of the central pixel in the pixel matrix. When the convolution operation on
an image is extended to an arbitrary graph structure, the neighborhood of any node can
be defined with a series of weight matrices. This is the basic idea of graph convolutional
networks.

However, unlike images, the number of nodes in the neighborhood of each node is
not fixed if the neighborhood is defined using an adjacency matrix on an ordinary graph
structure. This makes it difficult to determine the dimensionality of the convolution kernel
to be used and how to arrange the order of the inner product operations of the weight
matrix with the nodes in the neighborhood. In GCN, the inner product is computed using
the same vector with the feature vectors on all the nodes in the neighborhood and the
calculated results are averaged. This allows the dimensionality of the convolution kernel
to be determined as a fixed length and the order of the nodes in the neighborhood does
not need to be considered. This design allows GCN to be used on graphs with an arbitrary
connectivity relationship.

3.2.3. ST-GCN-Based Fall-Detection Algorithm

In this paper, firstly the skeleton model for fall detection was established based on the
natural connection between the human joints where IMUs are located in the UP-Fall dataset,
and then the interframe connection of the nodes of the skeleton model was completed
on the time axis, and finally the spatial-temporal graph of the skeleton sequence was
obtained. As shown in Figure 3, the blue circular nodes represent the human body joints.
The intrabody connection is defined based on the natural connection of the human joints.
There are two types of edges, spatial edges, which are built on the naturally connected
nodes of the human skeleton in each frame, and temporal edges, which connect the same
nodes in two consecutive frames. Many layers in the spatial-temporal graph convolutional
network are also built in this way, which integrate the motion information in the temporal
and spatial domains.

In order to analyze the information about the human action of falling and ADLs in a
spatial-temporal graph, the ST-GCN model abstracts the skeletal structure of the human
body as a spatial graph, in which the vertexes are joints and the edges represent the natural
connections of joints, and then constructs a graph network utilizing spatial-temporal convo-
lutional blocks to perform feature extraction at the spatial and temporal scale, respectively.
This method automatically captures the spatial and temporal dynamics of joints, which is
one advantage of the graph convolutional network. However, as mentioned before, the
skeleton is in the form of a graph rather than a 2D or 3D grid, which makes it difficult
for models such as convolutional networks to be used. Recently, GCN, which generalize
CNN to arbitrarily structured graphs, have received increasing attention and have been
successfully adopted in many applications.



Sensors 2023, 23, 2153 7 of 19Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 3. Spatial-temporal graph of the skeleton sequence built for fall detection. 

In order to analyze the information about the human action of falling and ADLs in a 
spatial-temporal graph, the ST-GCN model abstracts the skeletal structure of the human 
body as a spatial graph, in which the vertexes are joints and the edges represent the natu-
ral connections of joints, and then constructs a graph network utilizing spatial-temporal 
convolutional blocks to perform feature extraction at the spatial and temporal scale, re-
spectively. This method automatically captures the spatial and temporal dynamics of 
joints, which is one advantage of the graph convolutional network. However, as men-
tioned before, the skeleton is in the form of a graph rather than a 2D or 3D grid, which 
makes it difficult for models such as convolutional networks to be used. Recently, GCN, 
which generalize CNN to arbitrarily structured graphs, have received increasing attention 
and have been successfully adopted in many applications. 

Since pixel points are tightly connected in an image, a traversal sequence naturally 
exists, such that convolutional kernels can traverse all pixel points on an image by cycling 
through them in a top-down, left-to-right order and be weighted with the central pixel 
point and its neighbors to obtain new image features. However, for graphs, there is no 
naturally existing order for traversal. Therefore, in order to be able to traverse the neigh-
boring nodes, an adjacency matrix needs to be constructed. However, for a large graph 
structure, it is impossible to add all the node features directly. To partition the neighboring 
nodes in the graph structure, the ST-GCN [25] codes each neighboring node with a serial 
number, and the neighboring nodes with the same serial number are regarded as a neigh-
boring subset, which also forms multiple adjacency matrices. Therefore, three partition 
strategies are proposed: 
(a) Uni-labeling partitioning. All nodes in their central node neighborhood have the 

same label. As shown in Figure 4a, all green nodes in the neighborhood are all with 
the same label. 

(b) Distance partitioning. By the distance between a node and the target node, a graph 
(such as a local skeleton graph of the human body composed of nodes) is divided 
into two parts. As shown in Figure 4b, the green nodes are nodes with distance of 0, 
that is, the nodes themselves, and the blue nodes are neighboring nodes with a dis-
tance of 1, that is, the nodes directly connected to the root node. 

(c) Spatial configuration partitioning. As shown in Figure 4c, the distance from the root 
node (green) to the center of gravity of the skeleton (black cross) is taken as the 

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 3. Spatial-temporal graph of the skeleton sequence built for fall detection.

Since pixel points are tightly connected in an image, a traversal sequence naturally
exists, such that convolutional kernels can traverse all pixel points on an image by cycling
through them in a top-down, left-to-right order and be weighted with the central pixel point
and its neighbors to obtain new image features. However, for graphs, there is no naturally
existing order for traversal. Therefore, in order to be able to traverse the neighboring nodes,
an adjacency matrix needs to be constructed. However, for a large graph structure, it is
impossible to add all the node features directly. To partition the neighboring nodes in the
graph structure, the ST-GCN [25] codes each neighboring node with a serial number, and
the neighboring nodes with the same serial number are regarded as a neighboring subset,
which also forms multiple adjacency matrices. Therefore, three partition strategies are
proposed:

(a) Uni-labeling partitioning. All nodes in their central node neighborhood have the same
label. As shown in Figure 4a, all green nodes in the neighborhood are all with the
same label.

(b) Distance partitioning. By the distance between a node and the target node, a graph
(such as a local skeleton graph of the human body composed of nodes) is divided into
two parts. As shown in Figure 4b, the green nodes are nodes with distance of 0, that
is, the nodes themselves, and the blue nodes are neighboring nodes with a distance of
1, that is, the nodes directly connected to the root node.

(c) Spatial configuration partitioning. As shown in Figure 4c, the distance from the
root node (green) to the center of gravity of the skeleton (black cross) is taken as
the baseline, and the nodes with a shorter distance to the center of gravity than the
baseline are marked as centripetal nodes (blue), while the centrifugal nodes (yellow)
have a longer distance than the baseline.

It should be noted that in addition to the graph-based spatial structure method men-
tioned above, there is also a spectral analysis-based construction method for applying neural
networks on graphs. The graph-based spatial configuration was applied in this paper.

The overall structure of the network used in this paper is shown in Figure 5. The
spatial-temporal graph is first input to several identical spatial-temporal blocks, all of
which are composed of a spatial graph convolution (SGC) layer, two BN layers, a Relu
layer, a temporal convolution (T-Conv) layer, and a dropout layer. The SGC layer is used to
extract spatial static features from the spatial graph abstracted from the skeletal structure
of the human body and the BN layer is constructed to normalize the data. The normalized
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data is fed to the ReLu layer for non-linear activation. The T-Conv layer is constructed to
extract temporal dynamic features of falls and ADLs. The dropout layer is used to avoid
model overfitting, and the residual connection is applied to guarantee the stability of model
training. There are 5 basic spatial-temporal blocks in the model, with output channels of 32,
32, 32, 32, and 32. After that, the output tensor is fed into a global average pooling layer to
obtain a feature vector for each sample of falls and ADLs. Finally, the vectors are passed
into the output layer with a softmax function to obtain the prediction of falls and ADLs.
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4. Experiments

In this section, we present the experimental settings and the metrics used to evaluate
the performance of the fall-detection algorithms. In addition, the results of three types of
experiments are shown in detail.

4.1. Experimental Setup

In this paper, the grid search strategy was used to determine the optimal hyperpa-
rameters of the fall-detection model; then, experiments with different window sizes were
conducted to explore the effect of window size on model performance; finally, the fall-
detection model of ST-GCN was established and the results of ST-GCN were compared
with those of MLP, CNN, RNN, LSTM, TCN (temporal convolutional network) [28], TST
(time series transformer) [29], and MiniRocket [30] to demonstrate the superiority of the
ST-GCN algorithm for fall detection.

In this paper, the training and testing platform of the fall-detection model was built on
a Windows 10 system, mainly implemented using Python and PyTorch. Table 3 shows the
specific configuration information of the experimental environment.

Table 3. Experimental environment configuration.

Name Configuration Information

OS Windows10

Hardware
CPU:Intel i7-6700H

Memory:16 GB
Graphics card:RTX1060, 6 GB

Python library

Python3.8
Pytorch1.11.0
Skelarn0.23.1
Pandas1.0.5
Keras2.4.3

For the experiments, the performance of fall-detection algorithms was evaluated using
four metrics: accuracy, precision, recall, and F1-score, as shown in Equations (1)–(4); where
TP and TN are the true positives and true negatives, and FP and FN are the false positives
and false negatives.

Accuracy =
TP + TN

TP + FN + TN + FP
× 100% (1)

Precision =
TN

TN + FP
× 100% (2)

Recall =
TP

TP + FN
× 100% (3)

F1 − Score =
2 × Precious × Recall

Precious + Recall
× 100% (4)

In this paper, the training parameters of ST-GCN and the other seven algorithms were
first determined, as shown in Table 4.

Table 4. Values of the training parameters of ST-GCN algorithm.

Parameter Value

Minibatch_size 128
Learning_rate 0.0001
Max_epochs 1000

Patience 50/minibatches
Optimizer Adam
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In all experiments, the following strategy was used: 80% of the total data in the
experimental dataset was used for training, 10% for validation, and 10% for testing, and the
cross-entropy error function was used as the loss function for backpropagation. All models
were trained for 1000 epochs, and the learning rate was set to 0.0001. Ten rounds of cross-
validation were performed using different random partitions carried out by samples over
each of the selected ML and DL methods. The results of ten rounds of experiments were
averaged as the final results using 10-fold cross-validation method. All the fall-detection
algorithms were tested using three different window sizes: (a) one-second, (b) two-second
and (c) three-second. An overlap of 50% was considered in all the cases.

The partition strategies of convolutional operations (PS) and the maximum distance of
the connection between neighboring nodes and the central node (MD) are very important
for the ST-GCN model. In order to analyze the effects of PS and MD on the performance
of the ST-GCN fall-detection model and find the optimal PS and MD, the grid-search
experiment was conducted.

Table 5 shows the range of these two hyperparameters. The partitioning strategies of
Uni-labeling, distance and spatial configuration were used respectively, and MD was set to
1 or 2. In the grid-search experiment, the window size was set to 2 s and the size of overlap
was set to 1 s.

Table 5. Range of the two model hyperparameters (PS and MD).

Parameter Range

PS [Uni-labeling, distance, spatial configuration]
MD [1, 2]

4.2. Experimental Results
4.2.1. Determination of Model Parameters

As shown in Table 6, changing the PS and MD parameters had certain effects on the
performance of the ST-GCN model with the other parameters unchanged. The ST-GCN
model achieved the highest accuracy of 98.05% when the PS was spatial configuration and
MD was 1.

Table 6. Accuracy of ST-GCN fall-detection model in the grid-search experiment (%).

Uni-Labeling Distance Spatial Configuration

MD = 1 97.68 97.81 98.05
MD = 2 96.87 97.88 97.95

Therefore, the PS and MD were set to spatial configuration and 1 in all subsequent
experiments, respectively.

4.2.2. Experimental Results of Different Window Sizes

The influence of window size on classification performance of ST-GCN was tested
when the other parameters were unchanged.

In this paper, three sets of window-size experiments were conducted, and the window
sizes were set to 1.0 s, 2.0 s, and 3.0 s.

Table 7 shows the performance comparison of the ST-GCN model using different
window sizes in the four evaluation criteria. The ST-GCN model using the window size of
2.0 s almost achieved the best results according to all the criteria. The accuracy, precision,
recall, and F1-score were 98.05%, 85.02%, 93.46%, and 88.30%, respectively. When compared
with the results of 1 s window size, the ST-GCN model using the window size of 2.0 s
improved the accuracy by 0.21%, precision by 1.75%, recall by 6.99%, and F1-score by 3.88%.
When compared with the results of the 3 s window size, the ST-GCN model using the
window size of 2.0 s improved the accuracy by 0.77%, precision by 6.97%, and F1-score
by 4.73%. Of the three sets of experimental results, the results of the 3 s window size had
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the worst classification performance with the lowest accuracy, precision, and F1-score of
97.28%, 78.05%, and 83.57%, respectively; while only in terms of the recall, the experimental
result with window size of 3.0 s was slightly higher than 2.0 s by 0.12%.

Table 7. Performance of ST-GCN fall-detection model using different window sizes: 1 s, 2 s, and 3 s.

Window (s) Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1.0 s 97.84 83.27 86.47 84.42
2.0 s 98.05 85.02 93.46 88.30
3.0 s 97.28 78.05 93.58 83.57

In summary, the overall recognition performance of the ST-GCN algorithm was best
when the window size was set to 2.0 s and the overlap was set to 1.0 s.

4.2.3. Experimental Results of Different Algorithms

In this section, the fall-detection method based on ST-GCN was compared with seven
algorithms of MLP, CNN, RNN, LSTM, TCN, TST, and MiniRocket.

Table 8 shows the performance comparison between different fall-detection models
in the four evaluation criteria. ST-GCN outperformed the other algorithms according to
all the criteria. The ST-GCN model using the window size of 2.0 s achieved the highest
accuracy of 98.05%, precision of 85.02%, and F1-score of 88.30%. Furthermore, the ST-GCN
model using the window size of 3.0 s achieved the highest recall of 93.58%. The accuracy of
TST ranked second among these models using a 2 s window size, at 97.57%. The accuracy
of RNN was ranked last among these models using a 2 s window size, at 88.68%. The
ST-GCN model improved by 0.48% in accuracy, 3.21% in precision, 14.16% in recall and
8.62% in F1-score compared with TST, and improved by 9.37% in accuracy, 28.91% in
precision, 29.86% in recall and 30.72% in F1-score compared with RNN. When compared
with the MLP algorithm [19], the ST-GCN model using the window size of 2.0 s improved
the accuracy by 1.33%, precision by 11.27%, recall by 24.59% and F1-score by 17.95%. The
improvement of the proposed ST-GCN model for fall detection over the other selected
models in each evaluation criterion can also be observed in Table 8.

Table 8. Performance of eight different fall-detection algorithms using different window sizes: 1 s,
2 s, and 3 s.

Model Window (s) Accuracy (%) Precision
(%) Recall (%) F1-Score (%)

MLP
1 97.32 77.47 72.58 74.45
2 96.72 73.75 68.87 70.35
3 96.40 74.93 65.56 67.74

CNN
1 97.45 78.84 79.57 78.80
2 97.33 78.77 77.18 76.99
3 97.13 75.72 74.11 73.52

RNN
1 94.95 64.79 69.61 66.49
2 88.68 56.11 63.60 57.58
3 72.25 45.28 53.82 44.85

LSTM
1 93.21 63.22 75.57 67.21
2 91.11 59.92 71.87 63.06
3 85.07 53.59 65.47 55.10

TCN
1 97.21 78.22 73.10 74.81
2 96.81 74.98 70.72 71.76
3 95.70 67.45 63.50 63.75
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Table 8. Cont.

Model Window (s) Accuracy (%) Precision
(%) Recall (%) F1-Score (%)

TST
1 97.77 82.10 78.42 79.88
2 97.57 81.81 79.30 79.68
3 97.45 80.07 75.38 76.42

MiniRocket
1 96.17 72.29 62.63 65.75
2 96.19 71.45 62.87 65.39
3 96.32 70.38 61.92 64.13

ST-GCN
1 97.84 83.27 86.47 84.42
2 98.05 85.02 93.46 88.30
3 97.28 78.05 93.58 83.57

5. Discussion

In this section, we analyze the effects of partition strategies and different window sizes
on ST-GCN performance; then, the performance of different models is compared, and the
characteristics of these fall-detection methods are discussed.

5.1. Effects of Partition Strategies on ST-GCN Performance

Different partition strategies have different effects on the performance of the ST-
GCN fall-detection model. Whether MD = 1 or MD = 2, the recognition accuracy of uni-
labeling partition strategy was lower than the other two multi-subset partition strategies.
Mainly because uni-labeling divides different nodes in the neighborhood using the same
weight vector, which is equivalent to simply averaging the feature vectors of all nodes
in the neighborhood before the convolution operation, so that differential properties of
the skeleton between joints cannot be modeled. Therefore, the recognition performance
of ST-GCN based on uni-labeling partition strategy was not particularly satisfactory. In
contrast, with the multi-subset partition strategy, the nodes in the neighborhood are divided
into two or three subsets, and then there are different weight vectors, which can learn
the features of different nodes more discriminately and can model the local differential
properties between skeleton joints (e.g., the relative translations between joints).

The motions of human body parts can be broadly classified into concentric and eccen-
tric motions. In this experiment, the spatial configuration achieved the highest recognition
accuracy, mainly because this partition strategy can better characterize the stationary, cen-
tripetal and centrifugal motions of the joints of the human skeleton and can give more
attention to the extremity joints. Generally, the closer you are to the center of gravity, the
smaller the amplitude of motion is, and the farther away you are from the center of gravity,
the larger the amplitude of motion is.

ST-GCN [25] showed that the multi-subset partition strategy was usually better than
the uni-labeling partition strategy, and using the spatial configuration in the multi-subset
partition strategy led to better performance of the ST-GCN model. As shown in Table 6,
the experimental results of fall detection in this paper also further validate this important
conclusion.

5.2. Effects of Different Window Sizes on ST-GCN Performance

When the raw data are divided into windows, different window sizes affect the
classification performance of the ST-GCN model. As shown in Table 7, it could be concluded
that the overall classification performance of ST-GCN for falls and ADLs was best when
the window size was 2.0 s and the overlap was 1.0 s, in which accuracy, precision, recall
and F1-score were 98.05%, 85.02%, 93.46%, and 88.30%, respectively.

As shown in Figure 6, in order to further analyze the influence of different window
sizes on fall and ADL recognition, each confusion matrix with the window size of 1.0 s,
2.0 s, and 3.0 s was calculated, respectively.
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As shown in Figure 6a–c, in the experimental results of the five types of falls, the
recognition accuracy with a window size of 2.0 s of falling forward using the hands, falling
forward using the knees, falling backwards, falling sideways, and falling from sitting
in a chair was 5.34%, 14.06%, 13.47%, 20.69% and 19.57% higher, respectively, than that
with a window size of 1.0 s. The recognition accuracy of falling forward using the knees,
falling backwards and falling from sitting in a chair was 3.52%, 1.97%, and 1.70% higher,
respectively, than that with a window size of 3.0 s.

In the experimental results of six ADLs, the recognition accuracy of walking, picking
up an object and jumping with a window size of 2.0 s was 0.21%, 4.10% and 0.76% higher,
respectively, than that with a window size of 1.0 s. The accuracy of standing, sitting, picking
up an object and lying with a window size of 2.0 s was 0.24%, 0.02%, 0.2% and 2.75% higher
than that with a window size of 3.0 s.

The recognition accuracy of the six ADLs was slightly higher than that of the five
types of falls. One of the reasons may be the data imbalance of the UP-Fall dataset: the
sampling time of ADLs was mostly 60 s, while the sampling time of each type of fall was
10 s. In addition, the data of ADLs such as walking, standing, jumping and lying were
not changing too much or changing periodically; while during a 10 s sampling, all falls
were performed only once, and a fall process only accounted for approximately 1/5 of the
duration of a sample. Therefore, the sample size of falls was smaller compared with ADLs.

In the process of changing the window size, the five ADLs of walking, standing, sitting,
jumping and lying kept high accuracy. Except for the accuracy of lying in the experiments
with window size of 3.0 s, which was only 94.44%, the rest were all above 97%. The results
showed that ADLs were slightly influenced by the window size.

In contrast, the five types of falls were more influenced by window size. The lowest
accuracy was only 69.59% when the window size was 1.0 s; while the lowest accuracy
with the window size of 2.0 s and 3.0 s was 82.89% and 85.37%, respectively. So, the
results showed that the overall recognition accuracy of falls improved as the window size
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was increased within a certain range. One of the reasons may be that more information
about a fall’s process can be included in a window when the window size is increased
appropriately.

In summary, the highest overall accuracy was achieved when the window size was
2.0 s, and most of the falls and ADLs ranked high in accuracy, improving false recognition.

5.3. Performance Comparison of Different Algorithms

In order to verify the effectiveness and robustness of the proposed ST-GCN-based
fall-detection algorithm, the experimental results of ST-GCN and seven other algorithms
were compared and analyzed. In the three sets of experiments with window size of 1.0,
2.0 s and 3.0 s, ST-GCN performed the best of all the algorithms, with an accuracy of 97.84%,
98.05% and 97.28%, respectively.

To further analyze the performance of each algorithm, the F1-score of each action was
calculated.

The experimental results with window size of 1.0 s are shown in Figure 7. The F1-score
of ST-GCN ranked first in the five categories: falling forward using the hands, falling
forward using the knees, falling backwards, falling from sitting in a chair and picking up
an object, with 82.57%, 75.50%, 79.35%, 77.58%, and 89.47%, respectively. The F1-score of
ST-GCN for falling sideways ranked second, with 78.36%.
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The experimental results with window size of 2.0 s are shown in Figure 8. The F1-score
of ST-GCN ranked first in all falls: falling forward using the hands, falling forward using
the knees, falling backwards, falling sideways and falling from sitting in a chair, with
88.72%, 93.37%, 91.48%, 92.90%, and 88.47%, respectively. The F1-score of ST-GCN also
ranked first in the two ADLs: walking and picking up an object, with 99.50% and 95.43%,
respectively. The F1-score of ST-GCN for jumping ranked second, with 99.50%. The F1-score
of ST-GCN for sitting ranked third, with 98.99%.
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The experimental results with window size of 3.0 s are shown in Figure 9. The F1-
score of ST-GCN ranked first in all falls, with 90.48%, 89.82%, 88.99%, 94.50%, and 87.25%,
respectively. The F1-score of ST-GCN also ranked first in the three ADLs: sitting, picking
up an object and jumping, with 100.00%, 95.91%, and 100.00%, respectively. The F1-score of
ST-GCN for walking and lying ranked third, with 98.99% and 94.29%.
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The ST-GCN model performed better than the other seven algorithms for five falls
and picking up an object in the experimental results with window sizes of 2.0 s and 3.0 s.
The results indicated that ST-GCN had higher accuracy and stability for both fall and ADL
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recognition compared to the other seven algorithms. Moreover, the proposed fall-detection
method based on ST-GCN could reduce the false positives and false negatives.

The skeleton-based fall-detection model using ST-GCN achieved the best prediction
performance in most experiments. Especially, in the five types of fall predictions, the
performance differences between the ST-GCN model and some of the other models were
significant, showing the proposed fall-detection model in this paper can better learn the
dynamic spatial-temporal patterns of falling data.

As shown in Table 9, we compared the computational requirements of the eight fall-
detection models using different window sizes in terms of the prediction time required for
a single window. In general, these models can be sorted as CNN, ST-GCN, TCN, LSTM,
RNN, MLP, TST, and MiniRocket in increasing order. The results show that ST-GCN can
meet the real-time requirements of the fall-detection task.

Table 9. Prediction time per window of each fall-detection model using different window sizes: 1.0 s,
2.0 s, and 3.0 s.

Window
Size (s)

MLP CNN RNN LSTM TCN TST MiniRocket ST-GCN

Prediction Time per Window (ms)

1.0 1.11 0.10 0.26 0.31 0.33 11.21 16.82 0.16
2.0 1.50 0.07 0.29 0.28 0.23 13.32 26.13 0.13
3.0 0.54 0.07 0.35 0.26 0.21 12.70 36.74 0.11

Most of the ML and DL algorithms for time series (such as RNN, LSTM, TCN) mainly
focus on temporal features and their abilities to learn spatial features are relatively weak.
However, except for the temporal features, the data of falls and ADLs also have complex
spatial patterns. In addition, recursive networks need iterative training, which will gradu-
ally introduce error accumulation. Therefore, the RNN-based networks used to capture
the temporal correlations in the falling dataset performed worse than the ST-GCN model
proposed in this paper. Compared with RNN, LSTM can better deal with long-term de-
pendencies and mine the change rules of falls in historical data; TCN can allow parallel
computation of outputs, which is more efficient than RNN but they still ignore the spatial
patterns embedded in multi-inertial sensor data. In terms of TST, it also supports paral-
lelism and has stronger long-term dependence modeling capability, but it is insensitive
to local information and is susceptible to outliers. The CNN-based approaches, which
transform the multisensor signals into grid-structured data or sequence-structured data
as inputs, may not appropriately model the spatial dependencies in multisensor signals.
MLP [19] needs to extract features manually, and the quality of features has a great influence
on classification performance.

These deep learning algorithms seldom explicitly consider the spatial connectivity and
graphical structure between joints. Therefore, they are relatively limited in understanding
the behavior expressed by body movements, which leads to their overall worse performance
than ST-GCN in human fall-detection problems.

ST-GCN applies graph neural networks to explicitly model the natural connections
between the joints of the human body in space compared to traditional deep learning
algorithms dealing with time series. The spatial convolution models the skeletal structure
of the body as a static graph, making full use of the spatial structure information. To
solve the inherent defects of recurrent networks, ST-GCN adopts a fully convolutional
structure in the temporal axis. ST-GCN can automatically extract spatial-temporal motion
patterns and realize the prediction of human falls and ADLs more accurately compared
with other methods. ST-GCN with flexibility and scalability achieves faster training, easier
transformation, and fewer parameters.

At the same time, a new partition strategy that goes beyond the average idea of
the original GCN was proposed for ST-GCN, and the neighborhood set according to
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the partition strategy of spatial configuration was further divided, which enhanced the
performance of the ST-GCN model for fall detection.

In summary, this paper proposed a new fall-detection method, which utilized the
ST-GCN to make full use of human skeleton information and mine the spatial-temporal
pattern of falls and ADLs among multiple inertial sensors. The results prove that this
method can identify falls more accurately and reliably. On the UP-Fall dataset for fall
detection, the proposed method achieved superior performance compared to previous
methods.

6. Conclusions and Future Works

In this study, a fall-detection method based on the skeleton with multiple inertial
sensors using ST-GCN was proposed. Firstly, the motion data of IMUs on the five joints
of the human body were extracted from the UP-Fall dataset and windowed; secondly
a skeleton model for fall detection was established according to the natural connection
relationship between human joints; then, the spatial graph convolution layer and the
temporal convolution layer were used to extract the dynamic features of falls and ADLs at
the spatial and temporal scales, respectively, which more comprehensively mined the spatial
and temporal patterns of human falls and ADLs. Finally, a fall-detection model based on
ST-GCN and the skeleton was established; the influence of the two hyperparameters on the
performance of the model was discussed and the experimental results were compared with
those of seven other algorithms. The experimental results showed that the ST-GCN model
with better accuracy and robustness outperformed the other seven algorithms. This study
provides a new method for IMU-based fall detection.

The method proposed in this paper directly used the natural connections of human
joints to build a human skeleton model for fall detection, but did not tap into the potential
topological relationships of unnatural connections from the perspective of actual motion
characteristics. For example, hands and feet are not naturally connected, but there are
strong motion correlations during movement. In future work, attention mechanism can be
used to self-learn certain unnatural connections of the skeleton during spatial information
extraction to mine the non-topological relationships between human joints and improve
the performance of fall detection.
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